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Efficient Evaluation of Integrals of
Analytic Functions by the
Trapezoidal Rule
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(Manuseript received November 28, 1972)

Definite integrals of analytic functions can often be evaluated efficiently
by the trapezoidal rule after a suitable transformation. Here the work of
Moran' and Schwariz® along this line is extended. First the dependence of
the error on the spacing is discussed, and then several types of transforma-
tions are described and applied to integrals of technical interest.

I. INTRODUCTION

Quite often the problem of determining the value of a definite in-
tegral arises. When the integral cannot be readily evaluated by analysis,
we must resort to numerical methods. Here we discuss a method of
numerical quadrature which gives promise of being useful in evaluating
some types of integrals that are difficult to handle by conventional
numerical methods.

In particular, we consider the problem (Moran! and Schwartz?) of
transforming a given integral of an analytic function f(x) into a rapidly
converging one (with limits = =) which can be efficiently evaluated by
the trapezoidal rule,

[ iwdz=n £ jom) - B (1)
The integral and series are assumed to converge. In addition to the
trapezoidal error E, a second error is introduced when the series is
truncated in the process of computation. It is supposed that both
errors are made negligible, E by taking & small, and the truncation
error by taking enough terms in the series. The feature which makes the
use of (1) attractive is that E often decreases in proportion to
exp (—C/h) as h decreases, C' being a constant. Thus if & gives three-
figure accuracy, i/2 will give six-figure accuracy in many cases.

707



708 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

The transformations, i.e., the changes of variable of integration used
to carry the limits of the given integral into = =, are usually con-
structed by combining functions which are readily computed, such as
powers and exponential functions.

Schwartz? recommends the following procedure for evaluating the
integral of an analytic function f(u): (i) change the variable from u to
v so as to make the integration with respect to v extend from — e« to
+ o, (7)) make the further transformation

v =¢e" —e*

to increase the rate of convergence, and then (i%7) evaluate the trape-
zoidal sum, truncating when contributions fall below the desired ac-
curacy, and reduce the spacing A until the answer has the desired
acecuracy.

Here we present a summary of several variations of Schwartz’s pro-
cedure. Details are given in a report by the author.? The dependence of
the error E on the spacing h is first reviewed, and then examples are
used to illustrate the evaluation of various types of integrals.

II. THE DEPENDENCE OF £ ON h

The trapezoidal error E can be expressed in several ways. For ex-
ample, it is the remainder in the Euler-Maclaurin sum formula. Again,
it can be written as the sum of contour integrals with integrands
f(z)/[exp (£12rz/h) — 1] (Ref. 4, p. 145, Problem 7, and Refs. 5, 6,
7, 8, and 9). Here we follow Fettis® and use Poisson’s summation for-
mula which, when applied to (1), gives

—1 ] o0
E = (k): + 3 ) f 1(z) exp (i2mzk/h)de. @)
=—00 =1 —o0

Let f(z) be analytic throughout a strip in the z-plane containing the
real z-axis and assume that suitable convergence conditions are satis-
fied. Then the paths of integration in the terms for k& > 0 in (2) can be
displaced upwards to make Im (z) > 0. It follows that |exp (:27kz/ h)|
= exp (—27k Im (z)/h) becomes small when h becomes small and z is
on the path. Furthermore, as h — 0 the terms for & > 1 become
negligible in comparison with the term for k = 1. A similar argument
holds for the k& < 0 terms, and as h — 0 we have the asymptotic result

E'VR++R_

where R, and R_ are the £ = 1 and k& = —1 terms, respectively, in
(2). For the important case in which f(z) is real on the real z-axis, R_



INTEGRALS OF ANALYTIC FUNCTIONS 709

is equal to the conjugate complex R% of R, and E is given asymptoti-
cally by
E ~ R+ + Rtl‘;

R, = f_ “ 1() exp (i2rz/h)de. 3)

When £ is small, the trapezoidal error E given by (3) ecan be viewed
as the sum of contributions from singularities of f(z) and saddle points
of f(2) exp (2mz/h). At the saddle points the derivative de¢(z)/dz is
zero, ¢(z) being defined to within a multiple of 2xi by exp [¢(z)]
= f(z) exp (:2wz/h).

