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Interference in Communications Systems
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This paper studies a general description of interchannel and intra-
channel crosstalk interference created in a communications system. This
description is in the form of a Volterra series expansion of the interference
signal in terms of the signal which produced the interference. From it we
are able to precisely define the “intelligible’’ part of the crosstalk. This
description also provides us with quantitative measures of the amount of
crosstalk created in some communications channel by signals tn another
channel, as well as a measure (intelligible crosstalk ratio) of the amount
of intelligible crosstalk produced. We then consider a particular model for
the generation of intelligible crosstalk [or direct adjacent channel inter-
Sference (DACI)] between two neighboring angle-modulated channels in
which the signal in one channel adds to the signal of the second channel,
the sum 1s filtered, and the filter output then passes through an AM-PM
conversion device. Using our definition, a simple expression for the intel-
ligible crosstalk ratio for this model is derived in terms of the filter charac-
teristic. We observe that this crosstalk ratio exhibits a number of properties
usually associated with DACT.

I. INTRODUCTION

Crosstalk interference is an important consideration in transmission
system engineering.! It is defined® as the disturbance created in one
(desired) communications channel® by the signals in another (interfer-
ing) communications channel. Crosstalk is classified as due to inter-
channel or intrachannel effects and may be of either intelligible or
unintelligible type. Interchannel crosstalk occurs between two different
communications channels as, for example, when the transmitted signals
of an interfering channel pass through the channel selectivity filters of

T Here “channels” refer to different communications paths (which are distinguished

by, e.g., different frequency bands or different physical transmission media) together
with the receivers associated with each of these paths.
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Fig. 1—Example of interchannel crosstalk. x.(?) is the desired signal in channel 1.
z(t), the desired signal in channel 2, creates interference in channel 1.

the desired channel and appear at its output (see Fig. 1). Another cause
of interchannel crosstalk is electrical coupling between various trans-
mission media, e.g., between wire pairs in a multipair cable. Inira-
channel crosstalk occurs in a single communications channel and is due
to nonlinearities in the receiver which act on the received signal to
produce some disturbing signals in addition to the desired (linear)
signal. Intrachannel crosstalk is also known as “intermodulation dis-
tortion.””3 If the signals in the channels are speech signals, crosstalk
interference is described as intelligible or unintelligible, depending on
whether the created interference is “understandable” or not. These
terms are also applied to nonspeech signals, in which case intelligible
means that the crosstalk is of “the same type as the desired signal.”’?

In this paper, we study a general mathematical technique which can
be used to describe interchannel and intrachannel crosstalk created in
a communications system. The description is in the form of a Volterra
series expansion® of the interference signal in terms of the signal which
produced the interference. This expansion furnishes some insight into
which part of the total crosstalk interference is intelligible, and thus we
will be able to precisely define what is meant by intelligible crosstalk.
In this way, some of the subjectivity inherent in the earlier “definition”
of intelligible crosstalk is removed. In addition, our deseription will
provide quantitative measures of the amount of crosstalk created in
some communications channel by signals in another channel, as well
as a measure of the amount of intelligible crosstalk produced. The latter
quantity will be called the intelligible crosstalk ratio. These measures
may be valuable tools in systems design applications.

The Volterra series analysis of nonlinear systems with memory was
first introduced by Wiener® and was further developed by Bedrosian
and Rice. In Section II, we discuss some definitions and results of this
theory which will be needed in our analysis. A general description of
crosstalk interference and a definition of intelligible crosstalk are given
in Section III. We also define the intelligible crosstalk ratio in this sec-
tion and compare it with previous measures of intelligible crosstalk. As
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an application of these results, we consider an example in Section IV
of a model for the generation of intelligible crosstalk [or direct adjacent
channel interference (DACI)®] between two neighboring angle-modu-
lated channels in which the signal in one channel adds to the signal of
the second channel, the sum is filtered, and the filter output then passes
through an AM-PM conversion device. Using our definition, a simple
expression for the intelligible crosstalk ratio for this model is derived in
terms of the filter characteristic. We will see that this crosstalk ratio
exhibits a number of properties usually associated with DACI. We
conclude by calculating the crosstalk ratio for the case of a k-pole filter.

