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This paper describes a method for computing baseband distortion in
analog FM communication systems; the method is based on recent theo-
retical work available in the literature. The input baseband signal is taken
to be a zero-mean, stationary Gaussian process having an arbitrary power
spectral density. A variety of graphical results are presented in order to
demonstrate the utility of this method of computing FM distortion. It is
shown that the often-used noise loading test does not necessarily represent
a worst-case test.

I. INTRODUCTION

Theoretically, analog I'M signals generally possess an infinite band-
width. Thus, when such signals are passed through a linear system
having a finite bandwidth, some FM distortion must occur. The mea-
surement of such distortion is costly and very time consuming. Ac-
cordingly, the development of methods for the computation of FM
distortion is of practical interest.

The purpose of this paper is to describe how we used the theoretical
results derived by A. Mircea,! E. Bedrosian? and 8. O. Rice? to develop
a computer program to compute the I'M distortion resulting from
linear time-invariant-filter structures. The input baseband modulation
is taken to be a zero-mean, stationary Gaussian process having an
arbitrary baseband power spectral density.

II. SERIES EXPANSION UNDERLYING THE COMPUTATION

Consider the analog FM communication system presented in Fig.
la. The associated mathematical problem for studying I'M distortion
is illustrated in Iig. 1b. The problem is to deduce the double-sided
power spectral density, Wy(f), of the output random process, 8(f),
given T'(f) and the double-sided power speetral density, W, (f), of the
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input Gaussian modulation. Once this mathematical problem is solved
satisfactorily, we can then compute the FM distortion at baseband.
In the FM case, Wy (f), the power spectral density of ¢'(t), is given
and W (f), the power spectral density of 8'(t), is desired. In the PM
case, W4 () is given and W,(f) is desired. However, the two problems
are closely related because of the following relations:

W (f) = w”'Vé(f) (1)
and

Wo (f) = *Wo([). (2

In fact, an FM communication system can be designed by using only
PM equipment, as is illustrated in Tig. 1a.
Using Rice’s? notation, a series expansion of We(f) is given by:

Wo(f) = 63:8(f) + iW(NI U + U*(=NI*

1 o0
+§ dpW (@)W oS — o) | T(py f — p) — T*(—p, —f + 0)|*

1 o0 - -]
+o [ do f QW ()W o)W o(f — p — )

X |8, 0, f —p— )+ 8%(—p, —0, =f+p+ 0)?
+ 0(¢'W,) (3)

where
* = complex conjugate
8a. = dc part of 4(f)

Ty f—p) = 8@, f —0) + daW 4(0)[28(a, p)S(—0, f — p)

—a0

- S("'J f —0) — F(U)F(—J)S(p, f— P)
+8p+oa, f—p—0a)]

U = 1) + f " oW ()T (0)S(—p, )

+ [ a f doTW o(0)W o(0) | —3T(p + @)S(—p — o, f)

+ T(@)[38(—0,p)S(—p, ) — S(p, f — 0 — )

Sp— o, f —
S(p,a) = I'(p + ) — T(p)T(0) + S(p f=nl
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Fig. 1—(a) Analog FM communication system. ¢'(f) is a distorted version of
¢'(t). (b) Associated mathematical model for studying FM distortion.

and

S(p,o,v) =Tp+o+v) =T+ a)T(») — T+ »I'(o)
— I'(e + »)T(p) + 2T (p)T ()T (»).

We shall neglect the de term, 83, since we are mainly interested in
the continuous part of We(f). In addition, for the range of parameters
of interest to us, we have found that the double integral associated
with the U(f) function can also be neglected.