This picture of E is suggested by the following remarks. The path of
integration in (3) can be deformed upwards towards z = 7o in the
complex z-plane until it becomes an optimal path comprised of paths
of steepest descent and ascent passing through one or more saddle
points. The path runs from — « to + = and may have detours running
out to, and returning from, infinity. It may also have loops around
some of the singularities of f(z). When % is small, the factor exp (27z/h)
decreases rapidly as Im (2) increases, and the only significant contribu-
tions to R, come from the portions of the path near the singularities
and near the saddle points not associated with singularities.

An approximate expression for a typieal contribution can be obtained
by expanding the contribution about the corresponding singularity or
saddle point and taking the leading term. Such expansions are usually
asymptotic in h. For estimating orders of magnitude we can use the
dominant factors in the leading terms:

(Contribution to R, of a saddle point at z,) = exp [¢(24)],
(Contribution to R, of a singularity at z;) =~ exp (i2wrz1/h).

As h decreases, E may either decrease steadily or may oscillate with
decreasing amplitude depending upon how the dominant contributions
combine.

If there are no singularities or saddle points in the finite part of the
z-plane, the trapezoidal rule may give the exact value of the integral
when & is less than some fixed value. This is associated with the
sampling theorem for band-limited functions. For example, if m and n
are positive integers such that m — n = O or 2, 4, - - -, the integral

I = [m sin"xdx/x" (4)

is exactly equal to the trapezoidal sum when h < 2x/m (h can equal
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2x/m if n = 2). The proof follows from the fact that all of the terms
in the series (2) for E vanish when h < 27/m, as can be shown by de-
forming the paths of integration into infinite semicircles and using
Jordan’s lemma (Ref. 4, p. 115). As a check, note that form =n =1
or 2 we can take h = 7. Then I = = because there is only one nonzero
term in the sum.

The foregoing discussion shows that the structure of E can be de-
termined by computing the saddle points and associated paths of
steepest descent for f(z) exp (12wz/h). This is done in the report?® for
the examples (6) and (25) given below. The path for example (6) is
shown in Fig. 1 and discussed in the appendix. However, computations
of this sort are laborious. In practice it appears that the dependence of
E on h is most easily determined by computing the trapezoidal sum for
a sequence of decreasing values of h, bearing in mind the possibility
that E may go through zero for some values of k.

Incidentally, arguments similar to those given in this section show
that the trapezoidal rule also works well when it is used to evaluate in-
tegrals of periodic analytic functions in which the integration extends
over a period.

III. CONTRIBUTIONS TO F—EXAMPLE

Goodwin® has pointed out that the trapezoidal rule usually performs
well for integrals of the type

oo
7= f g(z) exp (—ba?)dz. (5)
—
T5
. Zo .
T4
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[2) T2 z,
)
\__- 2
25 \
! N 215
l | 1 | | | | | | |
5 4 3 2 3 0 1 2 3 1 5

Fig. 1—Steepest descent paths for exp [¢(z)] when a = 2.4 and b = 0.8 in both
(30) and example (6). The points zq, 215, 22, are saddle points; z,, z: are branch points.
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Computations? made with b = 1,
g(x) = (@* + a*)7, (6)

and e = 2.4 show that, as h decreases, E first decreases steadily and
then near h = 1 (where E/I = 10*) E starts to oscillate with decreas-
ing amplitude. This behavior can be explained in terms of a contribu-
tion to £ of approximately

27} Re [g(im/h) exp (—n2/h?)] (7)

from a saddle point near z = 77 /h (see Fig. 1, eq. (32), and Goodwin®)
and contributions from the branch points at z; = a exp (ir/4) and
22 = a exp (i3r/4). The expressions for the branch point contributions
are somewhat more complicated than (7), but all that need be noted
here is that they contain exp (:27z./h), k = 1, 2, as a dominant factor.
Adding the three contributions and neglecting multipliers such as
g(iw/h) in (7) shows that E is roughly

exp (—w*/h?) + (cos a) exp (—B) (8)

where 8 = 2ira/h and cos a oscillates with increasing frequency as h
decreases. The steady decrease of £ with 2, dominated by exp (—#2/h?),
changes to an oscillating decrease when 8 = w2/h%. Solving for h with
a = 2.4 gives h = 0.93, which agrees with the observed A = 1.0.

