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Although a great deal is known about design techniques for optimum
(in @ minimazx error sense) finite impulse response (FIR) low-pass digital
filters, there have not been established any practical design rules for such
filters. Thus, a user is unable to eastly decide on the (approximate or exact)
filter order required to meet his design specifications and must resort to
tables or trial and error procedures. In this paper, such a set of design
rules is given. In the case of very narrow bandwidth or very wide bandwidth
filters, analytic relations between the filter parameters can be readily ob-
tained. In all other cases, exceedingly good linear and nonlinear fits to the
data can be obtained over somewhat restricted ranges of the parameters.
These fitting procedures lead to a practical set of simple design rules for
estimating filter order from the desired specifications.

I. INTRODUCTION

The problem of designing an optimal (in the minimax sense) low-
pass FIR digital filter to meet design specifications has been thoroughly
investigated'™® and may be considered to be solved. Thus, given a
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Fig. 1—Definition of low-pass filter parameters.

specified impulse response duration of N samples, a passband cutoff
frequency F, (see Fig. 1), a stopband cutoff frequency F., and a ratio
of tolerances K = 8:/6; (where 8; = passband tolerance and 8, = stop-
band tolerance), an optimal approximation to these specifications can
be designed. The approximation is optimal in the sense that, for given
values of N, F,, F,, and K, & (or equivalently ) is minimum. The
nature of the solution is such that there are three distinct classes into
which it may belong, depending on the specific design parameters.
These classes have been called extraripple filters,*¢ scaled extraripple
filters,” and equiripple filters with one less than the maximum possible
number of ripples. The differences between these classes lie in the
number and amplitude of the ripples in the weighted error curve. The
weighted error curve is defined as:

1 — H(e™)
Eery=1"—"g — O0=f=h (1)
— H{e™1) F,<f<05

where H(e/2*/) is the frequency response of the optimal filter. Extra-
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ripple filters have (N + 5)/2 equal magnitude extrema in their error
curves. Scaled extraripple filters also have (N + 5)/2 extrema, all but
one of which are of equal magnitude. The third class of solution has
(N 4+ 3)/2 equal amplitude extrema in its error curves. Figure 2 shows
plots of curves of transition bandwidth, AF = F, — F,, versus pass-
band cutoff frequency, F,, for two sets of conditions.® The data in Fig.
2a show the curves for K =1, 6, = 8, = 0.1, N =9, and N = 11;
whereas Fig. 2b shows the curves for K = 100, §; = 0.01 (. = 0.0001),
N = 19,and N = 21. The minima along each curve are the extraripple
filters. (For fixed values of 8, and &, as in this figure, there are only
(N — 1)/2 distinet extraripple filters.) The local regions around the
minima are the scaled extraripple filters? and the remainder of the curve
represents equiripple solutions with one less than the maximum number
of ripples. As will be shown in the next section, the first and last extra-
ripple filters can be obtained analytically because they are simply re-
lated to the Chebyshev polynomial of appropriate degree.®.?

As seen from Fig. 2, as F, varies from 0 to its maximum possible
value, the transition width goes through a sequence of minima and
maxima. The variation in the transition widths of the minima and
maxima decreases as N increases. Furthermore, the variation in transi-
tion width between adjacent maxima and minima also decreases as N
increases. In fact, except for a narrow region at the beginning and end
of the curve, the curve of transition width versus passband cutoff fre-
quency is relatively flat over a wide range of values of F,, 6, and K.
Figure 3 shows a sequence of three plots of transition width versus
passband cutoff frequency for extraripple filters (i.e., only the minima of
the curve are plotted) of length N = 101 for various values of &, and
K. (The entire curves are not plotted because the amount of computa-
tion required for a smooth curve of such high order is inordinately
high.) Figure 3a shows a sequence of four curves for K = 1, §, = 0.1,
0.01, 0.001, 0.0001, whereas Fig. 3b shows the same sequence for
K = 10, and Fig. 3¢ shows the sequence for K = 100. Several observa-
tions can be made from this figure.

(z) For a wide range of values of F,, and fixed 8, and &8s, the transi-
tion width of the extraripple filters is relatively insensitive to
F,. The larger the value of K, or the smaller the value of 3,,
the worse this approximation becomes.

(#4) In the regions of either very small or very large values of F,,
the transition width generally decreases.

