Copyright © 1973 American Telephone and Telegraph Company
Tue BeLl SysTem TECHNICAL JOURNAL
Vol. 52, No. 5, May-June, 1973
Printed in U.S.A.

The Potential in a Charge Coupled Device
With No Mobile Minority Carriers
And Zero Plate Separation

By J. McKENNA and N. L. SCHRYER

(Manuscript received November 1, 1972)

A two-dimensional analysis of the potential in charge coupled devices
1s presented. It is assumed that there are no mobile minority carriers, that
the plate separation is zero, and that the plate voltage does not vary with
time. The depletion layer approximation is used to linearize the equations,
which are then solved exactly with the use of Fourier series. Both surface
and buried channel devices are analyzed. These solutions can typically be
evaluated on a compuler in less than a tenth of the time it takes to oblain
a solution by the method of finite differences. The solutions obtained here
provide an important tool for the designer of charge coupled devices. I'n
addition to describing the method of obtaining the solutions, we evaluate
them to show the effects of a number of different design parameters, and
compare the cost of these solutions with the cost of ebtaining finite difference
solutions,

I. INTRODUCTION AND SUMMARY

The recent invention'-* and development of charge coupled devices
(CCD’s) has led to renewed interest in the mathematical analysis of
MIS-type structures. Ideally, one would like to solve the nonlinear
equations describing the three-dimensional motion of charge as a fune-
tion of the time-varying plate voltages. So far no one has succeeded in
doing this for even the simplest geometries. For the most part, one-
dimensional static models have been solved which yield only qualita-
tive information about the behavior of such devices. A much more
sophisticated, one-dimensional, time-varying model of a CCD has been
developed and analyzed by Schryer and Strain.?

A statie, two-dimensional model of a CCD has also been studied by
Amelio* using finite difference techniques. He caleulated the potential
distribution in a two-dimensional model in the absence of mobile
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charge and with given static plate potentials. The results of this calcu-
lation are of great interest. The use of finite difference techniques in
these cases has drawbacks, however. In even the relatively simple
geometries considered so far, it is expensive to obtain reasonably ac-
curate solutions for the potentials, and for more complicated devices,
it soon becomes prohibitively expensive. Furthermore, as we shall
show, even for simple geometries it is difficult to obtain accurate ex-
pressions for the fields from the finite difference solutions for the
potentials.

In this paper, we show that when the plates on a CCD are close
enough together so that they can be assumed to be abutted, and when
the depletion layer approximation can be used,® the resulting linearized
model can be solved analytically. These solutions can then be evalu-
ated cheaply and quickly on a computer. This analysis will be valid for
both surface and buried channel CCD’s with an arbitrary number of
plates. In a separate paper, we will show that these solutions can be
used to obtain solutions for the potential in a CCD when there are
gaps between the plates.®

In Section II we write down the equations describing the model and
put them into appropriate dimensionless form. We then introduce the
depletion layer approximation which linearizes the equations and dis-
cuss conditions under which this approximation is valid.

This paper has two main purposes: to show the behavior of the po-
tentials and fields in a CCD and to demonstrate techniques by which
these potentials and fields can be caleulated cheaply and accurately.
In Section IIT we present a discussion of how the solutions depend on
the various parameters defining the devices.

In Section I'V we derive the solution of the linearized potential equa-
tions. The reader interested only in the physical design of CCD’s can
skip the rest of the paper.

In Section V we discuss in some detail the solution by finite differ-
ence methods of the exact, nonlinear equations describing a surface
CCD. Our purpose in doing this is twofold. We wish to show the diffi-
culties involved in obtaining an accurate solution cheaply, especially
if an aceurate knowledge of the fields is required. Secondly, we want
accurate solutions of the exact problem to compare with the analytic
solutions of the linearized problem.

Finally, in Section VI we compare in detail some solutions of the
exact problem obtained by finite differences with the corresponding
analytic solutions of the linearized equations. It is shown that in many
cases of interest the solutions of the linearized problem provide excel-
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lent approximations to the true potential and much more accurate ap-
proximations to the gradient of the potential than can be obtained from
the finite difference solutions. Furthermore, the solutions of the linear-
ized equations are at least an order of magnitude cheaper to obtain
than are the finite difference solutions for any reasonable accuracy.

II. DERIVATION OF THE EQUATIONS

A surface CCD! consists of a layer of silicon covered with a thin
insulating layer of silicon dioxide, and on top of the oxide layer, a
sequence of closely spaced electrodes. Such a device is shown schemati-
cally in Fig. 1 with some typical dimensions indicated. Mobile charge
trapped at the oxide-semiconductor interface is transferred from plate
to plate by appropriately changing the potential of the plates. We con-
sider the case where the substrate is n-type silicon and the mobile
charges are injected holes. In this case, the plate potentials must be
negative. Our analysis can be modified in an obvious way to describe
the case where the substrate is p-type silicon and the mobile charges
are electrons.

Some losses are introduced by the trapping of the mobile charges by
surface states at the oxide-semiconductor interface. Smith and Boyle? #
have proposed a solution to this problem by inserting between the oxide
and the substrate an additional layer of p-type silicon, thus forming
a buried channel CCD. The p-layer is kept completely ionized, which
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Fig. 1—A schematic diagram of a surface CCD,
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Fig. 2—A schematic diagram illustrating plate overlap structure.

causes the potential minimum to occur near the center of the p-layer.
Thus the mobile positive charge stays at the potential minimum, safely
away from the surface traps.