Notice that W4(f1) = 0 does not imply that We(f;) = 0. This is
contrary to the case of a linear system. That is, even if we apply no
input power in the frequency interval (fi, fi + df), we generally get
some “intermodulation noise’” at the output in this frequency interval.
Actually, eq. (3) is a truncated form of an infinite series of functionals
of T'(f) and W4(f). However, we shall see that it is possible to select
system parameters which are of practical importance and which allow
us to neglect all of the terms represented by 0(¢°W,). Accordingly,
we shall define the signal power S(f)df in the frequency interval
(f, f + df) at the output to be

S(Ndf = iWo(NIUF) + U*(=1)|%df. (4)

For the range of parameters which are of practical importance, it
turns out that S(f) = {W,(f)|T(f) + T*(— f)|% S(f) represents the
spectral contribution at the output which is free of intermodulation
noise. We also define the FM distortion power D (f)df appearing in the
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output frequency interval (f, f + df) to be

1 -]
D(pas = f 0o W o)W ol — p)
X iT(P: f - P) - T*(—Pr _f'Jl_ P)lzdf
1 o0 oo
v s f oW o)W o)W o(f — p — o)

X |S(p,a’,f—p—o‘)+S*(—-p, _ﬂ-:_f+P+“)l2df' (5)

D(f) represents the spectral contribution at the output which results
from intermodulation noise.

The two quantities of prime interest in this section are the signal-to-
distortion ratio, S(f)/D(f), and the ratio of the average signal power,
os, to the average distortion power, o3, in the output baseband. The
latter quantities are defined by

2[ S(HHdf PM Case
os=1 " (6)
2[ wIS(NHdf FM Case

2 [B D(NHdf PM Case

V B
2[ wD(Ndf FM Case
“Je

where B = baseband bandwidth of the modulation. When the ratio
of ¢%/a% = 10, one is usually safe in disregarding the terms labeled
0(pSW,) in eq. (3).1

[1I. NUMERICAL METHODS EMPLOYED

An input power spectral density, W (f), which is often used when
measuring FM distortion is the uniform spectrum, given by

[(l?rer)2
Walf) = 1 2B
0,

B

N

|/l > B

T Equation (3) is a special case of a much more general equation which was recently
reported by E. Bedrosian and 8. O. Rice in the Proc. IEEE, 9, No. 12, pp. 16881707,
eq. (14) and Section IVe, December 1971.

1A

(8)
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where D = RMS frequency deviation and B = baseband bandwidth.
From eq. (1), we have

2
W) = | 2B
o, |fl > B

=B
|7l = 9

When such a uniform W, (f) is used to measure FM distortion, the
measurement is referred to as a “noise loading test.” The noise loading
test is used, for example, to estimate the I'M distortion in microwave
relay systems resulting when thousands of telephone channels are
multiplexed to form a composite baseband signal.

A bandlimited form of W (f) is very convenient numerically, since
it serves to convert the infinite limits of integration in eqs. (4) and (5)
into finite limits of integration. However, if we attempt to evaluate
equations (4) and (5) using a bandlimited W4(f) such as is given in
eq. (9), we would run into difficulty whenever the argument of W, (-)
is equal to zero. In order to circumvent this apparent difficulty, we
have selected an integration grid such that the argument of W,(-) is
never allowed to be zero. Equations (4) and (5) are then numerically
evaluated by using a combination of Simpson’s rule and the trapezoidal
rule.

The particular integration grid used was obtained by setting

p= (2 + 1A (10)
s = (20 + 1A (11)
J=(@2n+ DA (12)
A= (2k+ 1) (13)
B =10 (14)

where ¢, [, n, k are integers. In most of our numerical evaluations,
k= 20.

IV. NUMERICAL RESULTS
4.1 Test Cases

In order to test the operation of the computer program, we evalu-
ated D(f) for the case when W (f) is uniform and I'(f) is the transfer
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Fig. 2—Baseband intermodulation spectrum resulting from FM distortion.

function of a simple RC filter. That is, W4 (f) is defined by eq. (9) and
I'(f) is defined as

1
r(f) = —f— (15)
()
1 I
where

fo=10
D=1.0
B = 1.0.

Figure 2 shows the resulting computer plot of «?D(f). Figure 3 shows
a plot of 10 log [S(f)/D(f)] for f = 0.084B, 0.36B, and B, as a func-
tion of the RMS frequency deviation D. These results compare well
with both the theoretical and experimental results which are presented
in Refs. 2, 4, and 5.

