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Recent advances in solid-state optical-frequency sources and detectors
and low-loss optical fibers make feasible the consideration of optical com-
munication systems for low- and moderate-bandwidth channels (a few
kHz to, say, 100 M Hz). This paper explores the use of optical-frequency
carrier systems for transmission over such channels. Analog intensity
modulation, pulse position modulation, delta modulation, and pulse code
modulation are considered. This paper is intended to be tutorial in nature.

I. INTRODUCTION

Since the advent of the laser, communication engineers have been
intrigued by the promise of fantastic bandwidth capability in optical-
frequency communication systems. As a result, attention has been
focused on high-capacity, high-bandwidth considerations. Recent ad-
vances in component fabrication—for example, light-emitting diodes
(LED’s), junction lasers, avalanche photodiode detectors, and low-loss
optical fibers—have made it feasible to consider the use of optical-
frequency carrier systems for moderate- and even low-bandwidth
channels.

Fundamental and practical differences between optical-frequency
channels and radio-frequency channels* necessitate a reevaluation of
concepts acquired from experience with the latter. To this end, in the
following sections we consider four potentially attractive forms of
modulation of optical-frequency signals and derive results for the re-
quired average received signal power in terms of system requirements
and parameters. In Section I we consider a system using analog inten-

* We use the term “optical frequency” to mean frequencies roughly in the range 10
to 1000 THz and the term “radio frequency” to indicate frequencies below roughly
3 THz.
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sity modulation (IM) of the light source. In some respects such a sys-
tem is analogous to a baseband system. In Section III we consider pulse
position modulation which, because of the nature of optical-frequency
sources and detectors, is particularly attractive. In Section IV we con-
sider binary PCM and also delta modulation which we treat as a special
case of a binary PCM channel. It is not within the scope of this paper
to identify and analyze optimal receivers for these types of modulation.
The approach adopted here is rather to analyze the performance of
receivers which can be realized and which hold hope of providing an
economically attractive approach to transmission of low- and moderate-
bandwidth channels.

The four types of systems to be discussed in the following sections
are considered in terms of their applicability to the problem of trans-
mitting a comparatively narrow information bandwidth & over a
channel with noise (signal) bandwidth ®. The features which these sys-
tems have in common will be discussed in this section.

Two types of signal sources are considered in this discussion-lasers
and light-emitting diodes. For the purposes of this discussion, the differ-
ence in these two sources is that the laser possesses a substantial degree
of temporal and spatial coherence, while the LED does not. The effect
of this incoherence is to give rise to an additional type of noise (later
referred to as beat noise) in an LED system. We shall see in the follow-
ing calculations, however, that this noise is usually negligible in systems
of interest. This is because the beat noise is proportional to the ratio
®/(W.J) where W is the spectral width of the LED and J is the number
of spatial modes of the signal viewed by the receiver. For typical GaAs
LED’s, W = 20 X 102 Hz and J is an integer which depends on the
details of the channel between transmitter and receiver and which is
usually very large.

The receiver in all cases is assumed to begin with an avalanche photo-
diode with quantum efficiency » and avalanche current gain (. This
photodiode is followed by a baseband amplifier which presents a load
resistance R to the photodiode and which has a noise figure F.. Only
direct detection receivers are considered in this treatment, since re-
cently developed avalanche photodetectors make heterodyne and
homodyne methods look quite unattractive in view of the difficulties
encountered in phase-front matching in such systems.*

II. ANALOG INTENSITY MODULATION

The simplest form of modulation is analog intensity modulation.
Both light-emitting diodes and double-heterostructure junction lasers

* See appendix for elaboration on this point.



OPTICAL-FREQUENCY CARRIERS 733

have output power versus bias current characteristics which are suffi-
ciently linear over a reasonable range that they can be modulated di-
rectly by modulating their bias currents. Modulation depths of up to
about 85 percent can be achieved with suitable light-emitting diodes
with very small harmonic distortion. It should be noted that the optical
power, not amplitude, is proportional to the drive signal but, since the
photodetector is a square-law device, its output current is proportional
to the received power. Thus, in many respects, an intensity-modulated
optical system can be regarded as equivalent to a baseband system with
a transducer (the light-emitting diode or laser) which converts electrons
into photons and a subsequent transducer (the photodetector) which
converts photons back into electrons.

For a sinusoidally modulated carrier with modulation index m, the
mean-square signal current in the photodetector output is given by

. 1 2
(@) = Q[W%Gmm} .

When a coherent source is used, the mean-square noise current in the
photodetector output is the resultant of the five noise currents de-
seribed below.

The most important (in most applications) of the noise currents is
the quantum noise with its mean-square given by

(i3) = 2 ]% npo GFyb = NoG2F,

where in this and the following equations e is the electronic charge, hv
is the energy per photon, 5 is the quantum efficiency of the photodiode,
P. is the average received optical power, b is the bandwidth of the in-
formation source (which in the case of analog intensity modulation is
equal to the bandwidth of the channel), @ is the avalanche gain of the
photodetector, and F, is a noise figure associated with the random na-
ture of the avalanche process. F, is, in general, a function of G which
for silicon is well approximated!? by F, = VG. Ng is the value of the
quantum noise in the absence of avalanche gain.

The next most important noise source is the thermal-noise current
with mean-square value

Gz = %l yp — Np
an

where kT is Boltzmann’s constant times the absolute temperature, Req
is an equivalent load resistance, and F, is the noise figure of the (base-
band) amplifier.



734 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

The dark-current noise can be rendered negligible by suitable choice
of photodetector. At the present time, this generally dictates that the
photodetector be made of silicon. There are actually two kinds of dark-
current noise. The first, which will be referred to simply as dark current
in the following, consists of electrons (and/or holes) which are ther-
mally liberated in the pn junction and which experience the avalanche
gain G. The mean-square value of this current is given by:

(i3) = 2el,G*Fab = G*FyNp

when 7, is the primary detector dark current. The other “dark cur-
rent,” which will henceforth be referred to as leakage current, bypasses
the drift region and experiences no avalanche gain. The mean-square
value of this current is therefore given by:

(’LE) = 261Lb = NL,

where I is the leakage current.