II. VOLTERRA SERIES ANALYSIS

In this section, we will discuss some definitions and results in the
Volterra series analysis of nonlinear systems with memory. These re-
sults will be needed in the sequel. The reader is referred to Bedrosian
and Rice? for a complete account of the theory of Volterra series as well
as their application to the analysis of PM and other nonlinear systems.

For any two signals y(t) and 2(¢), possibly complex-valued, we will
say that y(¢) has a generalized Volterra series (GVS) expansion in terms
of x(t) with Volterra kernels (functions) {g%*} if and only if we can write:

ao_]; @

y(t) = gb* + 2

n=| n! —o0

.[ duy- - dun gy (ws, + 0, Un)

T 2t —w) (1)

r=1

I

gb* -f-f duy gi*(un)x(t — )
+ 2%[ /m duy dug gy* (1w, uz)z(t — up)x(t — ua)

+ %fﬁ f ) duy dus dus g5 (uy, ws, us)x(t — uy)
st — u)x(t — ug) + - -

where the functions ¢4% n = 1, are symmetric functions of n variables
and g is a constant. For convenience, we denote this fact by the nota-
tion y(t) = GVS[a(t); {g%*}]. If x(¢) is the input to a system and y(t)
is its output, then the Volterra kernels {g%*} completely characterize
the system. If g§* = ao and g4*(uy, -, un) = @nd{uy) - - - 8(u,) for
n = 1 where §(u) is the delta function, then

v = 5 a, EOT

n=0

represents the input-output relationship of a memoryless system.
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The n-fold (n = 1) Fourier transform of g4*(uy, - -+, u.) is denoted
by:

Gy (f1, =+ [ =[ f duy- - dun gh* (g, + 0 Un)

cexp [—jl@rur + -+ + waun)] (2)
where w; = 2rfi, 1 = 1, 2, --- . Observe that if g§* = 0 and g4* = 0
forn = 2, then g¥*(u,) is the familiar impulse response of a linear time-
invariant system and GY*(f,) is its transfer function. By analogy, we
will call G4*(fy, -+ , fa) the nth order Volterra transfer function. Since
{g%*} are symmetric functions, then so are {G4"}.
If z(¢) has Fourier transform X(f), i.e.,

X(f) = f p(Oe-itdl, w = 2rf,
then it is easy to see* that y(¢) and its Fourier transform Y(f) are given
by:

v =g+ £ o[ [ dpean @Gy £

n=1

L pilwrke - Fun)t ﬁ X(fr) (3)

r=1

and
Y(f) = gi*o() + 17 X (D)
o) ARG, £ = XX - £
+ 33, f_ Z f; dfrdfG8 (S, for £ — f1 — )X (f)X(f2)
X(f—hHh—-—f)+-. 4
Next, suppose we apply a harmonic input of the form fzn;. eivit to

a system whose input and output are related by a generalized Volterra
series expansion. Then the output of the system is an infinite series of
harmonic terms. The following property, which is easy to demonstrate,*
shows that the coefficients of these harmonic terms are the Volterra
transfer funetions of various orders.

Property 1: Suppose y(t) = GVS[z(t); {gv*} ] If =(f) = iZ: e’vit where
wi=2rf, i=1, -+, n, and {fi} are incommensurable,’ then for

t Frequencies fi, --+, f. are said to be incommensurable if for any integers m,
.+, My, not all zero, Mmyfy + o0+ Mefn # 0.



CROSSTALK INTERFERENCE 653

n=1andfork < n:

GY*(f1, -+ -, fr) = the coefficient of the exp [ (w1 + -+ + wi)t]term
in the expansion of y(f).

Methods of measuring the Volterra kernels and transfer functions of
a system having a Volterra series representation have been studied by
George,” Schetzen,® and Lee and Schetzen.® These methods rely on the
use of realizable input probing signals.