As a final test case, we present the results for the case when W4 (f)
is still defined by eq. (9), but T'(f) now represents a 3-pole Butterworth
filter with some mistuning, in which case

I(f) = 1+ Z(T:E-o) + 2(’5‘50)2 + (’j’:fo)s (16)
1+ 2(z8) + 2(:8)% + (d8)*
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Fig. 3—=Signal-to-distortion ratio at particular frequencies resulting from T'(f)

and Wy (f).
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Fig. 4—Signal-to-distortion ratio resulting from T'(f) and We-.(f) for lJarticular

values of frequency offset or mistuning. The points are from the theoretica

approxi-

mation given as eqs. (17) and (18).
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Fig. 5—Signal-to-distortion ratio resulting from I'(f) and W (f).
where
f— 1
fe
Je
b= —
fe
B=1.0
D =312
fe=17.0
fe=0,1,2.

Figure 4 presents the computer plot for this case. The results compare
very well with experimental and Monte Carlo results presented in
Ref. 4.

A theoretical approximation for the above case, with 0 < |f| < B,
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Fig. 6—Signal-to-distortion ratio resulting from I'(f) and two forms of We: (f).

was developed by Rice? and is given by

4

D
D = — —_ 9 2_1 2 'y 2
(1) = = (2B = | [0 + 22D\

6

48B3

+ (3B — fH(As)? (17)

and

SO = Walf) (18)

where \,; is the imaginary part of X\, and A,/n! is the coefficient of
J™ in the power series expansion of In T'(f)

Noi = 2fef:3
Aai = _2fc_3
N = 48f.f. .
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Some points which were computed from this theoretical approximation
are indicated in Fig. 4.

Having verified the soundness of the computer program with the
foregoing test cases, let us present some new results.

4.2 New Resulis

In this section, we shall present some new results which were ob-
tained by using the above methods. These results will also help to
demonstrate the general types of FM distortion problems that can be
analyzed.

4.2.1 n-pole Chebyshev filter
Let W, (f) be uniform as given by eq. (8) with I'(f) given by

T (it — 1)

() = (19)
II (& — si)
k=1

where

. T . 1 1
§g = — sIn |:(2k -1 —:l sinh [7 sinh—! (_)]
2n n b

1 1
+ 7 cos [{2]{: — 1) le cosh [— sinh—! (—)] , E=1--,n
2n n b

_f_fc __E
= BT Tn

B = 1 = baseband bandwidth

2f, = K2B(1 + m) = K times Carson’s rule
= filter bandwidth
4D
m = 5 = FM modulation index
R = 10log (1 4+ b%) = in-band ripple

f. = offset frequency or mistuning.

r'(f), defined by eq. (19), represents an n-pole Chebyshev filter. Some
results for this case are presented in Figs. 5, 6 and 7. Also, a computer
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Fig. 7—Signal-to-distortion ratio resulting from I'(f) and two forms of W (f).

plot is presented in Figs. 6 and 7 for the case when W,.(f) is an RC
spectrum’ given by

_ @D N <
W (f) = qu tan-l(f) [1 T (f")] o Ee (20)

0.
0 , |/ >B
where
fo = 3 dB bandwidth.

An RC spectrum is often used to model a video signal. Notice that, as
Jo— =, the RC spectrum approaches the uniform spectrum as given

T W (f) is the spectrum produced by passing bandlimited “white” noise through
an RC filter.
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Fig. 8—Signal-to-distortion ratio resulting from T'(f) and Wy (f).

by eq. (8). From Figs. 6 and 7, we see that more I'M distortion results
when W (f) is an RC or video spectrum than when W (f) is uniform.

4.2.2. n-pole, equalized Chebyshev filter

If the phase function associated with eq. (19) is taken to be zero,t
T'(f) can be written as

1+ b’T%(Eo):r"
r =| —m— X8 — 21
) [1 + b2T%(8) &
where T, (&) is a Chebyshev polynomial given by
cos [n cos™! (£)], (| =1
7.6 - | ¢ el =1,
cosh [n cosh™! ()], gl > 1

T'(f), defined by eq. (21), represents an n-pole, equalized Chebyshev
filter. Some results for this case are presented in Fig. 8. By comparing
Figs. 5 and 8, we can determine the effect of equalization on FM distor-
tion. In this case, equalization does not reduce the FM distortion
significantly.

