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A connecting network s called strictly nonblocking if no call is blocked
in any state; it is nonblocking in the wide sense if there exists a rule for
routing calls through the neltwork so as to avoid all states in which calls
are blocked, and yet still satisfy all demands for connection as they arise,
without disturbing calls already present. Characterizations of both senses
of nonblocking have been given in previous work, using simple metric and
closure topologies defined on the set of states. We give new characterizations
based on the natural map v(-) that carries each state into the assignment
it satisfies. This map 1is a semilattice homomorphism, such that
Y@ Ny 2 v@ N y). It turns out that the case of equality in this
inequality is very relevant to nonblocking performance. In particular, let
a subset X of stales be said to have the intersection property if for every
x in X and every assignment a there exists y in X such that y realizesa
(ie,, y(y) = a) and v(x N y) = v(@) N v&). Then a network is non-
blocking in the wide sense if and only if some subset of its states has the
intersection property, and it is strictly nonblocking if and only if the
entire set of states has the intersection property.

I. INTRODUCTION

In a nonblocking network, no call need be lost because of link mis-
match or junctor unavailability. Efficient nonblocking networks were
invented by Charles Clos and, although they are not in common use
at the present time, they are distinct possibilities for practical appli-
cations in the future, and they have substantial theoretical interest as
outer limits on possible designs.

Two degrees or strengths of the nonblocking property have been
distinguished.”* A connecting network is called strictly nonblocking if
no call is blocked in any state; it is nonblocking in the wide sense if
there exists a rule for routing calls through the network so as to avoid
all states in which calls are blocked, and yet still satisfy all demands
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for connection as they arise, without disturbing calls already in
progress. These properties have been given'? topological characteri-
zations, and examples of each are known, although it must be said
that examples of efficient wide-sense nonblocking networks are yet to
be found.

Our aim in this paper is to give new alternative characterizations of
the nonblocking properties in terms of the semilattice structures of the
set of network states and of the set of assignments the states realize;
a key role is played by the homomorphism v (-) that carries each state
into the assignment it realizes.

The property of being nonblocking in the wide sense lies between
two other properties: that of being strictly nonblocking (nonblocking
in the strict sense) and that of being rearrangeable. In a strictly non-
blocking network, no call is blocked in any state; in a rearrangeable
network, calls can always be given new routes (rearranged) so as to
unblock any blocked call. The three properties (along, doubtless, with
others not yet studied) form a spectrum of possible ways of operating
switching equipment that exhibits or summarizes the tradeoff obtain-
able between efficient usage of switches and amount of calculation:
the richer the network is in crosspoints, the less one has to do to use it
50 as to achieve desired load and loss. In a strictly nonblocking network,
any path for an idle call will do; there always is one, and no traffic
advantage is gained by use of one rather than another. In a wide-sense
nonblocking network, the right choice of a path may mean the differ-
ence between zero loss and blocking some calls. By calculation, though,
one can always find a route that will result in no blocking. In a re-
arrangeable network, finally, nonblocking behavior is again attainable,
but, in general, only at the cost of constantly recalculating new routes
for all the desired calls simultaneously, and reswitching them as
necessary.

II. PRELIMINARIES

We shall use a model for the combinatorial aspects of a connecting
network. This model is called a semilattice,® or partially ordered sys-
tem with intersections, and it can be thought of as arising as follows:
a connecting network » is a quadruple » = (G, I, 2, S) where G is a
graph depicting network structure, I is the set of nodes of G which are
inlets, @ is the set of nodes of G that are outlets, and § is the set of
permitted states. Variables w, z, y, and z at the end of the alphabet
denote states, while u and v denote a typical inlet and a typical outlet,
respectively. A state x can be thought of as a set of disjoint chains
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on (, each chain joining I to Q. Not every such set of chains
represents a state: sets with wastefully circuitous chains may be ex-
cluded from S. It is possible that 7 = Q@ (one-sided network), that
I N Q= ¢ (two-sided network), or that some intermediate condition
obtain, depending on the ‘“community of interest’” aspects of the
network ».

The set S of states is partially ordered by inclusion <, where z < y
means that state 2 can be obtained from state y by removing zero or
more calls. If x and y satisfy the same assignment of inlets to outlets,
i.e., are such that all and only those inlets u e I are connected in z
to outlets v ¢ @ which are connected to the same v in ¥ (though possi-
bly by different routes), then we say that x and y are equivalent,
written © ~ 3.