It is desirable to have the plates as close together as possible in order
to minimize the transit time of the mobile charge between plates. The
minimum plate separation presently obtainable from photolithog-
raphy is ~3-5 um, but a plate overlap structure,®® as shown in Fig.
2, or undercut isolation! allows for plate separation of ~0.1 um.

We propose to study the static potential in either a surface or buried
channel CCD with plate overlap structure, in the absence of mobile
charge. We begin by noting that since the length in the z-direction of
each plate is much greater than its width in the z-direction, near the
center of the plates (z = 0) the field is essentially two-dimensional.
Hence we will treat the problem as two-dimensional. We assume that
the plates are zero distance apart. Since in the overlap structure there
should be little flux leakage between the plates, we feel this is a
reasonable approximation. We make the additional assumption that
the bottom substrate is infinitely thick. The field can penetrate into
the substrate little beyond a depletion depth, and since for typical
voltages the depletion depth ranges from 7 um to 20 um, and the thick-
ness of the substrate in a typical device is 100 um, this is a very rea-
sonable approximation. Finally, we assume the structure is periodic in
the z-direction, which in the usual mode of operation is an excellent

approximation.
We begin by defining the boundary value problem describing a

buried channel device. In all that follows, starred quantities have
rationalized MKS dimensions; unstarred quantities, except for a few
obvious physical parameters, are dimensionless. In the strip
0 < z* < L* let ¢} denote the potential in the oxide layer, 0 = y*
< hi; ¢ the potential in the p-layer, hi < y* = h3; and ¢; the po-
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Fig. 3—A schematic diagram of one cell of a three-phase, buried channel CCD.

tential in the substrate, h; < y* < « (see Fig. 3). Then

Viel = 0, (1)
Vel = © NawY) 2)
2 «_ _ eNp - .
Vies = — (I — exp (ee3s/kT)). (3)

€2

In eqs. (1) through (3), VZis the two-dimensional Laplacian; —e is the
charge of an electron; N%(y*) is the acceptor number density in the
p-region; N}, is the donor number density in the n-region; ¢ and e
are the permittivity of the oxide and silicon, respectively; k is Boltz-
man’s constant; and 7 is the absolute temperature. The conditions
under which eq. (3) can be expected to be valid are discussed in Ref.
11.

In the usual method of fabricating a CCD, the substrate donor
number density, N}, is a constant, independent of position. However,
in a buried channel CCD, the p-layer is formed by diffusing the ac-
ceptor ions into the n-type Si, and so N7 (y*) is typically a function of
y* — hi, the distance from the oxide surface. In many cases we have
the representation!?

¥ _ h*\ 2 *
Ni(w*) = Ciexp {— (%=#) rn]%] Y
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where (3 is the number density of acceptor ions at the upper surface of
the Si. The average value, N, of N7y(y) is easily shown to be

R Y L SV,
No= =)y NaWw

_Nr (S

5 m erf (Vén(C3/Np)) — Nb (5)

where erf (x) is the error function.!®
Before writing down the boundary conditions, we introduce dimen-
sionless variables. Define the Debye length

o = (ekT/e!Np)h (6)
Then normalize all lengths with respect to Ap,

x=a*/\o, y=y"/ro, L =L%\p,

7
he = W/An (k= 1,2), @
and define

1,0‘;(35, y) = G‘F;(z*; y*)/kTy (a = 1; 2: 3): (8)
a(y) = Na(y*)/Nb, n = e&/e. (9)

Equations (1) through (3) become
Vier = 0, (10)
Vigs = o(y), (11)
Vig; = e — 1. (12)

The boundary conditions can be written now as follows: For0 < z = L,

ez, 0) = V(a), (13)

‘PI(J‘:J h—l) = \02($l h]): n aa—zl (‘EJ hl) = %—‘;2 (:C:l hl) + Q(ﬂ:), (14)

J 0
oa(x, he) = @a(x, ), f(z, hy) = %{“(:ﬂ, ha), (15)
'P3($)°°) = Or (16)

and
(0, y) = (L, y)

e o ) = 2% <

In (13), V() is a given, periodic function, assuming on each electrode
the constant voltage of the electrode; and in (14), Q(x) is a known,
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periodic surface charge density, which may include deliberately im-
planted charges.!

For future use, we record the expression for ¢(y) when N 4(y*) is
given by (4). If

Cs = CYNS, (18)
then
_ 2
o) = Caomp |~ (L1 ) ncs| =1, (19)
and

5 — _\Er Cgerf (V'ZnCi) _

The equations for the surface CCD are essentially the same, except
that the p-layer is eliminated. In what follows, we will only give the
analysis for the buried channel CCD. The results for the surface CCD
can be obtained from those for the buried channel CCD by setting
o =0, = hyyand ¢3 = ¢o.

We now introduce the important depletion layer approximation.?
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Fig. 4—A schematic diagram of the depletion layer approximation for one cell
of a three-phase, buried channel CCD.
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In most cases of interest, ¢; (z, hs) < —1for0 = 2 = L. For example,
in a typical buried channel CCD, ¢y (x, hs) ~ —1000 [and in a typical
surface CCD, ¢: (z, k1) ~ —1507. Thus, for y — ks small and positive,
e#s ~ 0. However, for y 3> ha, | @3] < 1, and e®? = 1 + ¢3. There is
thus some curve y = R(z) such thatforh. =y £ R(x),e — 1 =~ —1.
The region hs < y < R(z) is the depletion region. For R(z) < y, we
have e¥s — 1 ~ ¢ If R(z) varies but little about its average value,
R, these remarks suggest that we replace eqs. (10) through (12) by the
system of linear equations