T Or linear in frequency since time delay is unimportant here.
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Fig. 9—Signal-to-distortion ratio resulting from T'(f) and W (f).
4.2.3 n-pole Butterworth filter
Let W4 (f) be uniform as given by eq. (8) with I'(f) given by
n
II (&)
k=1
M) = ——— (22)
II (iw + p)
k=1
where
w2k — 1
pr= (2rf)exp|7—|— -1}, k=12 ---,n
2 n
B =1 = baseband bandwidth
2f, = K2B(1 + m)
4D
m=—-
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Fig. 10—Signal-to-distortion ratio resulting from I'(f) and W (f) .

I'(f), defined by eq. (22), represents an n-pole, Butterworth filter.
Some results for this case are presented in Fig. 9. By comparing Figs.
5 and 9, we see that the 3-pole Butterworth filter produces much less
FM distortion than does the 9-pole Chebyshev filter.

4.2.4 n-pole, equalized Bulterworth filter

If the phase function associated with eq. (22) is taken to be zero,
or linear in frequency, I'(f) can be written as

r(f) = [1 + ({-)]_ (23)

I'(f), defined by eq. (23), represents an n-pole, equalized Butterworth
filter. Some results for this case are presented in Iig. 10. By comparing
Figs. 9 and 10, we see that equalization reduces the FM distortion
significantly in this case.
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4.2.5 Echo, envelope delay, Butterworth filter
Let W4 (f) be uniform as given by eq. (8) with I'(f) given by

wpiwT
() = [L}_LBT :l Lexp {i(bow? + byw®)} ]
(echo) (envelope delay)

{1 + 2(i80) + 2(260)% + (?:Eo)s:l (24)
1+ 2(i&) + 2(38)? + (i8)?

(3-pole Butterworth filter)

where
= amplitude of echo

..,
|

T = time delay of echo
b, = linear envelope delay constant
b; = quadratic envelope delay constant
f— 17
E =
fe
Je
fo= — —
e
fe = frequency offset or mistuning
D = RMS frequency deviation

B = 1 = baseband bandwidth
2f. = K2B(1 4+ m) = K times Carson’s rule
= filter bandwidth

= FM modulation index.

m

Some results for this case are presented in Iig. 11.
Results are presented in Fig. 12 for the case when I'(f) is given by
eq. (24) and W, (f), rather than W (f), is uniform and given by

EE | =B
W¢(f>={233’ 7l = (25)
0, Ii>B

This is the case of a noise loading test applied to a phase modulated
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Fig. 11—Signal-to-distortion ratio resulting from I'(f) and We-(f).

system. From eq. (1) we have

I - Y
w(f) = 2B? (26)
0 |fl > B.

In this case, W4 (f) peaks at f = B in contrast to the RC spectrum
given by eq. (20), which peaks at f = 0. These results lead us to an
interesting question. Given W (f) and I'(f), can we choose a predis-
tortion characteristic such that the shape of S(f)/D(f) is most suit-
able for a particular communication system? However, we have not
investigated this question.

We can compare the distortion resulting from PM and FM systems
by comparing Figs. 11 and 12. In fact, if the results in Fig. 12 apply to
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Fig. 12—Signal-to-distortion ratio resulting from T'(f) and W, (f).

a Phase modulation system, then the results in Fig. 11 apply to the
corresponding Frequency modulation system.

4.2.6 Filter characteristic determined experimentally

In all of the results presented above, the filter characteristic I'(f)
was specified mathematically. However, many situations arise for
which the measured amplitude and envelope delay characteristics are
available in graphic form. Of course, one may try to fit a suitable ana-
Iytical expression to these experimental points and proceed as above.
However, there is no need to develop such an analytical expression.
As our final case, we shall present some results which illustrate this
point.

Let the amplitude and phase of T(f) be given by the experimental
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Fig. 13—Experimental amplitude and phase characteristic specifying T'(f).
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Fig. 14—Signal-to-distortion ratio resulting from I'(f) and W (f).
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28
I'if) = AMPLITUDE AND PHASE OF FIGURE 13
Wyf) = RC SPECTRUM, fo=0.18
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m=4D/B = 1.0
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Fig. 15—Signal-to-distortion ratio resulting from I'(f) and W4 ().

curves shown in Fig. 13. Let W, (f) again be uniform and be given by
eq. (8). Figure 14 presents some results for this case.