Bedrosian and Rice* have also shown the following:

Property 2: Suppose y(t) = GVS[x(f); {gv")]. If xz(t) = P cos wi,
w = 27f, then

o nofP\r 7(2k — ¢
v -+ £ (5) BBl gy
where G¥Z_( f) denotes GL*( f1, - - - , f») with the first k of the f/s equal

to f and the remaining n — k equal to — f. The leading terms in (5)
are:

v = | 5

G, =)+ -+ |

Fem | Sortn + et s -+ -

o | GO + G f =D+ |
e [ Borthn+ -]

+ e—ﬂ.’wl

[ —

Tt =D+ |
em | GO L0+ ]

+e_j3m,[%05.z(_f’_f,_f)+...]+..., (6)

When z() = P cos wit + @ cos wst, then y(f) is a sum of complex ex-
ponentials, the exp [ j(Nw; + Mw;)t] component of y(t) being, for
M z0and N = 0,

F(Nwy wa)t . (P/2)21+N(Q/2)2k+nf -
e xz=:n kgo (N+D1I(M+ E)Ik! G4 f1y f2) (T)

where w;=2rf;, i=1, 2, and G%%,.,. sr+u:(f1, f2) denotes GE*(f1, - - -, fa)
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with n=N+214+M 42k and the first N+ of the fi's equal to fi, the
next { equal to — f1, the next M4k equal to f,, and the last &k equal
to '_'fg.

In Appendix A we show that the input-output pairs of a certain class
of nonlinear systems can be related by a Volterra series expansion with
certain Volterra kernels. The result is a slight generalization of one
proved in Ref. 4.

Property 3: Suppose
v) = | [ gilett = wau] ®)

—a0

where F and h are functions of a complex variable having series
expansions:

h(z) = >:jn h% 9)
) — I
F@=£ﬂgﬁ@ (10)
with
20 2 ho fm g(u)du.
Let

G(f) £ fm g{u)e du, w = 2rf.

Then y(t) = GVS[a(t); {g&"} ] with g§* = Fo and
G4*(f1) = F1ha G(fy)
GY*(f1, f2) = Frha G(f1 + f2) + F2R3G(F)G(f2)
G4 (f1, for f3) = Frha G(f1 + fo + f3) + Fohi ba[G(f)G(f2 + f2)

+ GG + f3) + GUDGS + £]
+ F3h3G(f1)G(f2)G(fa).

Expressions for the higher-order Volterra transfer functions are given
in eq. (49) of Ref. 4.

Finally, suppose that y(¢) and z(f) are related by a Volterra series
expansion, and that y(f) is transformed by some function F(-) to pro-
duce a signal w(t) = F[y(t)]. Then, for a certain class of functions
F(-), the following result, which is proved in Appendix B, shows that
w(t) also has a Volterra series expansion in terms of x(t) with specific
kernels.
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Property 4: Suppose y(t) = GVS[z(l); {g%*]] and w(t) = F[y(t)]
where 7 is a function of a complex variable having series expansion:

Pe) = ¥ HEZBY

Then w(t) = GVS[z(t); {g=*}] where g&* = £, and

Gre(f1) = FLGY¥(f)
Gy I(ft, f'z = Fl G'é'z(fl, fz) + Fz Glf'z(fl)Gg'x(fz)
GY*(fyy for Jo) = By GY*(fy, [y Jo) + FaLGY(f)GE* (S f3)
+ GE([)GE (N, f3) + GE(f)G8*(fy, f2)]
+ FGU ()G (f) GV (fa).  (11)

Expressions for the higher-order kernels can be obtained from the
method discussed in Appendix B.

III. MATHEMATICAL DESCRIPTION OF CROSSTALK INTERFERENCE

With the Volterra series analysis discussed in the last section, we can
now give a mathematical description of interchannel and intrachannel
crosstalk. Consider interchannel crosstalk first. Suppose z(t) is some
signal in one communications channel which enters a second channel as
a signal #(¢), where #(1) is z(f) (possibly) transformed by some opera-
tion. Assume that the second channel contains some devices which
operate on &({) to produce a signal, (), at the output of the channel.
If the operations which transformed z(t) into #(f) and #(¢) into y(t)
consist of, for instance, nonlinear operations described by power series
in cascade with time-invariant linear operations, then it is clear from
Properties 3 and 4 that y(¢) will have a generalized Volterra series ex-
pansion in (%) :

y(t) = g§* + > nil f duy- - du, gy (uy, -+, Un)
n=1 . —x —xo

. TI:Ilm(t — u,). (1)