When g(x) in (5) is algebraie and g(z) has no singularities inside the
rectangle with corners at ==z, & |zo/, where 2z, = ir/(bh) and Re (b)
> 0, the error E tends to be dominated by the saddle point contribu-
tion. This contribution is approximately |exp (bz3)| in the sense that
exp (—=?%/h?) approximates the approximation (7). When the rectangle
contains singularities, their contributions dominate. For the example
(6), 20 = im/h and the rectangle becomes a square which expands as &
decreases. The behavior of E changes when the sides of the square
sweep across the branch points.

IV. INTEGRALS WITH BOTH LIMITS FINITE

Consider the integral
b
7 =f (w — @)*(b — w1 f(wdu, a8 >0, (9)
where f(u) is analytic and 0(1), f(a) and f(b) # 0, and a and b are

finite. The transformation

u = (bet + ae=?)/(e* + e7?),

du/dv = 2(b — a)/(e” + e~7)?, (10)
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carries the limits into » = =+ «. The associated equations

u—a=e(b—a)/le+e"),
b—u=eb—a)le+er),

and du/dv show that the dominant factors in the integrand when
v— +o and v — — o are exp (—28v) and exp (2av), respectively.
One might expect, and it is confirmed by computation, that in a good
transformation the final integral should converge at — « at nearly the
same rate as it does at + «. Therefore the further change of variable

v = c(Ble* — a~le7%)

dv/dx = c(Be* + a~le %) (11)

is made to equalize the rates of convergence at x = == . The transfor-
mation (11) makes the integrand behave roughly as exp [—2c exp [z ]
as ¥ — = = when the effect of f(u) is ignored.

The constant ¢ in (11) can be chosen somewhat arbitrarily. It is
helpful, but not necessary, to have

¢ < w(Ba)i/4. (12)

The inequality (12) for ¢ guarantees that the singularities in the com-
plex z-plane due to the vanishing of e® + e~ are at least v/2 distant
from the real x-axis. It says nothing about the singularities and saddle
points introduced by f(u).

Thus the integral to be evaluated by the trapezoidal rule is

du dv

I= [ (u — a)=(b — w1 f(w) G (13)

which can also be written as
e(‘! 8)

=20 - o [ o 10 e

Here z is the variable of integration and, in writing the program, u, v,
du/dv, and dv/dz are given by (10) and (11).
As an example of (9) and (13), consider the beta function

r= [ fsinuge [sin (% _ u)]a-ldu
0
o0 ﬂ_
[ [on (5 )]
wof Lo [on (5= ) [



INTEGRALS OF ANALYTIC FUNCTIONS 713

where the third line is to be evaluated by the trapezoidal rule. For
a = 0.95 and 8 = 0.05, the value of [ is known to be 20.748 732 ...
and the inequality (12) for the multiplier ¢ gives ¢ < 0.171.

Computations show that the values 0.171, 0.1, and 0.05 for ¢ all
give six-figure accuracy with A = 0.5 and about 20 terms in the trape-
zoidal sum (e.g., for ¢ = 0.1, A = 0.5, and 21 terms, the computed
value is 20.748 729). When ¢ = 1, about 70 terms (with 2 = 0.075) are
required to achieve the same accuracy.

Instead of computing the &« — 1 power of simply [sin u], it was
found better to compute the @« — 1 power of [(e* 4+ e-")?sin u], and
™
2
as much as possible of the 1/(e* 4+ e~ *)2 contained in du/dv with other
factors in the integrand in order to avoid underflow and overflow.

When « = 8 = 1, the transformations (10) and (11) reduce to the
ones used by Schwartz® except for the coefficient ¢ = 7/4 = 0.785. To
illustrate this case take (Kajfez!?)

similarly for sin ( - u)- In general, it is usually helpful to combine

[ = (—/40) [1 :aexp (u/4) sin [0.47 exp (u/4)Jdu

in which the integrand oscillates through about 6 cycles. Using (10)
and (11) with e = 10, b = 15, ¢ = 0.785 shows that the trapezoidal
rule with A = 0.09 and 60 terms gives / = —0.0195495 compared with
the true value —0.0195488 - - - . For relative errors less than about 0.01,
the trapezoidal rule requires less terms than the spline quadrature
methods considered in Ref. 10, but this is offset somewhat by the more
complicated terms introduced by (10) and (11).