Vi (x,y) =0, 0<y <hy (21)
Vi (2, y) = a(y), hy <y < hy (22)
Vi (2, y) = —1, he <y < hs = ha + R, (23)
Vi (z,y) =@ y), h=h+R<y<e (24)

where 3 is the potential in &y < y < h; and ¢, is the potential in
hy <y < =. (See Fig. 4.) In addition to ¥, ¥s, and y¥; satisfying
boundary conditions (13) through (15), we have the boundary condi-

tions, for 0 = x = L,

Va (2, h) = v (3, ha), %($1h3)=%(1,hs); (25)

—5V —10v -5V

b(v)

y*=h}+5h;

x*(um)

Fig. 5—The potential ¢*(z*, y*) plotted as a function of z* in a surface CCD for
y* = 0.2 pm, 2.275 pm, and 4.35 ym. The 45-um plates are alternately at —5 V and
—10V, and the oxide thickness is Af = 0.2 pm.
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Fig. 6—The field — (a¢*/ax*) (z*, y*) plotted as a function of z* in a surface CCD
for y* = 0.2 pm. The 45-um plates are alternately at —5 V and —10 V, and the oxide
thickness is A} = 0.2 um. The dashed curve is a plot of — (d¢*/dx*) for the same
device obtained from a finite difference calculation.

Yi(a, =) =0, (26)

and the ¥, (@ = 1, 2, 3, 4) all satisfy (17).

It has been shown that for a one-dimensional version of this problem,
the choice®

R= —(1+h2-h1+%‘)+[(hz—h1+’;—‘)2— 1 —2v,
ha E
S e[ (e- ) owa] @
yields a solution which approximates the solution of the nonlinear
problem very accurately in the region k; < y < h.. Furthermore, the
solution in this region is quite insensitive to the choice of £. Since an
accurate knowledge of the potential is only necessary in the p-layer for
the buried channel CCD and near the oxide-semiconductor interface
for the surface CCD, we feel this approximation is well justified. In
this two-dimensional problem, we determine R from (27) by letting V,
and (g5 be the averages of V(z) and Q(x):

v, = %fb Viz)dr, Qss = %LLQ(x)d:c. (28)
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Fig. 7—The potential ¢*(z*, y*) plotted as a function of z* in a surface CCD for
y* = 0.2 pm, 2.275 ym, 4.35 um, and 6.425 pm. The 5-um plates are alternately at
—5V and —10 V, and the oxide thickness is A} = 0.2 um.

In Section VI we will present a comparison of the solution of the
linearized equations with the solution of the nonlinear equations ob-
tained by finite difference methods. This will confirm for this example
that the approximate solutions are accurate as claimed.

III. GENERAL BEHAVIOR OF THE POTENTIALS AND FIELDS

In this section we present graphieal representations of the potentials
and fields for both surface and buried channel CCD’s for a number of
design parameters. The graphs were obtained by evaluating the ana-
lytic expressions for the solutions, derived in Section IV, of eqs. (13)
through (15), (17), and (21) through (26).

In all cases, we assume that the doping in the n-type substrate is
Np = 10%/em?, that e/e = 12, where € is the permittivity of free
space, that /e = }, and that Q(x) = 0, i.e., there is no trapped or
implanted charge at the semiconductor-oxide interface. Then at
T = 300°K, the value of Ap defined in (6) is Ap = 4.15 X 107° cm.
Also, in all the examples presented here, we have used the factor (k7'/e)
= 0.025 V to convert dimensionless potentials to volts, and the factor
(kT /exp) = 600 V/em to convert dimensionless fields to V/cm.

We consider first the effect of plate width in surface devices. The first
pair of graphs illustrate a surface CCD with 45-um plates, the second
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pair a surface CCD with 5-um plates, and the third pair a surface CCD
with 1.5-um plates. The oxide layer in each of these CCD's is 0.2 um
thick, and the voltages on the plates are alternately —5 V and —10 V.
These examples show the storage mode, and as a result there is no
asymmetry to introduce a perferred direction of flow for the holes.
However, they do exhibit the effects of plate width, and are easy to
compare with finite difference calculations. In Figs. 5, 7, and 9, ¢* is
plotted along the oxide-semiconductor interface (y* = h]) and along
the lines y* = iy 4+ 5Ap, Ay 4+ 10Ap, and A} + 15Ap inside the sub-
strate. In Figs. 6, 8, and 10, —(d¢*/d2*) = E; is plotted along the
oxide-semiconductor interface. The dashed curve is the field calculated
by finite difference methods. The discrepancy between the two curves
will be discussed in Section V.,

In all three cases, the peak field available for moving positive charge
from the left-hand plate to the center plate is about 4.8 X 10* V/em.
However, in the 45-um plate device, the field penetrates only about
7 pm under the plate from the edge, leaving most of the region under
the plate field free. This would clearly be a very poor CCD. On the
other hand, in the 1.5-um device, there are substantial fields under the
whole plate. These graphs show that if field penetration under the
plates were the sole eriterion, the narrower the plates the better. How-
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| | | | 1 1 |
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Fig. 8—The field — (9 */dx*) (x*, y*) plotted as a function of z* in a surface CCD
for y* = 0.2 pm. The 5-pm plates are alternately at —5 V and —10 V, and the oxide
thickness is hf = 0.2 um, The dashed curve is a plot of — (8¢*/dz*) for the same
device obtained from a finite difference calculation.
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Fig. %—The potential ¢*(x*, y*) plotted as a function of z* in a surface CCD for
y* = 0.2 gm, 2.275 pm, 4.35 pm, and 6.425 pm. The 1.5-um plates are alternately at
—5V and —10 V, and the oxide thickness is A} = 0.2 pm.

ever, recent work by Tompsett!® has shown that in surface CCD’s
the difference in losses of ones and fat zeros due to surface states be-
comes greater as the plate width decreases. His work shows that this
puts a lower bound on plate widths in the neighborhood of 5 um. How-
ever, Fig. 8 shows that for 5-um plates there is still considerable field
penetration under the plates.