That is, the crosstalk interference, y(t), appearing at the output of the
second channel, can be expressed in terms of the signal in the first
channel, 2(f), which created it. The first term in the summation in (1)
will be denoted by

yu(t) = f:; duy g (u)x(t — uq). (12)
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It is that part of y(f) which is linear in z(-); y.(t) can be obtained by
passing x(-) through a time-invariant linear filter with impulse re-
sponse gv*(-). If Y () is the Fourier transform of y.(¢), then:

Yiu(f) =Gy (NX (). (13)

The higher-order terms in the summation in eq. (1) represent greater
nonlinear distortions of the signal x(f) than do the lower-order terms.
This can be seen from eq. (4), where we observe that each term in (1)
has a spectrum which contributes to the spectrum of y(t), the higher-
order terms distorting the spectrum of z(f) to a greater degree. The
spectrum of the linear part of () given by (13), however, is simply
X(f) multiplied by a weight function. Because of this, we might expect
y(t) to be more intelligible than the other terms in (1), in the case
when z({) is a speech-like signal. In fact, we will define y.(f) to be the
intelligible part of the crosstalk, and y(¢) — yo(f) will be called the
unintelligible part.

The Volterra kernels {g%®} and especially the Volterra transfer func-
tions {G%} can be used as a measure of the degree of nonlinearity of
each of the terms in (1). Moreover, since by Property 1 the Volterra
transfer functions are the responses at certain frequencies to a har-
monie sum input, they have further intuitive appeal as appropriate
measures of system performance. In particular, as a measure of the
intelligible crosstalk created in one channel by signals in the other
channel, we will define the intelligible crosstalk ratio at frequency f, R(f),
to be
s [ Yu(p)?

IX()]°

Previous authors followed two different approaches in defining in-
telligible crosstalk and intelligible crosstalk ratio. One idea, followed
by Ruthroff,’ Bennett,!® Curtis,!! and Hatch'? was to assume that the
signal, z(¢), in one channel is a constant amplitude sinusoid at fre-
quency f and having power P;. Then, for certain models, they were
able to show that ¥(f), the resulting interference in the second channel,
contained a sinusoid at frequency f with power P.. They defined the
intelligible crosstalk ratio at frequency f to be P./P;. Extending this
idea a little further, one might let z(¢) be a sum of sinusoids at incom-

R(f) = |G|~ (14)

mensurable frequencies fi, - - -, fa (w: £ 27 f), i.e., z(f) = X sin w.t.
i=1

If, for some problem, we can express the resulting interference y(t) as
a sum of sinusoids, with b the coefficient of sin wif in this sum, then the
intelligible crosstalk ratio at frequency fi would be taken to be [b|2
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Our definition of intelligible crosstalk ratio in (14) is similar to this ex-
cept that we use complex exponentials instead of sinusoids. But Prop-
erty 2 shows that GY*(f) is in fact the leading term of the coefficient
of sin w; ¢ (when z(¢) is a sum of sinusoids), and thus the two definitions
may in some cases yield approximately the same numerical result.
Lundquist!? followed another approach. He assumed that z(t) was arbi-
trary and, for a certain model, was able to express the interference y(t)
as a series of products of powers and derivatives of z(¢). He took the
intelligible crosstalk to be that part of y(f) which was “linear in z(t).”
Expressing this part as a linear filtering operation on z(t), having
transfer function H.(f), he then defined the intelligible crosstalk ratio
to be |H.(f)|* The intelligible crosstalk ratio given in (14) is identical
with that of Lundquist once the part of y(¢) linear in z(t) is identified.

The preceding discussion is also applicable to the problem of intra-
channel crosstalk. Earlier Volterra series techniques*!* had been ap-
plied to one such problem, namely, distortion in angle-modulated sys-
tems. In the intrachannel crosstalk problem, x(t), the signal at the
input of a channel, is transformed by some nonlinear devices into the
output signal y(t). If these devices consist of, for example, nonlinear
operations described by power series in cascade with time-invariant
linear filtering, then y(t) has a generalized Volterra series expansion in
terms of x(¢) as in (1). Assume that the desired output signal y,(t) in the
absence of the (parasitic) nonlinear devices should be a time-invari-
ant linear operation on x(f) with impulse response k(-) and transfer
function K(-), ie.,

yolt) = f_m k(u)a(t — us)duy, (15)

Then the distortion or crosstalk at the channel output is
yp(t) = y() — yo(t)

ot + [ duote(un) — K et — w)

+ i lf [m duy- - du, gE(uy, -, Un)

n=2n!