Finally, if there is incoherent background radiation with average
power pg incident on the detector, there will be an additional noise
current given by:

(&) = 2e % npe G*Fab = G2F, N.

(This assumes that the background radiation is at about the same
wavelength as the signal. This is justified since other wavelengths could
be effectively removed by filters.)

Since (i3) and (i2) have the same form, we can simply write

’ e
Ia—fa-i-m’npo

and lump both of these terms into an effective dark current. This is
done in the following calculations.

When an incoherent source such as a light-emitting diode is used,
there is an additional noise term due to the beats between spectral
components within the spectral width of the source. This phenomenon
gives rise to a noise current with variance

. 2 b 15
(zfg)=2(h£anpa) .TW(I _EW) =GzNB

where W is the spectral width of the source and J is the number of
spatial modes of the source which are viewed by the receiver.? (In most
cases the ratio b/JW renders this term negligible.) The factor
(1 — b/(2W)) is always very nearly unity in cases of interest.
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In each case, (i) represents the mean-square value of the corre-
sponding noise current after avalanche gain and Ny represents the
value it would have in the absence of avalanche gain.

Thus, the signal-to-noise ratio is given by

1 e 2
B é (1] ?l; G?R'_I)u) .
(#g) + (i) + G3) + (@2 + (@3)
It is instructive to consider the behavior of (1) for some particular

cases. For our examples we use the following numerical values through-
out this paper:

SNR (1)

A = 0.85 yum R = 103 ohms
7= 0.5 b =4 kHz
m = 0.85.

Figure 1 shows the signal-to-noise ratio (expressed in dB) computed
from (1) for I, = 107%A, [, = 1078 A) WJ = 10" Hz, and G = 10. It
must be emphasized that these values are chosen for illustrative pur-
poses only and are not meant to be typical of a real receiver. This choice
of parameters allows us to consider the form of the contribution of
each noise source to the resulting SNR. The curves labeled Q, T, D, L,
and B are the ratio of the mean signal power to the mean quantum-
noise power, mean thermal-noise power, mean dark-current-noise
power, mean leakage-current-noise power, and mean beat-noise power,
respectively. We observe that for this comparatively low value of @
the thermal noise is dominant over a large range of incident light power
po. Then for —30 dBm < p, < —15 dBm the quantum noise domi-
nates the picture. Finally, for larger p,, the beat noise clamps a ceiling
on the SNR. The dark current and leakage current are unimportant.

Figure 2 shows the same curves for the same illustrative parameters
as Fig. 1 except that @ is now taken to be 100. Two differences between
Fig. 1 and Fig. 2 are immediately apparent. First, the increased gain
has caused the quantum-limited region to extend to lower values of p,
and, second, the dark-current noise is more important relative to the
thermal noise.

In Figs. 1 and 2, F, has been taken to be given by G!. Thus, in Fig.
2, for example, F; = 10 and one must be cautious about referring to
the behavior as “quantum limited’’ in the “quantum-limited region.”
It is “quantum limited” only in the sense that the quantum noise term
dominates the other noise terms, but the actual results are 10 dB poorer
than could be achieved if the avalanche gain process were noise free.
Figure 3 shows the same curves but for the values I, = 10719 A,
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I, = 10~* A, which are typical of good, but available, silicon photo-
diodes;* WJ = 10 Hz which is typical of GaAs luminescent diodes
and multimode optical fibers; and G = 17. We see that in this case beat

LSSy

100

DECIBELS

0 1 | 1
-70 —60 —40 —20 0
P, IN dBm

Fig. 1—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: A = 0.85 um, 7 = 0.5,
M = 0.85, B = 1000 ohms, s = 10 A, I, = 107% A, WJ = 10" Hz, b = 4000
Hz, G = 10, for an IM channel. B = ratio of mean signal power to beat-noise power,
L = ratio of mean signal power to leakage-current-noise power, D = ratio of mean
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, @ = ratio of mean signal power to quantum-noise power.



OPTICAL-FREQUENCY CARRIERS 737
noise, leakage noise, and dark-current noise are unimportant and the

quantum-excess noise controls above p, = —30 dBm with thermal
noise controlling below.

.
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Fig. 2—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: A = 0.85 ym, 7 = 0.5,
M = 0.85, R = 1000 ohms, f; = 107 A, [, = 1078 A, WJ = 10" Hz, b = 4000
Hz, G = 100, for an IM channel. B = ratio of mean signal power to beat-noise power,
, = ratio of mean signal power to leakage-current-noise power, 1) = ratio of mean
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, = ratio of mean signal power to quantum-noise power.
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It is now well known!:2:5 that the excess noise figure F; of an ava-
lanche photodiode increases (in most cases) with increasing gain. In
particular, for silicon photodiodes, Fj is well approximated by Gi.
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Fig. 3—Signal-to-noise ratio, SNR, and ratio of mean signal power to each compo-
nent of the mean noise power for the typical parameters: A = 0.85 ym, 7 = 0.5, M = 0.85,
R = 1000 ohms, [4 = 107 A, [r = 10~ A, WJ = 10" Hz, b = 4000 Hz, G = 17,
for an IM channel. B = ratio of mean signal power to beat-noise power, L = ratio
of mean signal power to leakage-current-noise power, D = ratio of mean signal power
to dark-current-noise power, T = ratio of mean signal power to thermal-noise power,
Q = ratio of mean signal power to quantum-noise power.
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When a form F, = G is assumed, SNR as a function of G has a maxi-
mum given by

(@5)G—*
SNRux = 2 r_{(2+r)|82!(2:-r) r
(—') (1 + ) + Ns
7 2
for
Do\ 1/(241)
G = Gupt = (T—’;)
where

v = (if) + (if) = Nr + Ny,
the variance of the gain-independent noise, and
B = G-[GEE) + (i5)] = Nq + N,

the variance of the gain-dependent noise before the gain process. For
r = % (silicon) this reduces to

 [4(Np + Ny
o= | ‘2’
2 [ e mp ]”
- N3 o
SNRypax = 2L (3)

(4) 1158415 N;;.