Our calculations show that increasing (decreasing) the thickness of
the oxide layer decreases (increases) the peak values of the fields, but
does not materially affect the penetration of the fields under the plates.

We next consider buried channel CCD’s. As for surface devices in
general, the narrower the plates the better as far as field penetration is
concerned. However, the plate width is apt to be determined by cur-
rent photolithography tolerances, so this is a parameter not easily
varied. In addition, if the plates are too narrow, the charge-carrying
capacity of the CCD becomes very small.

Instead of considering the effects of plate width, we examine what
happens for a given plate width if the thickness of the p-type layer is
varied. We consider first a three-phase, buried channel CCD with
5-um plates. The plates are at —5 V, —10 V, and —15 V, so charge is
to be moved from under the —10 V plate to under the —15-V plate.
The thickness of the oxide layer is A = 0.1 um. The doping profile
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Fig. 10—The field — (@ ¢*/ax*) (z*, y*) plotted as a function of 2* in a surface CCD
for y* = 0.2 gm. The 1.5-um plates are alternately at —5V and —10 V, and the oxide
thickness is A} = 0.2 um. The dashed curve is a plot of — (3¢*/dxr*) for the same
device obtained from a finite difference calculation.

in the p-type layer is assumed to be given by eq. (4) with
Cs = 4.6 X 10%/em?® (Cs = 46). This corresponds to an average
number density of acceptor atoms of 2 X 10'%/cm3. The remaining
physical parameters are as described at the beginning of the section.
In Fig. 11 we plot the channel field, E; = —(d¢*/dz™*), (that is, the
field at the potential minimum in the p-region) as a function of x* for
three different p-type layer thicknesses: A3 — A = 0.1 um, 2 um, and
4 ym. In Fig. 12 we plot the corresponding channel potentials, ¢*, (that
is, the value of the potential at the potential minimum in the p-layer).
The CCD with A3 — h; = 0.1 um is essentially a surface device. As the
thickness of the p-layer is increased, the minimum value of the field
under the center of the —10-V plate increases at first, while the peak
value of the field decreases. Eventually, as the thickness of the p-layer
is increased, the channel will be so far below the plates that the channel
fields will start decreasing to zero. Thus, in terms of field penetration,
there appears to be an optimal p-layer thickness. From Fig. 12, it is
clear that as the p-layer gets thicker, the channel potential curve
flattens out, and so the charge-carrying capacity of the CCD decreases.

We have also studied the effects of varying the doping in the p-layer
(i.e., varying C5). The behavior of the fields is relatively insensitive to
changes in Cg.
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Fig. 11—The channel field — (9 ¢*/dx*) plotted as a function of z* along the chan-
nel for three buried channel CCD’s. The 5-um plates are at —5V, —10V, and —15V,
and the oxide thickness is A} = 0.1 pgm. C% = 4.6 X 10'*/em?, and the p-layers are
0.1 pm, 2 um, and 4 ym thick, respectively.

An operating buried channel CCD has been reported' in which the
gaps between the plates have been filled with a resistive material so
that the potential drop between the plates is essentially linear. The
butted plate model can be easily adapted to describe this. In Figs. 13
and 14 we show the channel fields and potentials in such a CCD. This
is a three-phase CCD with 10-um plates and 5-um gaps. The voltages
on the plates are —5 V, —10 V, and —15 V and in the gaps the voltage
varies linearly from one plate to the next. The thickness of the oxide
layer is hj = 0.1 um. The doping profile in the p-type layer is given by
(4) with C§ = 4.6 X 10¥%/em?® (Cs = 46). The remaining physical
parameters are as described at the beginning of this section. In Fig.
13 we plot the channel field, E; = —(d¢*/dz*), as a function of x*
for two different p-layer thicknesses, hs — hi = 3 pm and 7 gm. In
Fig. 14 we plot the corresponding channel potentials, ¢*. Again, it is
seen that the p-layer thickness is a sensitive parameter in terms of field
penetration and charge-carrying capacity, and there is undoubtedly
an optimal thickness. In Figs. 15 and 16 we plot the same quantities
for a three-phase CCD which is identical to the one of Figs. 13 and 14,
except that the gap spacing is zero. The devices seem to have essentially
the same fields and charge-carrying capacities.
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IV. ANALYTIC SOLUTION OF THE LINEARIZED EQUATIONS

In this section we briefly derive the solution of eqs. (21) through (24)
subject to the boundary conditions (13) through (15), (17), (25), and
(26). We assume as given the Fourier series expansions of V(az) and

Q(x):

V(z) = ta, + i (ancos A, x 4+ b,sin N, x), (29)
n=1
Q(l‘) = %fo + i] (.“ri cOos An xr + gn Sin l\n I) (30)
where
N. = (2nw)/L. (31)

Since in most cases of interest V' (x) and Q(x) are either piecewise con-
stant or linear functions, it is trivial to obtain the coefficients of these
series.