Based on these curves and on previous results with window designs,*
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Fig. 2—The transition width as a function of passband cutoff frequency for two
sets of filter parameters.
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Fig. 3—The transition width as a function of passband cutoff frequency for
N = 101-point extraripple filters and K = 1, 10, and 100.

it seems fairly reasonable to expect some simple design relationships
to exist between the five basic filter parameters, N, F,, F,, 8, and 4,
(or K), at least in the extreme case of the Chebyshev solution, and also
for a reasonably large region near F, = 0.25. Experience in practical
situations has shown that the number of terms needed in the optimum
FIR low-pass filter to meet design specifications is significantly less
than the number of terms estimated by known relationships on win-
dows.!® Therefore, the goals of this paper are to obtain approximations
to the actual design relationships between linear-phase, low-pass filter
design parameters and to illustrate their use in actual design examples.

The organization of this paper is as follows. First, the design rela-
tionships for the Chebyshev solution are derived, and approximate
formulas for the transition width in the limit of large values of N are
obtained. Then the results of measurements on a wide range of filters
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where the number of passband and stopband ripples are equal are
shown. Then minimum mean-square relative error fits to the observed
data (for large N) assuming both linear and nonlinear dependency on
the basic filter parameters are computed. T'o apply the design relation-
ships for all values of N, a correction formula is derived, based on con-
sideration of the appropriate transition width of the filter. Finally,
a set of rules is presented for going from a set of desired filter param-
eters to an estimate of the lowest-order filter which meets these
specifications.

1.1 Summary of Design Relationships

Given the low-pass filter parameters F,, F,, &, and 8. (or, equiva-
lently, K = 8,/6,), the minimum filter impulse response duration, N
required to meet the above specifications can be estimated from the
relation
m(alr 2) - f(K} F - Fp)2

N = F, — Iy

+ 1,
where

Do(81, 82) = [5.309 X 103 (logie 81)2 + 7.114 X 10~ (logyo 81)
— 0.47617 loguo 62 — [2.66 X 10~* (logyo 81)®
+ 0.5941 (logio 81) + 0.4278]
and
F(K) = 0.51244 logo K + 11.01217.

The above relations are valid to within 1.3 percent relative error in N
if 6 < 0.1 and &, = 0.1.

II. CHEBYSHEV SOLUTIONS

Let {h(n), n = —(N — 1)/2, -+, (N — 1)/2} be the impulse re-
sponse of the desired digital filter. (¥ is assumed to be odd throughout
this paper.) The impulse response satisfies the symmetry condition
h(n) = h(—n) to give the desired linear phase. The frequency response
of the filter is given by

(v=bi2
H(e?*’) = h(0) + nz=‘,1 2h(n) cos (2w fn). (2)

-~ (T2)
G

By making the substitution

cos (2rf) = (3a)
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T = (X°2+ 1)cos 2rf) + (on_ 1) (3b)

the interval 0 £ f =< 0.5 is mapped to the interval X, = 2 = —1. It
is easily shown?®7 that the mapping transforms the trigonometric poly-
nomial of eq. (1) to an algebraic polynomial in z of the form

or

(N—D/2

Gx) = 2 b(m)an, (4)

where the {b(n)} are straightforwardly related to the {h(n)}.

The basic filter design problem is to find coefficients b(n) [or h(n)]
such that the weighted error of approximation is equiripple in both the
passband and stopband. In the case when either the passband or the
stopband has only one ripple, the solution to the filter design problem
may be obtained analytically based on the theory of Chebyshev poly-
nomials. In all other cases, alternative techniques must be used to ar-
rive at the appropriate solution.

Consider the Mth degree Chebyshev polynomial, T 5 (z), as shown in
Fig. 4 for M = 4. The standard representation for T y(z) is

T wu(z) = cos [M cos™z], z] =1 (5)
and
T m(xz) = cosh [M cosh~! z]], [z] > 1. (6)
In the interval —1 < & < 1, Ty(x) oscillates between =41 and, be-
yond the value z = 41, T'y(2) grows approximately as 2. If we define
X, (see Fig. 4) as the point where Ty (Xo) = (1 + 6,)/8s, and X, as
the point where T'y (X ,) = (1 — 81)/8s, it is readily seen that &;- T y(x)
is a polynomial of the form of eq. (4) [with M = (N — 1)/27] which
is equiripple in both the passband X, £ 2 = 4+ X,, and the stopband
—1 =2 = +1, and hence is an optimal solution to the filter design
problem. Of course, this solution is a special case of the general solution
in that there is only one ripple in the passband, but at least it is an
analytically tractable case from which a great deal can be learned about
the relationships between the filter parameters.