It is interesting to note in passing that the condition for G to be
optimum is that

pas = 2y,
But the left-hand side of this equation is the total mean-square current
due to gain-dependent noise (excluding beat noise), while the right-
hand side is 2/r times the total mean-square current due to gain-
independent noise. For r = 0.5, for example, the gain is optimum
when the gain-dependent noise exceeds the gain-independent noise
by 6 dB.

This result is illustrated in Fig. 4 for the same parameters used in
Figs. 1 and 2 except that in Fig. 4 ¢ = Gy, which is a function of p,
according to (2). First we observe that Gy varies from 132 to 1 over
the range of p, plotted in these figures. These are values which are
readily achievable with existing photodiodes. We see that the thermal
noise (leakage noise remains negligible) is just a constant 6 dB below
the sum of the quantum- and dark-current noises as the condition for
optimum gain dictates.

Figure 5 illustrates the optimum gain behavior for the typical device
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parameters used in Fig. 3. Note that here the optimum gain becomes
rather large below about p, = —60 dB and might be difficult or im-
possible to realize in practice.
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Fig. 4.—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: » = 0.85 um, 7 = 0.5,
M = 0.85, B = 1000 ohms, [, = 10 A, I, = 107% A, W.J = 10% Hz, b = 4000
Hz, G = G,y for an IM channel. B = ratio of mean signal power to beat-noise power,
I = ratio of mean signal power to leakage-current-noise power, [) = ratio of mean
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, Q = ratio of mean signal power to quantum-noise power.
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The value of R = 10* ohms is used consistently in the numerical
examples throughout this paper. The detector ¢ is usually presumed to
dictate the maximum value of load resistance R through the relationship

1

where ® is the bandwidth of the signal; but in practice it is often bene-
ficial to use a much larger value of R than this and equalize the result-
ant signal distortion later on in the receiver. It is valid to object to the
use of so low a resistance for a 4-kHz channel [the value is more ap-
propriate to the other types of systems (without equalization) to be
considered in the following sections]. However, (3) shows that at opti-
mum avalanche gain when, as is usually the case, the leakage current is
negligible, SNR « R!/5, so very little is gained by going to larger load
resistors except in the region where G,y is so large that it is difficult to
achieve. Here the fact that G,,, = -5 may be important.

It is useful to present the results of (3) graphically in a form suitable
for system design. This can be done in a very general and simple man-
ner, when the leakage current is negligible, by defining the quantities

¥ = 10 log [ SNg;"“b l
v = 10 log [ ,}z’"}

where, in the argument of the first logarithm, bis taken to be dimension-
less, i.e., it is interpreted as the ratio of bandwidth in Hz to 1 Hz. ¥ vs
z is plotted in Fig. 6 for B/F, = 10 ohms. Figure 6 can be used as a
computational aid as follows. Suppose one needs to design a system
with an SNR of 70 dB, a bandwidth of 4 kHz. Suppose further that
a modulation index of 0.85 is possible with available devices. Then the
value of ¥ which characterizes such a system is 107.4 which, Fig. 6
tells us, can be achieved if * = 121. Now x = 121 means that »p./hv
= 1.26 X 10'%; for = 0.5 and A\ = 0.85 this gives p, = 5.88 X 1077
W which corresponds to —32.5 dBm. If a value of R/F, which differs
from 1000 ohms is desired, ¥ can be modified according to
AY = 2log [(R/F,)/1000].

Figure 7 can be used to determine the value of ¢ required to achieve
the result computed from Fig. 6. If a value of R/F, which differs from
1000 ohms was used, recall that G,p, < R=2/5,
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1. PULSE POSITION MODULATION
Considerable improvement in noise immunity can be achieved by
properly exploiting the wide available bandwidth of optical systems.
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Fig. 5—Signal-to-noise ratio, SNR, and ratio of mean signal power to each compo-
nent of the mean noise power for the typical parameters: A = 0.85 um, n = 0.5,
M = 0.85, B = 1000 ohms, [, = 1070 A, [z, = 107 A, WJ = 10 Hz, b = 4000 Hz,
G = Gopy, for an IM channel. B = ratio of mean signal power to beat-noise power,
L — ratio of mean signal power to leakage-current-noise power, D = ratio of mean
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, @ = ratio of mean signal power to quantum-noise power.
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Pulse position modulation (PPM) offers an attractive method of ac-
complishing this end. Figure 8 shows a block diagram of the system to
be analyzed in this section.

The pulse-position modulation signal is encoded by sampling the
message signal periodically at times n7' (where n is an integer and T is
the sampling interval or time slot duration). The value v, of the nth
sample is transmitted during the nth time slot by sending a short pulse
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of optical energy at a time which is shifted from the center of the nth
time slot by an amount proportional to v,.

At the receiver, the values of v, are recovered by measuring the time
interval between the center of the time slot and the time at which the
amplified output current from the photodetector crosses a threshold.
This system is described in some detail in Ref. 6.

Consider a PPM signal consisting of a sequence of light pulses whose

103
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Fig. 7—Optimum gain vs z = 10 log {n’i"} for R/Fr = 1000 ohms.
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INFORMATION PPM
SOURCE —— MODULATOR }—o
BANDWIDTH=b BANDWIDTH = 8

LIGHT
SOURCE

AVALANCHE PPM
PHOTODETECTOR =& OUTPUT
GAIN=G DEMODULATOR

Fig. 8—Block diagram of a PPM channel.

power P(t) is of the form
P(t)=é(l+cos(1r~;;))Pm Tr<i<T (4)

where P, is the peak power achieved by the pulse and 27 is the total
pulse duration. The average power P, in this signal is related to P,, by
a 1

where x = T'/27. The detected current pulse in the receiver (neglecting

noise) is given by
. 1 t .
i(t) = Q(l -+ cos (rr })) im

where i, = n(e/hw)Gpn = n(e/lw)G(T/T)p, is the peak current,
Pm = APn, po = AP,, A = attenuation between transmitter and re-
ceiver.