We denote by A, the set of states that are immediately above z
in the partial ordering =<, and by B, the set of those that are im-
mediately below. Thus

A,
B,

{states accessible from x by adding a call}

It

{states accessible from x by a hangup} .

It can be scen, further, that the set S of states is not merely partially
ordered by =, but also forms a semilattice, or a partially ordered sys-
tem with intersections,® with x () y defined to be the state consisting
of those calls and their respective routes which are common to both
x and .

An assignment is a specification of what inlets should be connected
to what outlets. The set A of assignments can be represented as the
set of all fixed-point-free correspondences from subsets of I to Q. The
set A is partially ordered by inclusion, and there is a natural map
¥(-): 8§ — A which takes each state x eS8 into the assignment it
realizes; the map y(-) is a semilattice homomorphism of S into A,
with the properties

rzy=v@) 2 v,

rzy=v@E—y =y — (),

yE Ny = v@ Ny,

y(x) = ¢ = & = 0 = zero state, with no calls up.

Variables a, b are used for members of A.

A wunit assignment is, naturally, one that assigns exactly one inlet
to some one outlet, and it corresponds to having just one call in
progress. It is convenient to identify new calls ¢ and unit assignments,
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and to write v(z) U ¢ for the larger assignment consisting of v (z) and
the call ¢ together, with the understanding of course that none of the
terminals of ¢ is busy in v (). Not every assignment need be realizable
by some state of S. Indeed, it is common for practical networks to
realize only a small fraction of the possible assignments.

A simple pseudometric topology on S is defined by the “distance”
formula

d(z,y) = |v(@)Ay(y)|

where A denotes the symmetric difference, and | - | cardinality, of sets.
The distance between states d(z,y) is the number of pairs (u,v) e I X Q
that are either connected in = and not in y, or connected in y and not
in . Clearly, d(x,y) = 0if and only if z ~ y, and the d-closure of a set
X is just

X? = {y:y ~ x for some z ¢ X}.

A set X is dense in a set Y in the d-topology iff
Y C X4,

1II. INTERSECTION PROPERTY

We shall introduce a property of subsets X of the set S of states,
called the intersection property, and then show that a network » is
nonblocking in the wide sense if and only if some subset of S has the
intersection property. We call it the intersection property because it
involves the equality case

yNy =@ Nr® (1)
of the semilattice homomorphism inequality
yNy =v@ Ny®; (2)

the latter is always true. Our result therefore says roughly that if
equality in (2) holds for enough states, then » is wide-sense nonblocking
and this condition is necessary.

A subset X C S is said to have the infersection property if and only
if for every z ¢ X and every a ¢ A, there exists y ¢ X such that y(y) = a
and

v Nv@) =y Ny

A subset X C S is closed below if x ¢ X and y £ z imply y ¢ X. The
lower closure of a subset X is the set X = {y: y e S and y = « for some
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x e X}, this is just all the states reachable from a member of X by
hangups.

Our first result is an important lemma to the effect that the inter-
section property is preserved by lower closure.

Lemma 1: If X has the intersection property, then so does X.

Proof: Take v e X, aeA. We are to find y ¢ X such that yv(y) = a
and y(y M z) = v(y) N v(z). Since z ¢ X, there is a z ¢ X such that
2 = z. X has the intersection property, so there is a w ¢ X such that
¥(w) = @ and

yw Nz =y Ny@. (3)

We show that we can choose y to be w. Obviously w ¢ X and y(w) = a.
Also, intersecting (3) with v (x) we find

@) Ny N2 =y@ Ny Nye).

Since r = 2z, we have y(x) £ v(2), v(x) N v(z) = v(x), and so the
right-hand side is just y(w) M v¥(z). The left-hand side consists of
calls which are in progress in z, and are also in progress in both w and
2z, on the same routes in each. Since 2 =< z, these must use the same
routes in x as they do in z and w. Thus the left-hand side comprises
exactly those calls which are in progress in each of z, w, and 2, on the
same routes in each, namely ¥(z | w M x). This equals v(x N w)
because v < z. Thus

v(x N w)

yENwNa)

y(@) NN w)

y(@) Ny N yw)

y(x) Ny (w),

and this proves the Lemma 1. Our next result notes that a subset X

having the intersection property must lie entirely in the set N of
states in which no call is blocked.

Lemma 2: If X has the intersection properly and x ¢ X, then no call
idle in x is blocked in x, i.e., X C N.