Il

XL 2t — w). (16)
r=1
The intelligible crosstalk is:

f duy Qi+ (un)z(t — uy) (17)

with
P (uy) = gt (wr) — k(wy). (18)
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The intelligible crosstalk ratio is:

R(f) = |G¥(f)|* (19)
Gr(h) 2 Gr(h) — K. 20

The remainder of our preceding discussion for interchannel crosstalk
is also valid for intrachannel crosstalk. The Volterra transfer functions
may be used as measures of system performance. They are similar to
(generalized) “intermodulation coefficients’? except that they are the
response to complex exponentials and not to sinusoids.

where

IV. INTELLIGIBLE CROSSTALK RATIO FOR A PARTICULAR MODEL

In this section we look at a model for the generation of intelligible
crosstalk [or direct adjacent channel interference (DACI)] between
two neighboring angle-modulated channels in which the signal in one
channel adds to the signal of the second channel, the sum is filtered,
and the filter output then passes through an AM-PM conversion device.
An example of such a situation occurs in the TD-2 microwave radio
relay system!# 16 where the principal channel discrimination is provided
by IF filters. The main AM-PM conversion in this system occurs in the
transmitter amplifier. This model will illustrate the ideas and tech-
niques of the previous sections. While we seek only the first Volterra
transfer function (for intelligible crosstalk), the higher-order transfer
functions can be found in a similar way.

Consider, in general, two neighboring phase-modulated’ communica-
tions channels (labeled “1” and “2”). (See Fig. 2.) In channel 1, the
received ‘““‘desired’’ signal or carrier is taken to be:

via(t) = cos (w1l + ¢i(d)) (21)
where ¢1(¢) is the phase modulation and the amplitude of vi(¢) has
been normalized to unity. We assume that v;1(t) passes through a linear,
time-invariant filter in channel 1 without distortion so that at the filter
output the signal is:

vor(f) = cos (w1t + ¢1(2)). (22)
In channel 2, the received “undesired” or interfering signal is assumed
to be:

vio(t) = x cos (wat + &(1)) (23)
so that the signal (or carrier)-to-interference ratio is
1
e (24)
K

t Frequency-modulated channels can be treated in a similar way, and the results
are the same.
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v It =v () + v (0

viyft) =cos b U+ dby (1) Pl =Pt cos fwyt+ dy (1) + (1)
!/
DESIRED SIGNAL ¥ AM—PM CONVERSION
+ H(f) DEVICE WITH ——
\'/ CONVERSION CONSTANT ¢, I,
/
| INTERFERING o Ry
| SIGNAL P {1} cos (w t+ &, (1) +y(t) + Dlt)} -
| WITH ®(t) Sc, (Pit)— 1)

violth = & cos (wyt + it))

Fig. 2—Model for generation of intelligible crosstalk between two neighboring
phase-modulated channels.

and in decibels:
CIR = 10 logyo p (dB). (25)

The signal v;5(f) is presumed to pass through the filter of channel 1 and
produce the filter output:

vaa(l) = L “ du bt — w)

¢ f_  duh(u) cos [walt — u) + ot — w)]  (26)

where A(-) is the filter impulse response. We will denote the filter’s
transfer function by:

H(f) = f T hGeivdu,  w = 2nf. (27)
Using the relation
cosa = j[els + e ] (28)
and setting
A@) 2 f " du h(u)e-remgioi—w, (29)
B() 2 f " du h(u)eisre—istw, (30)
we can rewrite (26) as:
vor(t) = k[FA(t)e* + FB(t)e7e2t]. (31)
It is easy to see that with
V(t) £ [A(O)B() ]} (32)
and
o) 2 L1n A0 (33)