Noise affects the SNR of a PPM signal in two ways. First, it can per-
turb the time of the threshold-crossing of the received signal and there-
by effectively shift the position of the pulse. This is the predominant
effect when the bandwidth expansion is small. Second, the noise can
cause the received current to exceed the threshold in the absence of the
signal pulse, thereby triggering a ‘/false alarm’’ in the circuit.

First, we consider the perturbation of the time of threshold-crossing
due to the noise. Assume that the threshold current level is one-half of
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- —SIGNAL

FALSE ALARM —_
~

o . '_—"l T

Fig. 9—Illustration of a ‘false alarm” or threshold violation.

the peak current level,* i.e., 3in. The perturbation = in the position of
the pulse due to a noise current , is'

1
)
dt =72
_ 2 g (6)
T Tm
The expectation value of 72 is then

(r2y = L G) g

w2 15,

2 e 2
(v 659:)

where (i2) is the expected value of the square of the noise current.

Now consider the contribution to the noise due to “false alarms” gen-
erated when the noise current exceeds the threshold value 7m. Consider
a time slot (0, T') as illustrated in Fig. 9. Let ¢ & (0, T) be the time at
which the signal pulse crosses the threshold. Assume that a false alarm
oceurs in this time slot. It must oceur (with uniform probability den-
sity) on the interval (0, t), since the receiver, having sensed a pulse at
{, is disabled on the interval (¢, T). The mean-square value of the error
in ¢ is therefore

(8t?) = f; p(5t)(58)%d(8t) = ‘g

* In practice, a slightly different threshold may be optimum due to the details of the

pulse shape.
t The remainder of this paragraph follows the derivation on pages 256-257 of Ref. 6.
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Since we have no statistical information on ¢, we make an approxi-
mation which is clearly very conservative: We assume that ¢ always has
its largest possible value, T — 27. This gives

(T — 27

oy = = =

|
EETN
3
—
=
|
[
~—
[

(8)

Define II as the probability of a fase alarm occurring during a time
interval T — 27" The mean-square value of the error in ¢ due to false
alarms is then IT {5t2).

Let +8 be the limits of the allowable variation of the pulse position.
The baseband signal-to-noise ratio at full load,* SNR, is determined as
follows. The output signal power due to a sinusoidal input signal which
swings the pulse position by an amount =46 about its mean is propor-
tional to $82% the output noise power due to perturbation of the thresh-
old crossings of the signal is proportional to (%), and the output noise
power due to false alarms is proportional to II{6¢?). Thus we can write

1p2
-2 .
(r%) + II{8t%)
Since T is the duration of time slot, 8 is constrained by the requirement

204+ 1) = T.

SNR = (9)

Choosing equality in the above expression gives the best possible SNR;;
substitution of this along with (7) and (8) into (9) gives

2 2
- 1) (n%xpa) @

SNR = 472 e 2
3 («k — DI (qul\'po) G*

(10)

@ +2

The next steps are to evaluate (i7) and TI. We begin by evaluating
(77). The noise currents which make up (i2) for the PPM systems are the
same as those which made up (i7) for the analog system except that the
noise bandwidth ® is not equal to the signal bandwidth b; and the
signal-power-dependent noises are evaluated not at p, but rather at
Pn/2 since this is the expected value of the signal when the threshold
crossing is to occur.

In the remainder of this section, the reciprocal pulse width, 1/7,
and the noise bandwidth, ®, are assumed to be equal. From (5) one
sees that the threshold level 3p.. is related to the average power by

iPm = KkPo.

* SNR is the ratio of mean signal power when the signal is a sinusoid of maximum
allowable amplitude to the mean noise power.
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Therefore, the mean-square values of the noise currents given in Sec-
tion II are appropriate for PPM signals with the substitution of xp,
for p, and ® for b. Thus,

G2 = (3) + @) + (@) + L) + (5 (11)

where

(i3) = 2 — mp, G*F, ®, etc.
hy

Now we turn to the problem of evaluating II, the probability of a
threshold violation on the interval (0, T — 27). We assume for the
purposes of this calculation that the noise current,* i, during the
interval when no signal pulse is present, can be treated as a Gaussian
random process strictly bandlimited to the interval (0, ®). S. O. Rice’
computes the probability of such a signal passing a particular value /,,
with positive slope, on the interval At to be

% exp — (13/2(i2)) BAL.
Thus the probability of the noise alone crossing the threshold (37.)
during the time T" — 27 is

= exp [(3i)/2() (T — 27)
= 2= 1) exp (—i2/B(). (12)

Now the noise current i,, which is important for threshold violation, is
not the same as the noise current 7, characterized by (11) because there
is no signal during the interval between pulses (when threshold viola-
tions can occur) and two of the terms which contribute to 7., namely,
the quantum-noise current ig and the beat-noise current 75, are corre-
spondingly absent. Therefore

(i2) = () + (1) + (@)
It will turn out that in many cases of interest (i2) << (z7). This result,
which has no classical radio-frequency analog, allows considerably more
bandwidth-for-signal-power trade in optical systems than in radio-

frequency systems.
It is convenient to write (12) as

m= 2 (= pemn (13)

* Note the distinction between i, and 7. of the preceding paragraphs.
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where
Ty . _m
XNR = i (14)
We can now substitute (13) into (10) to obtain
2 2
; (k — 1)° (n h% Kpo) G*
SNR = : (15)

2y 4 8T Vs xNRp
(3u> + V3 (“ I) €

Equation (15) is plotted in Fig. 10, for the same parameters used in
Fig. 2, with x = 250. A certain similarity in the relative positions of the
corresponding curves is evident in the two figures, but two differences
are also immediately apparent. First, the curves in Fig. 10 are trans-
lated (horizontally) to smaller values of p, and (vertically) to larger
values of SNR; second, a threshold is introduced (by the threshold
violation term) below which the SNR degrades extremely rapidly. In
faet, this threshold term goes from negligible to dominant over about
a 1-dB change in p,.