Since ¢(x, y) must be periodic in x with period L, we can expand the
solution in each of the four regions in a series of the form

Y(a,y) = 34.(y) + i (A (y) cos hux + B, (y)sin M, 2).  (32)

On substituting expressions of the form (32) for ¢ into (21) through (24)

-5V —10Vv —15V -5V

0 I | I

-20.0

-225

0 25 5.0 15 100 125 15.0
x* {um)

Fig. 12—The channel potential ¢* plotted as a function of z* along the channel
for three buried channel CCD’s. The 5-um plates are at —5V, —10V, and — 15V,
and the oxide thickness is i, = 0.1 ym. C§ = 4.6 X 10*/em?, and the p-layers are
are 0.1 ym, 2 ym, and 4 wm thick, respectively.
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Fig. 13—The channel field — (9 ¢*/82*) plotted as a function of z* along the chan-
nel for two buried channel CCD’s. The 10-um plates areat —5V, =10V, and —15V
and are separated by 5-um gaps in which the potential varies linearly between plates.
h¥ = 0.1 pm, C§ = 4.6 X 10"/cm?, and the p-layers are 3 ym and 7 pm thick,
respectively.
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Fig. 14—The channel potential ¢* plotted as a function of #* along the channel for
two buried channel CCD’s. The 10-um plates are at —5 V, —10 V, and —15 V and
are separated by 5-um gaps in which the potential varies linearly between plates.

* = 0.1 pum, C% = 4.6 X 10%5/cm?, and the p-layers are 3 um and 7 um thick,
respectively.
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Fig. 15—The channel field — (2@ ¢*/dx*) plotted as a function of #* along the chan-
nel for two buried channel CCD’s. The 10-um plates are at —5V, —10V, and =15V,
h¥ = 0.1 pm, O} = 4.6 X 10%/cm?® and the p-layers are 3 pm and 7 pm thick,
respectively.

and equating to zero the coefficients of cos A, zand sin A, z,n = 0, 1, 2,

-, we obtain an uncoupled system of second-order, constant-
coeflicient, ordinary differential equations from which the 4, (y) and
B, (y) can be determined simply. Each 4, (y) and B, (y) is the sum of
two linearly independent solutions and thus each involves two con-
stants of integration which must be determined by making use of the
boundary conditions (13), (14), (15), (17), (25), and (26). Since the
Fourier series representing the solutions must be equal term by term
at the boundaries, this yields a simple set of linear algebraic equations
for the unknown constants of integration. These equations can be
solved explicitly, yielding the integration constants as linear functions
of the coefficients a, and b,, and ¢, and &., of the Fourier series for V(x)
and Q(z) given in (29) and (30). The algebra involved is elementary
but involved, and we only record the final answer here.

Let

F.(2) = a.cosh,x + b,sin A, 2, (33)
@, (2) = {aco8 A + Ensin Ay, (34)

so that we can write
V(x) = da, + X Fu (), (35)

n=1
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Fig. 16—The channel potential ¢* plotted as a function of z* along the channel for
two buried channel CCD’s. The 10-ym plates are at —5 V, —10 V, and —15 V,
h¥ = 0.1 um, C}% = 4.6 X 10%/em? and the p-layers are 3 um and 7 pm thick,

respectively.
Q@) = o + 5 0. (). (36)
Furthermore, let
E,=1%x1/9, (37)
AF =10+ N (38)
M, (y) = |E, A+ B AjeDntha—h) o=hny
+ {E_ A;reﬁzx,.m + E+ An_e‘“""“}e""", (39)
La(y) = 2({Afe ™ + Apetnhw ], (40)
Then we can write
vz, y) = (Ad, + B) + (Ca, + D)y
- ol ﬂfﬂ (y) Ln (hl) Sinh h" y
+ 2z {}' C T B 7 () = v } (D)
2 (Il y) = % |:do (1 + hs — hz) - (ha - ’12)2
~ (@ + 2 = 20 — b + 2 [ = Ho(0)ie]
I e sinh A, Ay | Lo (y)
+ ”Z=:] ‘F,, (x) + &, (x) — } M.0) (42)
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Y () = (@, (1 + hs — y) — (y — hs)*]

© - L sinh A, Ay | L. (y) )
+ ':gl {F,. (x) + @, (2) OV } M, (0) (43)
Vi (2, 9) = bp etk
s {P (@) + &, (2) M}
n=1 T]Au
exp [—V1+ My — hs) — Mo hs]
X M, (0) (44)
where
1 I
A:§(1+h3—hl+$), (45)
ha
B- [ (e y— ’;—) (O — [(ha — ha)(ha + ke — 2hy)
+ ’;—‘ (€0 + 2y — 2h2)] . (46)
C = —1/(2y), (47)
ke
D= [;o + 2hy — hy) — 2fh o(£)dt ]/(277), (48)
and
G, = (2a, — B)/A. (49)

Equations for dy/dx and dy¢/dy can be obtained by differentiating
eqs. (41) through (44) term by term. To obtain the equations for a sur-
face CCD, drop equation (42) and set ¢ = 0, ha = hy, and relabel h;,
¥s, and Y4 as ha, s, and 3 in the remaining equations.

V. FINITE DIFFERENCE SOLUTION OF THE EXACT EQUATIONS

In this section we desecribe the finite difference (IFD) solution!” of
a surface CCD described by equations (10) through (17). We will
assume that Q(x) = 0, o(y) = 0, and =y = hs = h.