2;7 B@)’
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v02(t) equals:

voe(f) = xV(t) cos (w2l + da(t)). (34)
We will assume that |xV(t)| < 1. The output, v,(), of the filter in
channel 1 is:
vo(t) = var(t) + voa(l)
cos (wit + ¢1(t)) + «V(t) cos (wat + a(t))
= [1 + «2V2(t) + 2«V (L) cos 8(t) ]t cos (w1t + ¢:1(t) + ¥(1))

= P(1) cos (w1t + ¢u(t) + (1)) (35)
where
P(t) 2 [1 + «2V2(t) + 2«V(¢) cos 6(t) ]}, (36)
8(t) £ (w3 — wi)t + ¢alt) — $1(t),
and

s, o[ «V(®)sino@) .
v(t) £ tan [ 1+ «V(t) cos 6(2) ]

The amplitude function, P(f), can be expanded in the power series:"

-]

P(t) = ¥ Cit(cos 0())(—1)"(xV(1)"

=14 & Ci(cos 00 (=D)<Y (1)

where {C;74(-)} are the Gegenbauer polynomials of degree n and order
1

i

By definition,'® if a(f) cos (vt + ¢(f)) is the input to an AM-PM
conversion device with conversion constant ¢, (radians), then its out-
put is d(t) cos [wet + (&) + cx(a(t) — 1)]. So if v.(f) passes through
such a device, the undesired output phase in channel 1 is ¥(t) + ®(f)
where

(1) £ cp(P(t) — 1) = ¢ 3 Cii(eos 8(1)(— 1)k V(®)™.  (37)
n=1

From Ref. 17, we also have:
_ " T(m — })T(n — m — })
i — 2
Cat(eos 6) = 2 i — m) [T(—D T
where T'(-) is the gamma function. Then,

‘P(t)=c,,f i I'(m — H)I'(n —m — 3)

iZimmo ml(n —m)I[T(—3)]?

-cos [(n — 2m)6(t)]

-cos [(n — 2m)6(f)]

(=DrV(®)".  (38)

Assuming that f» — fi (fi = wi/27) is greater than the baseband
frequencies of channel 1, we see from (36) that terms of the form
cos [p8(t)], p # 0, do not contribute to the baseband interference in
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channel 1. In addition, it can be shown that (¢) is outside the base-
band. Thus, retaining only the terms for n even and m = n/2 in (38),
the undesired output phase or crosstalk interference is just:

I3

v 2 e, £ [ TSR | v

= o (=3 ~5 (V@) ~ 1] (39)
where F(a, b; c; 2) is the Gauss hypergeometric function! defined by:

I'(c) 2 T(a + n)T'(b 4+ n) 2"

F(a, b;c;2) = r'(b)T(a) ; Z I'(c + n) nl

We next show that the crosstalk interference y(t) has a generalized
Volterra series in ¢(t), the signal creating the interference, and we find
the Volterra transfer function G¥*(f). We begin by rewriting (32) as:

V2(t) = exp [In A(f) + In B(t)]
= exp [4.(t) + B:(?)]

where
Aqt) 2 In A(t) and Bi(f) £ In B(t).

Recalling the definition of A(¢) in (29), we apply Property 3 [with
g(u) = h(u)e—we, h(x) = eir, and F(z) = Inz] to get that A,(t)
= GVS[6(); 1g2"*} ] with
gail¢ = Fu = ID.Z() =In H(fg)
G (f) = FiG(f) = jH(f2 + )/H(f2).

Similarly, for Bi(t):

g0 = In H(— f2)

GPo(f) = —JH(f — fo)/H(— f2).
Setting D(¢) = A(t) + Bi(t), we have D(t) = GVS[¢(t); {g2*}] and

clearly g2¢ = gavé + g8, Since h(u) is real and H(— f) = H*(f) we
have:

Il

g6® = In H(f2) + In H(— f2) = In |H(f2)|?
opu = AR D — EIZ T,
) Nexti we apply Property 4 to V3(t) = exp [D(¢)] with F(z) = e? and
Fy = = .- to get:
gc‘."°’ Fo = exp [g8*] = [H(f2)|*
GU*(f) = FrGPo(f) = jH*(J)H(fa + f) — JH(SIH*(f2 — f).
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Finally, we apply Property 4 to (39) with
F(2) = c[F(—3%, —3;1;¢%) — 1]
to get that y(f) = GVS[e(t); {g4*}]. Also
Fy = F@z) evaluated atz = g™