Proof: Let x ¢ X, cidlein 2, @ = y(x) U ¢. Then there is a y ¢ X such
that v(y) = aand y(x N y) = v(x) N v(y). Thus the calls in progress
in both x and y, and on the same routes in each, are all and only the
calls up in x. Hence x (Y y = x, or v < y, so that y ¢ 4., and ¢ is not
blocked in 2. Thus X C N.
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IV. WIDE-SENSE NONBLOCKING NETWORKS
We shall need a lemma that identifies the intersection of two states:
Lemma 8: If z < x,z2 Sy, and y(2) = v(x) N v(y), then z = N y-
Proof: The hypothesis implies that
v —2) =v(@) —v@ =v@ — [y@ Nr®]
vy —2) =v@) — 7@ =v@ — D@ Nv@®I

The right-hand sides are disjoint, so y(z — 2) N vy — 2) = ¢, and
the homomorphism inequality for y(-) givesy[(x —2) N (y — 2)] = ¢,
whence (x — 2) () (y — 2) = 0. Since z is included in each of z and
y, we have

z=z2U (z - 2), y=2U(@—2
sNy=2Uzly—20U @ —2zU @ -2 —2)
(here we have used a more convenient notation for intersection on the
right-hand side). The last three terms on the right vanish, so

zNy ==z
The following characterization of wide-sense nonblocking was

given in an earlier work !

Theorem 1: v is nonblocking in the wide sense iff there exists a subset
X C N with X = X, and such that for every x ¢ X, A, N X is d-dense
in A, e, A, C (4. N X)<

The principal new result is now proved. It is
Theorem 2: v is nonblocking in the wide sense iff some subset X C S
has the intersection property.

Proof (sufficiency): By Lemmas 1 and 2 we can assume that X is
closed below, and that X € N. By Theorem 1 it is enough to prove
that for every x ¢ X, A, () X is d-dense in 4., i.e.,

A, C (A, N X)4, zeX. (4)
Let 2 ¢ X and z € A,. There exists then y ¢ X such that v(y) = v(2)
and y(z N y) = ¥(@) N v(); thus also
Y@ Ny =v@ Nk =@,

the second equality following from z < z. As in Lemma 2, we conclude
from y(z N y) = v(2) that y e A;. Then y e A, () X and y ~ 2, or
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ze(A: N X)? Since z was an arbitrary state in A4,, we have shown
(4), and so the sufficiency.

Proof (necessity): Since » is nonblocking in the wide sense, there exists
by Theorem 1 a subset X of states which is closed below, is contained
in N, and is such that any call new in a state of X can be put up salva
staying in X. We show that X has the intersection property. Let then
e X and a ¢ A, Obtain a state z = x by removing from 2 all the calls
that are not part of the assignment y(2) M a. Next, starting at ¢,
put up the (additional) calls comprising @ — +(z) so as to reach a state
y ¢ X with y(y) = a. This is possible because any call new in a state
of X can be put up so as to keep the system in X. We now claim that

YNy =@ Ny@.

Since z £ =z, z £ y, this follows from Lemma 3 as soon as we prove that
v(z) = v(@) N v(y). Tosee this, note that y(2) < v(x) and v(2) = v(y),
so that ¥(z) £ v(x) M v(y). Conversely, by construction, any call up
in both x and y is either up in z (never having been disturbed), or
else was taken out to reach z and then put back up. However, only
calls not up in @ were taken down, and only calls up in a were put back.
Thus the second alternative is ruled out, and any call up in both z
and y isup in z, i.e., v(a) N v () = v(z). Lemma 3 now implies that
z =2y, so that

y@ Ny = ()
=v@Nuy.

Hence X has the intersection property, as claimed.

V. STRICTLY NONBLOCKING NETWORKS

Because of Lemma 2, the intersection property can also be used to
characterize the property of being strictly nonblocking, as is shown
by the following result:

Theorem 3: v is strictly nonblocking iff (the set of states) S has the inter-
section property.

Proof: Sufficiency is obvious, by Lemma 2. Conversely, if » is strictly
nonblocking, then ¥(S) = A and

A, € (4. N S)4 for every x € S.

Thus » is nonblocking in the wide sense; indeed, trivially, S has the
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property that any call new in a state of S can be put up salva staying
in 8. The necessity argument of Theorem 2 now shows that S has the
intersection property.

VI. COMPARISON, EMBEDDING, AND ISOMORPHISM

We next relate the intersection property to a certain partial ordering
< of networks, introduced in an earlier work,* and used there for clarify-
ing some problems of comparison of networks. This partial ordering
was defined over the set N (I,2) of all networks » = (G, I, Q, S) for
which the set I of inlets and the set @ of outlets are fixed, while the
graph G and the set S of states may vary in any way consistent with
their defining a network in the sense of Ref. 2.