The infinite region 0 = v = L, h £ y < = is replaced by the finite
rectangle 0 = v = L, h £ y < H, with H > h, and the boundary con-
dition (16) is replaced for 0 = » = L by

ga(x, H) = 0. (50)

This may be done, because the solution tends to zero rapidly as y — .
In fact, a one-dimensional analysis® shows that ¢. tends to zero ex-
ponentially in y.

A uniform FD net is now placed over region 1 (the oxide layer) and
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region 2 (the silicon layer) with N points in the 2-direction and M and
M, points in the y-direction in regions 1 and 2, respectively. Let

he= L/(N = 1), hy = h/(My = 1),
hey = (H — B)/(M. — 1),
and then, for (1 £ ¢ = N), (1 £j £ M.), and (a = 1, 2), define
Caii = ¢a (1 — Dhay (J — Dhay) (52)

where ¢. (z,y) is the exact solution of (10) through (17), and define
@a.i,; a8 the FD solution which approximates ¢a,i,;.

The FD equations are obtained as follows. The boundary condition
(50) is replaced by the N equations

Ga,i, 0 = 0, (1=7=N), (53)

(51)

while the boundary condition (13) is replaced by the N equations

If z, = (i, — 1)k, is the edge of a plate, the jump discontinuity in
V(x) there is handled by setting

Vi, = (Vi1 + Vi), (55)

At each interior mesh point V¢, ;is approximated by the standard
five-point difference formula'?

V2@arii = (Pavity; + Pavi-1.i — 2@a,is)/h3
+ (aivit1 + Paviict — 2@a,ii) /ey (56)

Equation (56) can also be used to evaluate Vigai,; and Vida,w.;
(2 < j < M, — 1) by making use of the periodicity relations

Fa—1,i = Ba,N-1.4) GaNt+1,j = Pa,1,i (67)
Thus, eqs. (10) and (12) are replaced by (M, 4+ M, — 4)N equations
Viéri; =0, (1=i=N), 2=j=M—1), (58)

Vida,ii = exp (@2,i5) — 1, (1 =7 = N),
2=j;=M—-1) (59
There remain the interface conditions (14). The first of these is re-
placed by the N equations
@10, = P21 (1 =¢=N). (60)

To obtain an equivalent set of equations for the second condition, we
could replace the derivatives by the first differences from each side.
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However, it is well known that this approximation is not very good.
This is easily seen from the prototype equation Ve = 0, where, for
simplicity, we take h, = h, = h. Then as is well known, "

eir1 T @it + @i T @i — 4o = Ve + 0(hY), (61)
while
de¢
@igt1 — @i =h W (i, i) + O(A?). (62)
Thus, the errors in the FD equations, after sealing the left-hand sides
to have coeflicients of order 1, are out of balance. The interface condi-
tion is 1/A? less accurately modeled than the differential equation. This
leads to the following scheme which balances the errors equally. We
want de¢1/dy using only values of ¢y, similarly for d¢./dy, and the
approximation must be good to 0(A%. This may be done using the
values of ¢y, (My — 3 = j < M,). Simply use the derivative of the
cubie interpolation polynomial through these values. It is easily seen
that

a
T‘;l (1‘{, h) = Illﬁcl.i, M, — 18{,91.,“-,!1_1
+ 91 an—2 — 2¢1,6 a—3} /(6hyy,) + O(RY,).  (63)
Similarly,
d ¢z

By (i, h) = {2¢9,i,4 — 9¢a,ia + 18¢s,i2
— 1lga,in}/(6hsy,) + O(h3,). (64)

Then the second boundary condition (14) is replaced by the N equa-
tions

11[ 11 ‘.31.{. Ay T 18‘,31,.’, M =1 + 9951..'. My—2 — 2951,5, .\!,73]/111;;

= {2@s:s — 9¢u,is + 18822 — 11&s,5,1}/hay,

(1<i<N). (65

Equations (53), (54), (58), (59), (60), and (65) comprise (M, + M.)N
equations in the (M, + M,)N unknowns @, (@ = 1,2),(1 =7 = N),
and (1 £ j £ M,). From the standard FD theory, the solution of this
set of transcendental equations differs from the solution of the true
boundary value problem by a factor of order 0(2%). We used a nonlinear
overrelaxation scheme developed in Refs. 18 through 20 to solve the
FD equations for ¢. and standard overrelaxation methods?! to solve
the ¢ FD equations.

An initial estimate of the solution, ¢{%;, was obtained by computing
the one-dimensional matching solutions as funetions of y along the



690 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

lines x = z;, (1 £ ¢ £ N), using the methods of Ref. 5. This provides
a solution which is a fairly good estimate under the middle of any plate
and a very bad one near the edge of any plate. These one-dimensional
solutions also give a good estimate of the greatest depth of the transi-
tion region, call it yu.x. Since g2 — 0 exponentially for y > Yumax, We
chose H = Ymax + 20.

This estimated solution ¢, is now refined iteratively by the method
of successive overrelaxation (SOR). The (n + 1)st iterate is obtained
from the nth as follows. Foralln =0, 1, 2, --- , set

@i =V, ¢, =0, (1 =7 =N). (66)

1y

For (2<i<N—1and (2= ;=M —1),let @iF" be defined by

(2h:% + 2057 ¢l = (¢iyrs + YA
+ (99511);+1 + ‘Pli'-H} )hl_vz- (67)
Then set
BUAD = w1 Y + (1 — w1) o2 (68)

where w, is an overrelaxation parameter satisfying 1 = w; < 2. For
2=i=N-—1and (2= j= M:— 1), let &, be the solution of

(207 + 2h5%) @Y + oxp (BF7) = 1+ ($fllry + SRR
+ (#8041 + S8Ry (69)
Equation (69) has the form

Aw+ev =B (70)

where 4 and B are known and 4 > 0. Given any approximate solution
w® of (70), Newton's method?? yields the sequence

= [A + e 0B + @t = D], (k=0,1,2,-+),  (7D)

which converges to the solution of (69). The convergence of this scheme
is global and quadmtlc because the function Aw + ev, for 4 > 0, is
a monotone increasing, convex function of w. After solving for pz‘"f}”,

we set,
PEFY = wo @Y + (1 — w2) B (72)

where 1 = wy < 2.