As in the case of analog IM, there is an optimum value of G in PPM
systems. It can be found by differentiating (15) with respect to & and
solving for the value of @, which renders this derivative equal to zero.
Unfortunately, the resulting expression for @,,, is quite complicated.
The fact that the threshold effect sets in so rapidly, however, can be
exploited to simplify the determination of Gope. Over the range on which
the threshold effect is negligible we neglect it, and, as before, obtain
Gope as given by (2) [but with the noise terms redefined as described in
connection with (11)7]; over the range on which the threshold effect is
dominant, one readily obtains

4(Ny + Nyg) %
ant. = T .

Figure 11 illustrates (15) for optimum gain for the same set of param-
eters used in Fig. 4. Figure 12 presents these results for a typical set of
parameters.

It i1s interesting to compare (15) for SNR with the result obtained in
Section II for the signal-to-noise ratio in an intensity modulated sys-
tem with modulation index m. In order to do this, we first observe
that, in order to properly sample a signal of bandwidth b, the sampling
rate must be (at least) 20. This gives the relationships

1 T ®

T:--- h:ﬁzﬁ

% (16)
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If we substitute 4bx for ® in the noise terms in (15), we find that,
above threshold, the expression for SNR in a PPM system is formally
identical to that in an analog IM system (1) except that we make the

" I /A /

SNR

10—

o

o

I
THRESHOLD VIOLATION

DECIBELS

SNR
70—

50—

30 | 1
—-80 —B0 —60 —-40 -20
Py IN dBm

Fig. 10—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: A = 0.85 um, n = 0.5,
M = 0.85, R = 1000 ohms, I = 107 A, [, = 107% A, WJ = 10% Hz, b = 4000
Hz, @ = 100, for a PPM channel. B = ratio of mean signal power to beat-noise power,

, = ratio of mean signal power to leakage-current-noise power, D = ratio of mean
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, Q = ratio of mean signal power to quantum-noise power, X = ratio of
mean signal power to noise power due to threshold violations.
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replacements:
Po = kP, m — 5 N — L
140
L D
B
120

THRESHOLD VIOLATION

DECIBELS

80

60 —20
Q
08
10 LOG G 110 9
e
40 | 1 0
-90 -80 —60 -40 -20

Pg IN dBm

Fig. 11.—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise powcl for the illustrative parameters: X = 0.85 um, n = 0.5,
M =085 R = 1000 ohms, f4 = 10 A, I, =108 A, WJ = 10" Hz, b = 4000
Hz, G = G‘,,,,t, for & PPM channel. B = ratio of mean 51gnal power to beat-noise
power, L = ratio of mean signal power to leakage-current-noise power, D = ratio of
mean signal power to dark-current-noise power, T = ratio of mean signal power to
thermal-noise power, Q = ratio of mean signal power to quantum-noise power,
X = ratio of mean signal power to noise power due to threshold violations.
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From this we see that the PPM system yields considerable improve-

ment over the IM system. For PPM, the average signal power is effec-

tively increased by a factor x and the modulation index (which is less

140
120}
=
[=]
L100] S
<
-
e
>
a
w 3
o o
o I
w %]
a «
==
-
8o~
60 —20
(&)
3
10 LOG G 1°2
40 l | | | 0
-90 -80 -60 —40 -20
P IN dBm

Fig. 12—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the typical paramete

M = 0.85, B = 1000 ohms, J4 = 1070 A, [, = 107 A, WJ = 10" Hz, b = 4000
Hz, G = Gop, for a PPM channel. B = ratio of mean signal power to beat-noise
power, L = ratio of mean signal power to leakage-current-noise power, D = ratio of
mean signal power to dark-current-noise power, T
thermal-noise power, @ = ratio of mean signal power to
X = ratio of mean signal power to noise power due to threshold violations.

rs: A = 0.85 ym, n = 0.5,

= ratio of mean signal power to
uantum-noise power,
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than 1 for an IM system) is replaced by (x/2) (x — 1)/4/k which can be
substantially larger than 1.

In practical applications, bandwidth expansion factors of over a
thousand are sometimes possible before threshold violations become
important.,

3.1 Power Available

It is tempting to hypothesize that the average light power obtain-
able from a given diode is proportional to the average thermal power
which can be dissipated in the device without causing catastrophic
failure. The thermal power dissipated by the device, P; [for the signal
given by (4)], is

2

5 T t
P; = %];,?fj_(l + COS?I'?) dt

3 . -
- 87 (R]m (]- I")
where Gt is the effective resistance of the deviee. This gives
2P;
P, = 35—
“\/ 3k® (18)

where u is a constant of proportionality such that P, = u/,.. Thus for
P; and @ fixed, P, (and hence p,) varies as «—%.

Unfortunately, the behavior of real LED’s and injection lasers is not
this simple. First, the heat capacity of some LED’s is so small that if
a step function change occurs in the diode current, the diode tempera-
ture reaches its new steady-state value very quickly. For example,
some diodes have such small heat capacity that burnout occurred
whenever pulse duration exceeded a few microseconds (independent
of duty cycle) if the peak pulse current exceeds the tolerable de value.®
Second, even when the pulse is short enough to avoid this problem, the
concept of constant power dissipation is not exaectly correct. For ex-
ample, the peak current may be limited by saturation effects.

We observe experimentally for diodes of the type described in Ref.
8 that, for a pulse repetition rate of 8§ kIz, the maximum peak pulse
power achievable with pulses of 0.1 to 0.25 us duration is about 5 dB
less than that predicted by the constant power dissipation model.
Nevertheless, the model is useful as a qualitative guide to diode be-
havior in pulsed operation.