= ¢;[F(—% —4; 1; [«H(f2)|?) — 1]
and
=2 ﬁ(z) e 94—",‘ F(3, % 2; [«H(f2)[?.
Hence,
g = Fo = e, [P(—}, —4; 1; [eH(£)[?) — 1]

GHH(f) = FGP*(f)
2w Q| H() - jLH*(fHH (2 + )
— H(H*(f: = /)] (40)

where
Q@) = F},3;2;29)
4
= = [B@ — (1 — )KE)] (41)
and E and K denote complete elliptic integrals of modulus z (Ref. 19,

pp. 47 and 358).
Then the intelligible crosstalk ratio equals:

R()) = |GH()]
%wmmmmnﬂm+ﬁﬂwn
— HMfo— DH(f)| (42)

Il

where

Q| H(f)|) = 1+ §(x[H(f2)])?
_3 H 4 6

For a given value of ¥ (or CIR), we need only calculate the value of
Q(x|H(f2)|) once for any filter transfer function having attenuation
|H(f2)|2. When « < 1 (or CIR = 0 dB) and 10 loge |H(f2)|? = —10
dB, we can approximate, with very good accuracy, Qx| H(f2)|) = 1,
and then:

R(f) = 16 K H(f + NHXf2) — H¥f2 — HHS)|% (44)
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If C(f) and ©(f) are the magnitude and phase of H(J),

H(f) = C(fle®N, (45)
then

H(f: + NH*(f2) — H*(f2 — HH(f)]* = [CYf2 + /)
+ C*(f: — NIC*(f2) — 2C(f2 + NC(f2 — HC*(f2)
-cos [O(f: + f) + O(f: — ) — 20(f2)].  (46)

The last expression together with either (42) or (44) is well suited for
computational purposes requiring only the values of the amplitude and
phase of H(-) at frequencies f», f» + f, and f. — f.

One should note that in this analysis we have assumed that the
filter gain at f; was unity. It is easy to see that, if the gain is not unity,
the only difference in eqs. (42) to (46) is that H(f) is replaced by the
normalized transfer function H(f)/|H(f1)]|.

The expression for the intelligible crosstalk ratio given in (44) ex-
hibits a number of properties usually associated with DACI.111.16 For
example, noting that ¢ = 1/«* and CIR = 10 loge u (dB) and expres-
sing the intelligible crosstalk ratio in decibels as 10 logo R(f) (dB), we
see from (44) that if CIR decreases 1 dB then the crosstalk ratio in-
creases 2 dB. We observe that the way in which we have defined R(J)
also makes R(f) independent of the power of the input (phase). More-
over, by assuming that the amplitude of the desired signal in (21) is
arbitrary (instead of unity), it is easy to check that, for fixed CIR, R(f)
is independent of the desired signal power,

V. EXAMPLE

The intelligible crosstalk ratio was caleulated for the example con-
sidered by Lundquist!® with CIR = 0 dB. The crosstalk ratio for other
values of CIR can be found by adding 2 dB to the crosstalk ratio for
each dB decrease in CIR. We assumed an AM-PM conversion constant
of 5 degrees/dB' or ¢, = 5(0.1516) = 0.758 radians, and a k-pole filter

having transfer function:
1
— E
v+ (P50)]

H(f) = [
Given the number of poles k, the frequency separation Af = f, — f,
and the value of the “attenuation at the adjacent channel” defined as
—10 logywo | H(f2)|* (dB), we can determine f, from (47). Equations
(44) and (46) were used to compute R(f) for various values of k, base-
band frequency f, frequency separation Af, and adjacent channel at-
tenuation. The results are given in Figs. 3 to 5. Figure 3 shows the de-

(47)
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pendence of the intelligible crosstalk ratio on the baseband frequency
f, for fixed frequency separation Af = 20 MHz and adjacent channel
attenuation of 20 dB. We see from Fig. 3 that DACI is greater at higher
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baseband frequencies, increasing approximately 6 dB when f is
doubled. For a fixed baseband frequency of 5 MHz, Fig. 4 shows the
relation between R(f) and the frequency separation Af. We observe
that there is not much variation of R(f) with Af for a given adjacent
channel attenuation. In Fig. 5 we show the effect of increasing the ad-
jacent channel attenuation for a fixed baseband frequency of 5 MHz
and a frequency separation of 20 MHz. Here a 1-dB increase in attenua-
tion produces about a 2-dB decrease in erosstalk ratio.