The interface values @i, 3, and @ui1, (2 =7 =N — 1) are re-

laxed by combining (60) and (65), defining
ﬁ5(1"1+1!)1 = ¢§’ (’T’lfyl + ]1@‘)_1[7;]11_‘,1(18@1("{4{}3 1 9@5’%},} 2
+ 2¢070_1) + k5! (18480, — 9681 + 2887, ]/(11), (73)
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and setting
b = oY = welhh + (1 — @) @ (74)

w = %(ml + 0.)2), (75)

Equations (66) through (75) deseribe the manner in which the in-
terior nodes of the FD mesh are relaxed. The nodes at ¢ = 1 and N
involve periodicity and require more detailed study. By using the
periodicity relations (57), equations (66) through (75) can be extended
to the nodes at 7 = 1, N. We could next do one of two things. First, we
could treat @.,1,; and @, ~.; as separate quantities and relax each of
them separately using the periodicity relations (57). Then, each time
@a,1,; was relaxed, this new value could be substituted for @. ».; to
preserve periodicity, and vice versa. This was tried but gave very poor
convergence rates. The problem is that in treating @a.1,; and @a. n;
as separate quantities, the same quantity (that is @¢..1; and @a.n.;)
gets relaxed twice rather than once in each SOR sweep. This can be
avoided by letting ¢an; = @arjy @ =1,2), (2= j =< M, — 1) and
then relaxing only the quantities @..1,; This produces quite acceptable
convergence rates.

The overrelaxation parameters w; and w» were set equal to the opti-
mum values of these parameters for the Laplace equation on regions
one and two respectively. These values for w; and w; were estimated as
follows. Let ¢/ denote the vector of values of the nth iterate of the
solution to Vi@, = 0 in region &, (e = 1, 2). Define the nth residual
vector as R = g0 — g Then, starting with any initial guess
¢ # 0, standard theory shows?® that lim [|[R&*V]|/|RE| = 5. exists

n— L

where

and
Waopr = 2/11 + VT — 34} (76)
where |R{"| denotes the norm of the veetor R and is called the resid-
ual. In practice, we calculated the residuals for n large enough so that
7« Was obtained to the desired accuracy using the L. norm.
A further important point is solving the transcendental equation
(69), which must be done at each SOR step. In the (n + 1)th SOR
sweep, the initial estimate for "7 in the Newton iteration (71) was

@47, There is no reason to compute the @&+" very accurately when
47, is Tar away from its final value. Conversely, the quadratic con-

a(n)

vergence of Newton's method means that when the error in ¢{; is
small, one Newton iteration will produce a very good approximation
for @55V, For this reason, only one Newton iteration was used in solv-

ing (69) during each SOR sweep.



692 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

Some theory has been developed to show that the SOR scheme we
have outlined above converges to the true solution in some mildly non-
linear Dirichlet problems.!®:** However, to the best of our knowledge,
no theoretical analysis exists of the boundary value problem of this
paper. Nevertheless, as we will demonstrate by numerical examples in
the next section, the scheme works in practice.

We conclude this section with a few remarks on the estimated ac-
euracy of the FD solution. Since little is known of the general theory
of a complicated nonlinear boundary value problem such as we are
considering, we argue by analogy with the Dirichlet problem for
Laplace’s equation on a square. Let ¢(x, y) be the true solution of
V2o =0 in 0 <, y < L, with ¢ specified on the boundary, let
h=L/N—1), ¢i;j=o((—1h, (j—1)h), and let @; be the
solution of the corresponding FD equations. Then it is well known?**
that under reasonable conditions on the boundary values,

le — @lle = sup |ei— @il = 0(h?). (77)

1<i, jEN

This relationship assumes that we know the FD solution exactly. How-
ever, we don’t know ¢ exactly, all we know are the various iterates @t
which have been caleulated and the residuals ||+ — ¢, Now
it is known, though not as widely as it should be, when calculating ¢
by the method of SOR that?*

|6 = ¢HV]le = C@)I 640 = p®]|o, (79)
and if w, is the optimal choice of w,
C(ws) = O(N). (79)

It can also be shown, if the optimal value of « is underestimated by ten
or fifteen percent, that C(w) = 0(N?2). This means that to obtain an
approximate solution accurate to 0(h?) = O(N~%) by the method of
SOR, we must iterate at least until the residuals are 0(N—*), and since
in the nonlinear problem we can only crudely estimate the optimal w,
we should really iterate until the residuals are O(N—%).