IV. DIGITAL BINARY PULSE CODE MODULATION

A second method of trading bandwidth for noise immunity is the use
of pulse code modulation (PCM). This also has the advantage of being
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INFORMATION PCM OR AM LUMINESCENT
SOURCE p— ENCODER p— DIODE OR
BANDWIDTH = b BIT RATE=B INJECTION LASER

AVALANCHE PCM OR AM
PHOTODETECTOR AMP REGENERATOR OR
GAIN=G D—A CONVERTER

Fig. 13—Block diagram of a single-channel PCM optical communication system.

readily compatible with digital data transmission. Analysis of a digital
PCM channel is somewhat different from that of an analog channel in
that the parameter used to characterize a PCM channel is not SNR
but rather the error probability P..

Memoryless binary optical digital communication systems can be
divided into two broad classes-single-channel systems in which the
information is coded such that a pulse of energy represents a “1’”” and
no pulse represents a “0”’; and twin-channel systems in which energy
is transmitted for both information states, but the signal is modulated
in such a manner that an appropriate device in the receiver routes the
signal energy into one of two channels when a “1” is transmitted and
into the other when a “0” is transmitted. It has been shown,’ however,
that unlike the classical radio-frequency case, the twin-channel receiver
offers little, if any, advantage in an optical system. In fact, if the trans-
mitter is average-power limited, a single-channel receiver has at least
a 1.5-dB advantage in noise immunity over a twin-channel receiver;
if the transmitter is peak-power limited, the single-channel receiver
suffers, at worst, a 1.5-dB disadvantage. Since the single-channel sys-
tem is considerably easier to implement than the twin-channel system,
and since the twin-channel system offers no significant advantages, we
confine our treatment to a single-channel system. Figure 13 is a block
diagram of such a system.

It has previously been shown®!® that if we assume that the ava-
lanche current gain G is deterministic, * the probability that the receiver

* By this we mean that if m primary electrons are liberated, exactly Gm electrons
will be delivered to the load. This artificial constraint will be relaxed in the next
section.
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mistakes a “0”" for a “1" is given by
o0 —_— Gl
P(1|0) = 3 ¥ pon) erfe lu 19
(110) =4 ¥ » o | (19)
and the probability that it mistakes a “1” for a “0” is
i G — x
PO[1) =} n) erfe n_ifl 20
O = 4 £ pi(n) erte | "E= (20)

where (%) = (i%)/(eB)? is the mean-square thermal noise current ex-
pressed as the mean-square average number of electrons flowing during
a time slot due to thermal noise and z, is the decision threshold also
expressed in terms of the number of electrons per time slot. This normal-
ization will turn out to be very convenient in that it will allow us to
present the results in a form which is independent of bit rate. And
where

my

pi(n) = me""", 1=0,1,
B = bit rate,
my = mean number of primary electrons liberated when a “0” is
transmitted,
m; = mean number of primary electrons liberated when a ““1” is
transmitted,

erfe(-) is the complement of the error function.

These equations are derived under the assumption that the thermal
noise is Gaussian and that the statistics of the primary electrons liber-
ated in the photodetector due to signal photons, background-illumina-
tion photons, and dark current are independent Poisson processes.
Then m, represents the sum of the means of the background illumina-
tion and dark current processes and m;,; = mo + m, where m, is the
mean number of photoelectrons liberated due to the signal. The ma-
jority of this section is devoted to the problem of determining the re-
quired value of m, in order to achieve a specified error probability. The
required average optical power is, of course, just

_ 1hvm,
Pu = 2

B (21)

where the factor 3 comes from the assumption that 0's and 1’s are
equally probable.

The threshold value x, is, of eourse, chosen to minimize the total
error probability. To a very good approximation, this is achieved when
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Fig. 14—Number of “signal photoelectrons’” for a 107 error probability from the
deterministic gain model vs l—; ¥ 104 Coul™. (Note gx 101 Coul™ = G for

reasonable system parameters.)

P(0|1) = P(1/0). Thus, in practice, one can compute z, from (19) set-
ting P(1|0) equal to the required error probability P.; and then, know-
ing x,, compute the required value of m, from (20). In the remainder
of this section, it is assumed that the noise bandwidth ® is equal to the
bit rate B.

Figure 14 illustrates the results of the calculation described in the
preceding pzragraph. It is expedient to introduce the dimensionless
parameter I' = G/(z})}. Examination of this figure reveals that, for
small values of T, the required signal power is inversely proportional to
I. However, as I'is increased, a limiting value, set by the dark current,
is soon reached. This sets a maximum value of useful gain (for a given
(z%)), dependent only on mj, beyond which no further significant im-
provement can be achieved. Note that this is true even here for the
deterministic gain model with no excess noise factor of the sort to be
discussed in Section 4.1.

4.1 Gain-Dependent Excess Diode Noise Factor

The gain-dependent excess diode noise factor* ¥, played a very im-
portant role in the behavior of analog IM and PPM systems. There is

* Recall that #; results from the random nature of the avalanche gain process.
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no reason to believe that it has any less significant role in a digital sys-
tem. The statistics of the avalanche gain process are very difficult to
analyze except in two limiting cases, namely, when the ionization
probabilities of holes and electrons in the avalanche region are equal,
and when only one carrier contributes to the avalanche process.!# 11
Unfortunately, neither case applies to silicon and germanium photo-
detectors, the two most promising candidates.

Recently S. D. Personick!? has obtained a rigorous upper bound to
the error rate which is applicable to the general case (arbitrary ioniza-
tion-probability ratio). The result of Personick’s ealculation is in the
form of an integral equation, however, which must be computed nu-
merically. In this section, we derive an approximate relationship
between m, and G which is in excellent agreement* with Personick’s
result.

This gain-dependent noise figure will have two effects on system be-
havior: (z) it will establish an optimum value of gain in the sense that
m, will have a minimum as a function of G, everything else held con-
stant, and (7z) it will cause a larger number of signal photoelectrons to
be required, for a given value of G, to satisfy a given error-probability
requirement.

The expression we seek is derived as follows. We approximate the
Poisson probability density function which describes the primary elec-
tron emission by a Gaussian probability density function with the same
mean and variance. This approximation, which is discussed in detail in
Ref. 13, turns out to be valid for most cases of interest. We also assume,
without justification, that the statistics of the output of the photo-
detector are still Gaussian with variance equal to F'; times the variance
of the primary electron distribution' where F, is the excess detector
noise factor used in Sections 1T and III.