V. INTEGRALS WITH LIMITS 0, % CONTAINING ©* 1(1 + u)—*F

The integral
I= jw w1 + w)~*F f(u)du, a, 8> 0, (14)
0

where f(0) # 0 and f(u) is analytic and 0(1), can be handled by the
transformations

u = e, v = c(fle* — a e ) (15)

where ¢ = 7(af)}/2. For @ = 3, 8 = 2 the inequality for ¢ becomes
¢ < 3.85,and fora = 0.2,3 = 0.1 it becomes ¢ = 0.222. Computations
were made for these values of @ and 8 with f(u) = 1. Values of » and

the number of terms N in the trapezoidal sum required for seven-
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figure accuracy were found to be as follows:

a B c h N
3.0 2.0 3.85 0.25 15
2.00 0.35 15
5.00 0.10 40
0.2 0.1 0.22 0.45 25
0.08 0.45 25
0.45 0.25 35

VI. INTEGRALS WITH LIMITS (), © CONTAINING u*~!exp (—u)

For the integrals
I = [m wuele f(u)du, a >0, (16)
0

where f(0) 5 0 and f(u) is analytic and 0(1), we can use
u = e, v=2—ale” (17)

Computations for the case f(u) = 1 and « = 1 gave the following
results:
h N = No. of terms Trap. values of 1

0.4 15 0.9999 9997
0.6 10 0.9999 8711
0.8 7 0.9998 2442

Repeating the computations with u = c¢exp [z — cexp (—2)] and
¢ = 0.5, 2.0, and 4.0 showed that the magnitude of the error depends
only slightly on c.

VII. INTEGRANDS WHICH CHANGE RAPIDLY NEAR A POINT

When the integrand contains a factor, say F(t) where t is the variable
of integration, which changes rapidly near a point it is sometimes help-
ful to change to a new variable of integration u where du/dl = F (1)
and the constant of integration is chosen at our convenience. The suc-
cess of the transformation depends upon the ease of inverting to get
t as an easily computed function of w.

As an example, consider

7= fl et + a?)~dt (18)
-1

where @ is small (Smith and Lyness!). Taking du/dt = F(t)
= ({* + a®)~% u = arcsinh ({/a), and ¢t = a sinh u carries (18) into an
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integral of the form (9) withb = —a = 4 anda = 8 = 1:

4 © du dp
= tdy = e
I L/ledta. f_me o dmd:r

P

Here A = arcsinh (1/a), ¢ = asinh (A tanh v), v = 2¢sinh z, and
¢ = w/4 = 0.785. Computations with ¢ = 0.3, h = 0.2, and 40 terms
in the trapezoidal sum show that I = 29.538 618 &+ 10~¢ when
a = 1075

If the rapidly changing factor has the more general form

F(t) = (&2 4 a»)~,

the transformation { = @ sinh u can still be used to carry the integral
into the form (9), but computation shows that the trapezoidal rule re-
quires more terms as § moves away from 3. For example, when the
exponent —% in (18) is replaced by —32, i.e., § = 3, computations with
a = 10=°% ¢ = 0.785, and & = 0.03 show that 100 terms give the value
5240.808 for I whereas the true value is 5240.806 - - -

VIII. THE FERMI-DIRAC INTEGRAL
The Fermi-Dirac integral (tabulated by Blakemore!2)

- TG )f t=-1dt/(1 + e9), a >0, (19)

has an integrand which changes rapidly near ¢ = a when a is large.
Section VII suggests taking du/dt = F(t) = 1/(1 + e*~¢). Choosing
the constant of integration to make v = 0 at { = 0 gives

u =l + e — (et + e ),

t = —(nle* + e v — g 9), (20)

I = L-/’il't""ldu
I‘(&) 0 !
where b = {n(l + e?). When u tends to 0, { — (1 + e %)u, and hence
the integral (20) is of the form (9) with 8 = 1.
The transformations (10) and (11) carry I into

— 1 * uﬁliudy -
= I’(a),[_ T o dz ™

= % te=Ye* + o le*)dx/(e* + e v)? (21)



716 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

where ¢ < 0.785a%, ¢t is defined in terms of u by (20), and
w = be*/(e* + e77), v = cler — a”le™?).