N (I,9) is partially ordered by the following relation =: v = », iff
o domain D C S(») and an onto map u: D — S(»:) such that D is
closed below and

() u preserves assignments: v (uzx) = v(x)

(i) z,y e D,pxr Z py =2z = y.

The relationship »; < v, means intuitively that one can mimic v,
within »;. That this is so is not obvious. Indeed, using the notion of
isomorphism as a precision of the mimicry in question, it has been
proved* that »; £ v, if and only if there is an isomorph of »; in ».
Roughly, in the definition, » maps the states of »; doing the mimicking
onto 8 () ; it tells what state mimics what. Condition (i) then naturally
states that the mimicked state satisfies the same assignment. Condition
(i7), finally, insists that mimicry preserve inclusion, in the sense that

only states z, y with z = y can mimic similarly related states pz, py.

Remark: In the definition of the partial ordering < for the set N (Z,2),
the condition D = D, that the domain of the map u be closed below,
may be dropped, because it is implied by the other conditions. To see
this, let D, u be as in the definition of < except omit D = D, and take
zeD, y £ x. We show y e D. Clearly, y(y) £ v(z) = v(ux), so there
is a state z eu(D) with z < pz and v(2) = y(y), because u(D) is
closed below, since u is onto. Hence there exists w ¢ D with z = pw.
Thus pw < uz, so by the second property of g, w < z. We now have
y <z w=z v(y) = yw). This implies y = w and so y ¢ D, because
a state x can have below it at most one state satisfying a given
assignment.
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Theorem 4: v 1s nonblocking in the wide sense iff Tvy, v £ vy and v, 18
strictly nonblocking.

Proof: If v < »,, there is a domain D € S(») and an onto map u:
D — 8(v1) such that y(ux) = y(x), and pz = py implies = = .
We show that D has the intersection property. Take x ¢ D and a e A
and focus on ux € S(v;). Clearly, since v, is strictly nonblocking, there
exists a state y of »; with v(y) = @ and

yr) Ny = ywr N y).

(It suffices to take down the calls in x not up in @, and then put up the
ones in a not up in z.) Since p is onto, y = uz for some z e D, with
a = v(y) = v(z). Since y(ux) = vy (x), we have

y@) Nv@) = v N ).

Since px and pz are both states of v, so is uz () pz; there is a state
weD with pw = px () pz, since p is onto. Now note that uz = pw
and uy = pw, so that the second property of u implies = w and
y = w. Together with y(z) M y(2) = y(w) this implies by Lemma 3
that w = « [N 2, and so

y@) Ny =v@E@Na2).

Thus D has the intersection property, and so » is wide-sense nonblock-
ing, by Theorem 2. Conversely, if v is nonblocking in the wide sense,
there is a subset X of S with the intersection property. Define », by

Vv = (G, I, ﬂ, X).

implies that », is nonblocking, and Theorem 3 is proved.

Our intuitive feeling is that a wide-sense nonblocking network has
embedded in it a largest strictly nonblocking network, to whose states
the system is restricted by any rule for routing that guarantees no
blocking. An appropriate sense of “embedded” is provided by the con-
cept of isomorphism.? An isomorphism between two partially ordered
systems is a one-to-one correspondence that preserves order in both
directions. An isomorph of », within », would be a subset M C S(»,)
and a correspondence 7: M <> S(v.) such that z = y iff iz = 7y. In
Ref. 4, the existence of an isomorph was related to the partial ordering
= for networks, by this result:

Taking D = X and p = identity, we conclude v < »;; Lemma 2
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Theorem 5: vy = wo iff M C S{v1), H correspondence
i: M <> 8(vy) such that

@) y(@z) = v(x)

(#1) z = y iff iz = 1y.
Therefore Theorem 4 can be rephrased as

Theorem 6: v is nonblocking in the wide sense if and only if there is an
isomorph of a nonblocking network embedded in S(v), and the isomorphism
preserves y(-).

This is a precise form of the intuitive feeling voiced above.

Note added in proof: It should be noticed that Theorems 4 and 6 imply
that the quest (mentioned at the top of p. 698) for efficient wide-sense
nonblocking networks is in a sense vain: there is no “intermediate”
amount of switching equipment that will give wide-sense nonblocking
behavior but is not so expensive as (it would have to be to give) a
strictly nonblocking network; as soon as you have a wide-sense non-
blocking network, you have at most to throw away some states to
obtain a strictly nonblocking one.
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