With this assumption, eqs. (19) and (20) can be reduced to:

L x— m, G

P(1|0) = % erfe \[2(@%) i Gz)]*} (22)
L m, G — x,

P(I[O) =3 E!fC [ [2(@:%‘} + m. Fd Gz)]g ’ (23)

We choose z, in such a way that
P(110) = P(0[1) = P.

* The results of this approximation are typically less than Personick’s upper bound
by about 1.0 & 0.5 dB.

T It is not difficult to show rigorously that this is the correct value of the variance.
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where P, is the error probability. Defining a quantity @ by the rela-
tionship

— 1 " J
P, = Lerfe ( \Q)
enables one to write

T — M, m G — x,

@+ ma Fa@ ~ 9= @) + m PGt

Eliminating x. between these equations and setting Fy = G gives

iy = my — ma = 2Q [%’ + muG*]* + Qe (24)

1t is clear from (24) that m, has a minimum in G.
It was previously stated that (z7) is independent of bit rate. This
comes about as follows. From its definition and that of (%),

4kT F
('ﬁ") = B E' ’
but R is inversely proportional to bit rate. In fact, for a well-designed

detector,* one can write

1
R = 1B

where ¢ is the capacitance of the photodetector. Then
(23) = 16kTF. ¢

32

A value of e(z%)! = 4(kTF )t = 10~'° Coul implies a value of Fc = 15
pF which is typical of good avalanche photodetectors. This value is
used in the example illustrated in Fig. 15. In this figure, we observe
that for small values of avalanche gain, where the system performance
is thermal-noise limited, the behavior is identical to that of the deter-
ministic gain case. As the gain is increased, however, m, reaches a
broad minimum at G = G.,. and then increases slowly as the gain is
further increased.

With proper exclusion of background illumination, typical values of
dark and leakage currents are 10-1° and 10~° A, respectively. The back-
ground count, m,, is given by

Y S P U L
° " eB ' eBG 1.6B ' 1.6BG
From Fig. 16, we observe that G,p. = 100 over a wide range of condi-

* Note added in proof : Recent work by S. D. Personick shows that some advantage
may be obtained by using larger R and post-detection equalization.
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Fig. 15—Number of “signal photoelectrons’ for a 10~%-error probability from the
gain-dependent noise model (Fy = GY) vs avalanche gain. e{z})! = 107 Coul.

tions and therefore the dark-current term usually dominates the leakage-
current term. Typical values of m, would therefore be from about 600
at B = 1 Mb/s down to about 0.6 at B = 1 Gb/s.

Figure 17 shows the value of m, required for P, = 10~* (@ = 6.00)
for e{x3)* = 10-'5 Coul [from (24) ] for @ = 100 and for G = Gope. The
value of Gy, is also shown in Fig. 17. Two important results are ap-
parent from Fig. 17: m, is not important until it exceeds about 100,
and using G = 100 instead of G = Gy, costs no more than about 1 dB.
This last result is important because Gy s so large over much of the
region of interest that it would be difficult to obtain.

We now turn our attention to the use of nonadaptive delta modula-
tion (AM) for transmitting analog signals. Delta modulation is a form
of digital modulation which allows a trade-off between bandwidth and
both terminal cost and signal power.

Noise in AM systems has been studied in detail by several au-
thors.!*"17 We present here a sketch of how one might estimate the
bit-rate requirements for a AM system. Suppose that the frequency
band of the information source extends from 0 to b and that the step
size of the coder is s. The maximum slope of a sine wave with amplitude
A and frequency fis 27 A f, while the maximum slope of the quantized
signal with step size s and sampling rate B is sB. The limiting condition
for slope overload is then

sB = 2rAf. (25)



760 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

1000
800

— pe=10 2

20 — === Pe=10"8

| 1 |
10! 102 103

Mg

Fig. 16—Optimum gain (4 = G) vs primary background count, m,.

In order to compute the mean-square error in the quantized signal
we assume, following Van de Weg,'* that there is no correlation be-
tween samples and that the difference between the source signal and
the quantized signal is uniformly distributed on the interval (—s, s).
We obtain:

(8s?) = 2%[ z2dx = 1s? = mean quantizing noise power. (26)

The spectrum of the noise is quite complicated, but for our immediate
purpose it is sufficient to assume that this noise is spread more or less
uniformly over a bandwidth B so that the fraction b/B of the quantiz-
ing noise power falls into the information band . (The remainder of
the noise can then be eliminated by a low-pass filter of bandwidth b.)
Assuming that quantizing noise is the only significant noise source,
the signal-to-noise ratio, SNR, is then given for a sinusoidal signal of
amplitude A by:

142 3B/A\® 3 B
= _2 = — — — Y ——
SNR =1 zg‘zb(s) 8at b 27)
3B

where f is the highest frequency we are required to transmit with the
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Fig. 17—Number of “signal photoelectrons,” m., vs background count, m,, for
P, =107,

specified value of SNR.* For a voice channel, we take (as conservative
values) b = 4 X 10® Hz and f = 2 X 10* Hz. Then

® = [8%2 bfz(SNR)]’ — 7500(SNR)} Hz. (28)
For SNR = 70 dB, this gives B = 1.6 MHz. Van de Weg's calcula-
tion!* takes into account the correlation between samples (which we
have neglected) and the details of the quantizing noise spectrum. His
result (for B/b = 4) replaces the factor 87%/3 = 26.3 in (28) by the
factor 25,0 (and leaves it otherwise unaffected). Thus, his result is es-
sentially identical with the one derived above. Experimental work by
Laane and Murphy!? indicates that a value of B = 1.5 MHz is ade-
quate for transmitting a single voice channel by AM; we use this value
in the following calculation.
For a 1.5-Mb/s rate, Ip = 107 and I, = 107" gives

m, = 417 + 4170/G = 460.
From Fig. 17, the required value of m, is 1450 (which is 2.2 dB poorer