The integral (21), with ¢ = 0.5, was used to compute / for & = 3
and # with @ between 0 and 20. Difficulty in computing ¢ for small
values of u was avoided by using three terms in the expansion of
¢n(1 — z) when z = exp (u — a) — exp (—a) was less than 0.001. The
following tabulation shows the results for the typical values @ = % and
a = 10.

h N = No. of terms Trap. values of

0.2 34 3.5527 792
0.3 22 792
0.4 17 795
0.5 14 742

The above transformation has been used by W. K. Kent in a study
of the charge distribution in a charge coupled device and I am indebted
to him for helpful discussions regarding his experience with (21).

IX. INTEGRALS WITH LIMITS 0, o AND OSCILLATING INTEGRANDS

Kluyver’s Bessel function (random walk) integral for the probability
P that the resultant of the sum of m randomly phased unit vectors in
a plane be less than r in length is (Bennett!?, Greenwood and Durand!)

pP= ﬁ " Ty ) [ o (w) Jrdu. (22)

This integral is typical of a class of integrals that are difficult to evalu-
ate by any means. They are characterized by rather slow convergence
and an integrand which tends to oscillate at a regular rate as u —=.
In this section we consider the evaluation of such integrals by the
trapezoidal rule when the rate of convergence is not too slow.

Some general remarks can be made concerning integrals that behave
like (22). In order that

I= E’ f(w)du

may represent the typical integral of this section, f(u) must tend, as
u—o, to a form that can be written as a steadily decreasing factor
times the sum of a finite number of sinusoidal terms whose periods tend
to constant values (as u — ). Define ho to be the shortest con-
stant period (so that the most rapidly oscillating term varies as
cos [(2ru/ho) + B]). The interval ho is related to the sampling theorem
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for band-limited functions in that 1/h, plays the role of the “band-
width” of f(u) at u = . Quite often the required accuracy in 7 can
be obtained by using values of h which are close to k.

If the integrand is an even function of u, the trapezoidal rule can be
applied directly. If the integrand is not even, the integral can be evalu-
ated by setting

U = atn(l + e”“), du/dz = gr.fa/(l + exla) (23)

and then using the trapezoidal rule. Computations described below
show that the choice a = 1 works well for (22). More will be said later
about the choice of a. The transformation (23) takes advantage of the
fact that the trapezoidal error E is often small, or zero, for regularly
oscillating integrands. Although many terms may be needed in some
cases, the present method compares favorably with competing ones.

The choice of a in (23) depends upon the behavior of f(u) near u = 0.
Suppose that f(u) tends to Cw as u — 0. Here C is a constant and
v > —1. After the change of variable (23), the integrand is a function
of x which approaches 0 as exp [(» + 1)z/a] when xt — — <. When
(v + 1)k/a is too small, successive terms in the negative = portion of
the trapezoidal sum are nearly equal and an unduly large number of
terms must be taken to achieve a small truncation error on the left.
When (v + 1)h/a is too large, the successive terms differ by a large
amount and the trapezoidal error £ tends to be large. The problem is
to choose a value of @ which balances these two effects and at the same
time allows % to be large. The choice a = (v + 1)ho works well for all of
the cases that have been tried.

Some insight regarding a good choice of & for (22) can be obtained as
follows. Consider the integral, say K, obtained by replacing J,(ru) by
Jo(ru) in (22) and taking the limits of integration to be u = == «. With
the help of the asymptotic expression for J(z) and the procedure used
to deal with (4), it can be shown that when K is evaluated by the trape-
zoidal rule the error is zero if A < h, where hy = 27 /(r 4+ m). Further-
more, when P is transformed by (23) and then evaluated by the trape-
zoidal rule the error E is relatively small when % is only slightly less
than ho—as might be hoped from the similar behavior of the integrands
in P and K as u — . A saddle point analysis of R, in (3) leads to the
rough estimate

|E| =~ 2ri(2r?)~m+0 /2 exp [n(r + m — 2rh~1)] (24)

for the error in the trapezoidal sum for P when a = 1.
In the example (22) the asymptotic expression for the integrand con-
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tains the product cos [ru — (3w/4)]cos™ [u — (w/4)] which can be
written as the sum of m + 1 sinusoidal terms. The most rapidly oscil-
lating term is proportional to cos [(r + m)u — (m + 3)(w/4)] and
the quantity hy = 27/(r + m) now appears as the shortest period.