As we will show by example in the next section, it is necessary to
calculate the potentials with great accuracy if one wishes to obtain the
fields from them with any accuracy at all by differencing them. From
the previous paragraph, however, we have shown that this is expensive
in even a moderately complicated problem, since then the residuals
must be made so small. To estimate the cost of increasing the size of the
problem or decreasing the mesh size (both equivalent to increasing N ),
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we note that typically in SOR,2®
”‘ﬁ(n+1) — é(n)”m = —nl0(N-1)| (80)
for optimal w, while for nonoptimal w,

pOHD) — || m g nloNDI (81)

¢

If we wish to specify that || — g("+1)][, = ¢ then, for optimal w, it
is easy to show from (78) through (80) that the number of iterations
must be

n = 0(N tn(N/e), (82)
while for nonoptimal w, it follows from (78), (79), and (81) that
n = 0(N2n(N/e). (83)

Thus, if we decrease the mesh size by one half, then from (82) or (83),
we must double or quadruple the number of iterations to obtain the
same accuracy. Since there are now 4 times as many mesh points, the
time required to obtain a solution goes up by a factor of 8 or 16, de-
pending on the knowledge of w.

VI. COMMENTS ON THE ACCURACY OF THE SOLUTIONS

In Section IV we derived the Fourier series solution (FSS) of the
iinearized problem, and in Section V we outlined the finite difference
solution (FDS) of the nonlinear problem. In this section we compare
several of these solutions with regard to accuracy and cost. All caleu-
lations discussed were performed on a Honeywell 6070 computer, and
all programs were written in Fortran IV.

We solved the nonlinear equations (10) through (17) by the method
of finite differences for the two-phase surface CCD’s discussed in Sec-
tion III, some of whose properties are presented graphically in Figs.
5 through 10. The three CCD’s have plate widths of 45 ym, 5 um,
and 1.5 um, respectively. The plate voltages are —5 V and —10 V,
Q(x) =0, Np = 10"%/em?, e1/e0 = 4, e2/e0 = 12, and Ap = 0.415 pm.
In all cases, a FD net was chosen with N = 25, M, = 25, and M, = 41.

In the case of the 45-um-plate device, this corresponds in the dimen-
sionless units to i, = 9, hy, = 0.02, hy, = 1. After 273 SOR iterations,
the residual was ~4 X 107, the running time was 195 seconds, and
35 K of memory was used. This should ensure that the difference be-
tween the true FDS and the iterated solution will never exceed
~25 X 65 X 4 X 1077 = 6.5 X 10~ We have calculated the FSS at
the same mesh points, this took 33 seconds to run, and 33 K of memory
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was used. Let ¢rp (2, y) denote the FD solution of the nonlinear prob-
lem and y(z, y) denote the F'S solution of the linearized problem, and

ez, y) = |(ewn (x,y) — ¥(x, ¥))/ ero(z, y)|. (84)

Then we found that along the oxide-semiconductor interface, e(x, h1)
< 1.14 X 1073, 0 < 2 £ L, and five Debye lengths below this inter-
face, e(x, hy + 5) < 289 X 1074, 0 =2 = L

We have for the 5-um-plate device h, = 1, hy, = 0.02, hgy = 1.
After 288 SOR iterations, the residual was ~4 X 1077, the running
time was 190 seconds, and 35 K of memory was used. This should again
ensure that the difference between the true FDS and the iterated
solution does not exceed 6.5 X 10~% TFor this case, we found that
e(z, h) < 2.8 X 1073, e(x, hy + 5) < 1.4 X 1073, e(x, ha + 10) < 3.14
X 1073, e(x, hx+ 15) < 9.81 4+ 10~* for 0 = 2 = L. The running
time to evaluate the FSS was 10 seconds and 33 K of memory was used.

Finally, for the 1.5-um-plate device, we have h, = 0.3, hy, = 0.02,
and ha, = 1. After 300 SOR iterations the residual was ~6 X 107,
the running time was 196 seconds, and 35 K of memory was used. Note
that in this case the residual is three orders of magnitude greater than
in the other two cases. We found that e(z, hy) < 1.8 X 10~? the run-
ning time to calculate the FSS was 4 seconds, and 33 K of memory was
used.

In Ref. 5 it was noted that as long as [¢4 (hs) + 1| < 10, one could
expect the solution of the linearized problem to be a good approxima-
tion to the solution of the nonlinear problem, at least in the p-region
for buried channel devices or near the oxide-semiconductor interface
for surface devices. In the examples considered here, for the 45-um-
plate case, —5.15 < ¢4 (2, hs) < 3.00, for the 5-um-plate device,
—1.20 < ¥ (x, hs) < —0.96, and for the 1.5-um-plate case, ¥4 (x, hs)
= —1.077. This again suggests that the smaller |4 (z, ks) + 1/, the
more accurate the approximation.

These examples show that if one only needs a knowledge of the po-
tential in the neighborhood of the oxide-semiconductor interface, the
FSS provides a highly accurate approximation to the true solution
much more cheaply than ean be obtained by FD methods. In fact, to
analyze three-phase devices, the cost of obtaining a FDS goes up
sharply while the cost of a FSS remains nominal. For example, it took
only 15 seconds and 34 K of memory to obtain the solutions presented
graphically in Figs. 15 and 16.

In reality, we are as much interested in the fields as we are in the
potentials, and it is at this point that the difficulty with using the FD
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method for solving these problems becomes most acute. In Figs. 6, §,
and 10, the dashed curves are plots of —(d¢rn/dx) along y = hy, ob-
tained from the I'DS just discussed by differencing. In Fig. 6 for ex-
ample, the two curves differ by nearly an order of magnitude at their
peaks. If we take the I'SS and difference it to estimate the first deriva-
tive, we get a result which, in the neighborhood of the peaks, differs
by at most 3 percent from the derivative obtained by differencing
the FDS. We can conclude that the fields obtained from the FDS are
badly in error. In order to calculate the fields from the FDS with any
degree of accuracy, even for these simple examples, we would have to
take a mesh so fine that the cost would become prohibitive.
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