Now let W, (f) be an RC spectrum given by eq. (20). Figure 15
presents some results for this case. We see that considerably more dis-
tortion is indicated in Fig. 15 as compared with Fig. 14.

Thus, the often-used noise loading test which makes use of a uniform
spectrum may not represent a worst-case situation as far as FM dis-
tortion is concerned. A theoretical proof of this interesting fact is pre-
sented in the appendix.

V. CONCLUSIONS

Equations (4) through (7), together with a digital computer, can be
used to compute the FAI distortion resulting from passing FM waves
through linear networks. To demonstrate the utility of the program,
we have presented a variety of results in graphic form.

From this work, it is apparent that the often-used noise loading test
does not necessarily represent a worst-case test. This was demonstrated
for a system in which the modulating signal is a video signal. It is also
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apparent that predistortion may be useful in reducing I'M distortion.
This is in contrast to the use of conventional pre-emphasis, which is
applied to combat RI" noise.

Some important sources of FM distortion which were neglected in
our analysis are AM-to-PM conversion, baseband and RF noise, and
adjacent channel interference.
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APPENDIX

Theoretical Comparison of FM Distortion Resulting from Video and
Uniform Specira

The purpose of this appendix is to present a theoretical argument
which shows that a video spectrum can lead to more FM distortion
than a uniform spectrum. That is, a noise loading test which makes use
of a uniform spectrum may not represent a worst-case test when the
information source is a video signal.

Let the video signal ¢’(t) be represented as a zero-mean, stationary
Gaussian process having power spectral density W (f) given by

(27 D)? A\
— & [1+(7)] ,  |fl =B
Wo(f) = {2fo tan™! (?) ’ (27)

0

IIA

0 , I >B

where
D = RMS frequency deviation

B = baseband bandwidth
fo = 3-dB bandwidth.
Let T'(f) be given by

I'(f) = exp [¢(bow? + baw?®)] (28)
where
by

by

small linear envelope delay constant

Il

small cubie envelope delay constant.
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By applying cq. (24) of Rice,? the leading term of D(f) can be ex-
pressed as
D(f) = 27'(\si + 2*‘02)\4.)9[ doWo(p)Wo(f — p)p*(f — p)*  (29)

where
A 29

Il

(21) (27)2b,
)\4,‘ (4 ') (2‘."')4b.1.

By taking S(f) = W4(f) = W, (f)/o? and evaluating the integral for
D(f), we find that

Il

D(f) I'\?
R() = SN s _ 2 b (Fo)
sl [2 — [F|]tan— (i) 4+ (5)
S() == Fy Fq
X { ol ln——l——j_ . — + tan™! (»1— + tan—! (1_—|F|)} (30)
|[F|  (|F] —1)*+ F? F, Fy
where
pod
B
Jo
Fo=
|/l =B
™ < -1 ™
—§=tan (-)éa-

R(f) represents the distortion-to-signal ratio for a video spectrum
divided by the distortion-to-signal ratio for a uniform spectrum. If we
can show that E(f) > 1 for particular values of f,, the 3-dB bandwidth
of W (f), then we can conclude that a video spectrum can produce
more FM distortion than a uniform spectrum.

In order to show that R(f) can be greater than unity, consider the
important frequency range 0 < |F| < 1. For this baseband frequency
range, eq. (30) yields

lim R(f) =

— > 1. 31
Fo=0 2 — |F| 31

A plot of R(f) for various values of Fy is shown in Fig. 16.
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T'{f) = EXP [ i (byw? + byw®)]
Weglf) = VIDEQ SPECTRUM, f; = 3-dB BANDWIDTH

B = BASEBAND BANDWIDTH

NORMALIZED DISTORTION — TO — SIGNAL RATIO, R{f)
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Fig. 16—R(f) denotes the distortion-to-signal ratio for a video spectrum divided
by distortion-to-signal ratio for a uniform spectrum.

Accordingly, we conclude that a video spectrum can produce more
FM distortion in the baseband frequency range than a uniform
spectrum.
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