Now we turn to the details of the evaluation of the integral (22) for
P. Let r and m have the representative values r = 4 and m = 6. Then
ho = 2n/(r + m) = 0.628. Since Jo(z) — 1 and J1(2) —2/2 as z — 0,
the exponent » is 1. The suggested value @ = (v + 1)ho gives a = 2ho
= 1.26, and since the choice of a is not critical, we take @ = 1. Putting
a = 11in (23), substituting in (22), and using the trapezoidal rule gives
the values of P shown in column 3:

h No. of terms P Error: Col. 3 |E| from (24)
0.475 286 0.9375 5485
0.500 272 5475 —10. X 1078 35 X 107#
0.525 259 5437 — 4.8 X 1077 28 X 1077
0.550 247 5354 — 1.3 X 10°¢ 1.3 X 10°°©
0.575 236 5791 + 3.1 X 1078 6.9 X 10°°
0.600 226 0.9375 9798 + 4.3 X 107° 24 X 10-°
0.625 217 0.9376 9974 + 1.4 X 10* 0.94 X 10—*

The fourth column gives the error estimated from column 3. The
fifth column shows the approximation (24) for |E|. The trapezoidal
sum was truncated at x = 124. Beyond 124 the absolute value of the
integrand remains less than 2 X 10~® and its amplitude decreases as
z-7/2, Note that the error starts to be appreciable as i approaches the
critical value hy = 2n/(r + m) = 0.628.

X. THE INTEGRAL OF u* exp (—u* — au™') FroM 0 TO <«

The integral
Ii(a) = fw ut exp (—u? — auY)duy, Re (a) = 0, (25)
0

is of interest in some physical problems (I wish to thank J. N. Lyness
for calling my attention to this example). First let & be 0 and a be posi-
tive real. We seek a change of variable from u to z, with new limits
z = & w, which will make u? tend to exp (2z) as + —« and a/u tend
to exp (—2z) as x — — «. This leads to

u = ae*/(a + e *). (26)
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Substituting (26) in (25), taking the special case k = 0, @ = 1, and
applying the trapezoidal rule gives the values of /,(1) shown in column
3:

h No. of terms 1,(1) Obs. error | E| from (27)
0.1 38 0.1500 4597 2 X 108

0.2 19 0.1500 4597 2 X 10¢ 5 X 107°
0.3 12 0.1500 4835 240 X 10-° 7 X 107§
0.4 10 0.1501 2711 S8.12 X 10~ 20 X 103

The last column lists a rough approximation obtained by saddle point
analysis:

B~ e |- 5+ ()] (27)

The observed error shown in column 4 is the trapezoidal sum (column
3) minus the value 0.1500 4595 of 7,(1) computed from

1 febi= k—s+1\
Ii(a) = il r(—s)T (T ) a*ds

_ k (—G,)" k —n + 1) ® o (_1)u+fca2n+k

. [ﬁn(a) - 'I’/(Qn + k + 2) - %'lb(n + l)] 1\ nt+hko2ntk+1
L nl@n + & + D)1 (=1)r*a

where ¢ < min (0, k + 1), ¢(2) = (dl'(x)/d2)/T'(2), and the series
holds for k = — 1,0, 1, 2, 3, - -+ except that the first sum is omitted
whenk = — 1.

When a is complex, say a = pe'® where |a| = #/2, we tilt the path
of integration in (25) by setting u = ve® where |8| < v/4 and |« — 8]
< w/2. If we choose 6 to be «/3, the new integral

Ii(peie) = exp [i(k + l)oz/3]f“c v* exp[ — (v2 + pr—V)ei2e/3]dy (28)

can be evaluated by using the substitution (26) with « and a replaced
by v and p, and then applying the trapezoidal rule. For the physically
important case of & = 3 and imaginary a [[3(¢p) and I(a), k = 1, 2, 3,
are tabulated in NBS Handbook,' Section 27.57, the error can be kept
below 1 X 106 for @ = 70.001 by using 2 = 0.04 and 95 terms in the
trapezoidal sum. As a increases to 710.0, & can increase to 0.08 and the
required number of terms decrease to 40.
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APPENDIX