VI. CONCLUSION

By use of Volterra series analysis, we have presented a general
mathematical description of the crosstalk interference created in a
communications system. From this deseription, we were able to isolate
the part of the crosstalk that was intelligible and to define the intel-
ligible crosstalk ratio as a measure of the intelligible crosstalk created
in the system. We then looked at a model in which intelligible crosstalk
was generated between two neighboring PM channels. Using our re-
sults, we derived an expression for the intelligible crosstalk ratio for
this model. This expression exhibited a number of properties usually



666 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

associated with direct adjacent channel interference. The crosstalk
ratio was computed for the case of a k-pole filter as a function of various
parameters.

APPENDIX A

In this appendix we sketch the proof of Property 3. Following
Bedrosian and Rice* we define the function’

A® = [~ ghlex(t — wdu (48)
so that from (9):
A(0) = ho f g(u)du = z. (49)
From (10) we see that:
F[A(0)] = F(z0) = Fo. (50)
Expanding the function FLA (E):I in a Maclaurin series we obtain:
raw = £ 5| el 51)
Then
v = FLAWT = FIAO 1+ £ 4| S riawed|

- no+ 54| SFiae)| (52)

Applying the results in eqs. (49), (114), and (115) of Ref. 4 we get:
0 1 o0 )

y(it) = Fo+ 2 m[ f duy- - dn g Uy, - vy Un)
n=1 v —oe —m

DT 2t — ) (53)

r=1

for some kernels [g4*} with

GY*(f) = F1hi G(J), (54)
G (fy, f2) = Frha G(f1 + f2) + F2 R G(f)G(f2),
and
GY¥*(f1, fa, fa) = F1 hs G(fr + fo+ f)
+ Fahy ha[G(f)G(f2 + f3) + G(f2)G(f1 + f3) + G(f)G(f1 + f2)]
+ Fs G(f)G(f2)G(f3).

t The dependence of H (&) on t will be suppressed.
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The higher-order Volterra transfer functions are given by eq. (49) of
Ref. 4. Thus, y(t) = GVS[x(!); {¢%"}] and g&* = F, which is the de-
sired result.

APPENDIX B

Here we derive Property 4. Define the function #(¢) by:'

A =g + 5 5"[ [ dus- - diy b, -, 1)

n=1M
n

- IT =t — w,).  (55)

Then, R
A) = g

and the vth derivative of H(¢) evaluated at ¢ = 0 equals:

A®(0) =[W fw duy- - -du, g (wy, - -+, w,) ﬁ x(t — u,)

re=]

v = 1. (56)
Next, .
y(t) = H(1)
and ) )
w(t) = Fly(n] = FLA(1)] (57)
Note that with £ (z) denoting the Ith derivative of F(z):
FOLA©O)] = FOLgy*] = £, 120, (58)
Expanding #[A(£)] in a Maclaurin series,
7 S £ dm a5 -
el = 55| el (59)
we get:
wt) = AW = FA01+ £ L[ o))
= At £ 0| dp oA (60

Using the results in eqs. (98) and (112) through (115) of Ref. 4 we can
write (60) as:

w(t) = Fy + Z f f Ay dig gt (g, -0, 1)

- II x(t — w,)  (61)

r=1

T The dependence of fl(f) on ¢ will be suppressed.
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where, in particular,

grE(w) = Fi gt (w),
gr Uy, us) = Fr g8y, wa) + Falgi*(w)gh*(u2) ], (62)
and

gg'.z(uh Uz, 153) = Fl 95'1(”11 la, uﬂ)
+ Fal gt (1) gh™(ua, us) + g (u2)gh™(wr, wa) + g1 (ua)gh* (un, u2) ]
+ Falgt*(u) gt (ua)gt*(us) ). (63)

Therefore, w(t) = GVS[x(t); {gn*}] with gg** = Fy and the Volterra
transfer functions given in the statement of Property 4.
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