* A AM system is limited by slope overload as indicated by (25). The limiting con-
dition is set not by amplitude or by frequency alone, but by their product Af. We
define the SNR for the AM system in terms of the ratio of full load power in a sinu-
soidal signal at some frequency f to the mean quantizing noise power. At higher
frequencies, the available SNR degrades at a rate of 6 dB per octave. One could, of
course, choose f to be the highest frequency in the information source bandwidth, b.
For voice signals, however, this turns out to be an unreasonable constraint.!®
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than the case of no dark current and optimum gain, and 1.1 dB poorer
than the case of no dark current and G = 100). The corresponding
value of p, is (for A = 0.85 um, » = 0.5) 0.51 X 10-* W = —63 dBm.
This is based on a tolerable error probability of 10~%, which is probably
much better than necessary. However, the error probability varies at
the rate of about one order of magnitude for every 0.5 dB change in
optical signal power. Therefore it makes little difference what value of
error probability is chosen for this calculation.

It has been stated in the preceding sections that dark current and
leakage current are generally negligible with good silicon photodiodes.
The case of 1.5-Mb/s PCM is just on the border line of being dark-
current limited with the numbers used in this example. The values of
Ip and I used in this example must not, however, be regarded as
ultimate performance. Indeed, photodetectors with I, = 107! A have
been built.*

V. CONCLUSIONS

Because light-emitting diodes and diode lasers can be directly modu-
lated, analog intensity modulation is the simplest form of modulation
to implement. Considerable improvement in noise immunity can be
obtained, however, by judiciously exploiting the wide available band-
width in optical systems.

Thus, pulse position modulation is particularly attractive because
the square-law nature of the detector makes the “bunching” of the
optical power beneficial and because the signal-power-dependent na-
ture of the noise makes very large bandwidth-expansion factors fea-
sible. Improvement of over 40 dB (relative to intensity modulation) is
theoretically possible with pulse position modulation. Improvement of
about 30 dB for a single high-quality 4-kHz voice channel appears to
be realizable with existing light-emitting diodes. Use of delta modula-
tion affords a theoretical improvement in noise immunity of about 25
dB relative to analog intensity modulation.

Optical carriers appear attractive for pulse code modulation even at
Jow bit rates. At a bit rate of 6 Mb/s, only about —58 dBm of signal
power is required for 10~ error rate.

APPENDIX
Comparison of Practical Direct Detection Receivers With Homodyne Re-
ceivers and With Ideal Reception for Binary PCM Channels
It is instructive to compare the performance of a direct detection
receiver of the sort described in Section IV with a homodyne receiver
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operating on a similar signal. Consider a signal in which a ‘1" is repre-
sented by a pulse with peak power P, and a ““0” is represented by the
absence of a pulse. Let P10 be the local oscillator power. The detected
photocurrent (with no avalanche gain) is then

i =7 hi [2VPm Pro + Pro + pm] (29)

at the peak of the pulse when a ““1”" is transmitted and is (e/hv)Pro
when a “0” is transmitted. In practical operation, Pro 3> p. and the
last term in (29) is negligible. The quantity n(e/hv) P10 is just a de shift
and can be neglected in the following caleculation.

The mean-square noise current is given by

4kTF &

(ia) = 28% 7(Pro + pm)® + 2el; B + B

But once again Pro > p. and in any reasonable receiver one also has
n(e/hw)Pro 3> I4, so (i) becomes

4kTF

2) = | 21+ Pro 4+ — | ®.

(%) [enhv Lo + 7 ]fB

For large P10, this (Poisson) noise can be regarded as Gaussian. The

optimum decision threshold will be near (3)i,. Therefore, the probabil-

ity of error is well approximated by

P, = 1 /w exp l— T dr
© N2r(@®) J e/ Vi 2(i%)
1 MPm )
= serfe | -
Ve ATE G |
eRy < Pro
ho' VO |

In order to fully exploit the advantages of homodyne detection, one
must require

2kTF,

e%'qR

Pro>»

When this condition obtains, one has

1 mPm
P 1 ap .
- = zere l\/f‘\/Zhu(B]
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Assuming a square pulse of duration 1/® gives

_ Pn
m'_hv(B
and
1 m
= 1 L [E,
P,—Zerfc{\/j 2} (30)

We model an “ideal receiver” by a device which unerringly distin-
guishes between the case when no photoelectrons were liberated and
the case when one or more were liberated. Since the photoelectrons are
Poisson distributed, the probability that none were liberated when the
expected number was m, is just

—m
e &

and for the ideal receiver this is twice the probability of error. For a
P, = 107° this gives:

Ideal receiver: m, = 20
Homodyne receiver: m, = 72.

Thus the homodyne receiver is 5.5 dB poorer than the ideal. From
Section IV we see that a practical direct detection receiver requires
m, =~ 1000 which places it 17 dB worse than the ideal receiver and
about 12 dB worse than the homodyne receiver. Of course, 12 dB is not
insignificant; but homodyne (or heterodyne) detection requires both
a coherent source and precise phase-front matching between the signal
and the local oscillator. With LED’s this is impossible, with existing
diode lasers it is at best extremely difficult. Even if adequate phase-
front matching could be achieved, phase-lock for the homodyne re-
ceiver would be extremely difficult—if at all possible; heterodyne
detection would reduce the advantage to 9 dB.

Direct detection without avalanche gain requires m, = 7.2 + 10¢
(for e(x})} = 1015 Coul) which is almost 36 dB worse than the ideal re-
ceiver. Thus, in the example of Section IV the avalanche gain (G = 100)
gives almost 19 dB improvement.

These relative performance numbers are based on P. = 10~° but
over the range 10~1° < P, < 10~* the relative performance of the ideal
detector, the homodyne detector, and the avalanche photodetector
varies by less than 1 dB while the performance of direct detector with-
out avalanche gain relative to the ideal detector varies by no more than
2 dB on this range.
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