Ezamples of Paths of Steepest Descent for B
For the example (6), the integral (3) for K, becomes

R. = [ exp [o(a) )iz, (29)

o(z) = —2? + 2rh~'z — ¥fn(z* + af). (30)

The saddle point equation de(z)/dz = ¢'(z) = 0 is of the 5th degree
in z. Solving by Newton’s rule or otherwise gives 5 saddle points, 3 of
which are in the half-plane Im (z) > 0. They are shown as small circles
in Fig. 1 for the case a = 2.4 and k = 0.8. One is on the imaginary
z-axis at zo = 74.14, and the other two (z1,, 22,) are at £1.648 + 11.629
near the branch points (21, 2z2) at a(£1 + ©)/2% = 1.697(£1 + 7).
The path of steepest descent through the saddle point zo (a path on
which Im [¢(z) — ¢(20)] = 0) was computed by: (¢) evaluating the
phase of the coefficient [ — 2/ ¢"(20) ]! in the saddle point contribution

fexp[qp(z)]dz ~ [—27/¢"(20) T exp [¢(20)] (31)

to determine the direction of the path through zo; (i7) selecting two
starting points (one for each branch of the path) on opposite sides of,
but close to, zo; and (%) applying

2= 21+ dpyy dy = —|e'(2)] A/ ¢'(20)

to compute the path step by step, A being the step length. The other
paths of steepest descent shown in Fig. 1 were computed in the same
way. Paths of steepest descent through a saddle point may run down
into a “lower” saddle point, i.e., one having a more negative Re ¢(2),
or may end at a point (possibly z = =) where Re ¢(z) = — .

Figure 1 shows that the path of integration for £, can be deformed
in a natural way into three portions: the loop around z; (which encloses
the branch cut from z.), the path from — e« + ¢wh~! through z, to
+ « + irh~, and lastly the loop around z;. The path directions are
denoted by arrows.

As h increases (from 0.8), zo in Fig. 1 moves downward towards the
origin. Eventually h reaches a critical value at which the path of
steepest descent from z, runs directly into z;, and zz,. For still larger
values of h, the loops around z; and z: lie above the path through z,,
and the deformed path of integration for R, consists only of the path
running from — % + iwh~! to + % + fwh~! through z). The sudden
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change in the path as h passes through the critical value is related to
Stokes phenomena in the theory of asymptotic expansions.

The approximation (7) for the contribution of zy to E ~ 2 Re (R,)
can be obtained by approximating the saddle point equation ¢’(z) = 0
by ¢a(z) = 0 where

ea(z) = —22 4+ 27h~ 12z (32)

is the most important part of the expression (30) for ¢(z) near z = z,.
The equation ¢.(z) = 0 gives the approximation z, = ir/h for z,.
Substituting ¢4(z4) = —2 and ¢(z4) from (30) in place of ¢'’(z0) and
#(20), respectively, in the saddle point contribution (31) to R, leads
to (7).

Figure 2 shows the paths of steepest descent and the path of integra-
tion used to estimate E for the integral (25), 7,(1), when & = 0.2. For
k = 0 and a = 1, the ¢(2) in the integral (29) for R, is
e’ (e* + 2)

(ez + 1)2
where u is given by (26) with z in place of x. The deformed path of in-
tegration for R, shown in Fig. 2 contains the arbitrary bridging seg-

ment AR and shows that the saddle points z, and z; are the main con-
tributors to R,.

o(2) = —u? — u™' + 2xzh1 + fn [ (33)

z—PLANE

1 | J
2 3 4 5

Fig. 2—Steepest descent paths for exp [¢(2)] when & = 0.2 in (33). The arrows
mark a deformed path of integration for R, corresponding to 7.(1) in (25). The points
2y, 2, * -, 25 are saddle points.
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Finally, if one wishes to integrate along a path of steepest descent,
a combination of the above path computation and the trapezoidal
rule with spacing A suggests itself. However, greater accuracy can be
achieved by cither (i) first computing the entire path, approximating
it by several straight-line segments (sometimes one will do), and using
Romberg integration on each segment, or (:7) taking the step size A
relatively large in the path computation, and then using Romberg
integration over each linear segment of length A (by dividing d; into
lengths of, say, A/8).
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