It is straightforward to solve for the points X, and X, in terms of
01, 82, and N. If we set M = (N — 1)/2, then at z = X, > 1.0, we get
the relation

1+ 4
02

1 1 ]
X, = cosh[ﬂcosh"‘( —;—2 1)] (8)

Tu(X,) =

= cosh [M cosh™! X, ] (7)

or
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Atz = X, > 1.0, we get the relation

To(X,) = - = % _ cosh [M cosh! X,] 9)
or
oo [ L codiot (L= 01)T.
Xp—cosh[Meosh ‘( 5 )] (10)

The inverse mapping of eq. (3) can be used to determine the filter
cutoff frequencies by the relation

_L 1 2$—Xu+1
f—zwcos [——Wl ], |z| = X (11)

Thus, F, (corresponding to X,) and F, (corresponding to = = +1.0)
can be readily obtained using eq. (11) with the appropriate values for
x. In this case, the transition width (¥, — F,) can be analytically de-
termined for all values of N, 8;, and &z as:

o _ 1 L3 =X
AF = F,—F, = [cos (1+X0)

2
L f2X,—Xo+ 1
— COS 1(_—1_+_—X;—):| (12)
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In the limit of large values of N (or, equivalently, M), eq. (12) can be
simplified by the following approximations. First, for sufficiently
small values of «,

aﬂ
cosh o = 1+§, a <K 1. (13)
Thus, egs. (10) and (8) can he simplified to the form [replacing M by
(N —1)/2] i
() e (52)]
X, =1+ 3 A (14)
() o (52)]
Xo~1+ — 5 2 7. (15)

The approximation is then made that for sufficiently small e,
cos™! (1 — €) = V2e. (16)

Thus, F. and F, are well approximated as

_1[ 2 (1t
F,,fvz?r[N__lcosh ( 5 )] (17)

P g (v o) (55)]
- [cosh*1 (1;—261)]2]i (18)

Thus, for large N (N >> 1) the approximation to the transition width
curve is given by

o {1+
AF = P, FP~7W(N_1)[cosh ( - )

(o (L = (52T o0

(This approximation is valid to within 1 percent for N = 51.) Equation
(19) shows AF to be inversely proportional to (¥ — 1). This identical
inverse behavior has been noted previously for filters designed by
windowing.!” These and other considerations lead one to consider as
a performance measure of a low-pass digital filter the quantity D de-
fined as

D=(N—-1)AF = (N —-1)(F, — F,) (20)

which, in many cases, depends only on §; and 8.
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The curves in Fig. 5 (for N = 127) show plots of performance D
versus 20 logyp (82) both for values of K = 8/, from K =1 to
K = 1000 and for values of &; from 0.5 to 0.0001. The behavior of these
curves is as predicted from eq. (19) and from intuition about the be-
havior of D as &; and 8, get large. It is clear that when 8, 4 6, = 1.0
[ie., 8 = K/(K + 1), 8, = 1/(K + 1)], then D = 0 since there is no
transition band. In this case, the term cosh™ (1 — &;)/6; vanishes, and
the first and second terms in eq. (19) cancel exactly. In the limit of
small values of 8;, the second and third terms in eq. (19) are approxi-
mately equal and cancel. Thus, D is approximately of the form

D= lcosh“ (l—ﬂ) (21)
T dsa
Since
cosh™! () = In (z + Va2 — 1), (22)

eq. (21) can be rewritten as (assuming & negligible)
D= % (In2 — In &) (23)

which is independent of ;. Thus, as seen in Fig. 5b, in the case of small
61, D is essentially independent of §;.

The curves of Fig. 6 show the behavior of D for various values of
N = 127, for K = 1, 10, and 100. The values of N used for these plots
were N = 3, 7, 11, 19, 51, and 127. The differences between the data
for N = 127 and the data for N = 51 are relatively small. These
curves also exhibit another interesting phenomenon. The curve for
N = 3 saturates at a value of D = 1. This is due to the limitation that
the transition width, AF, must be less than or equal to 0.5. Thus, the
saturation value of D is (N — 1)/2, or 1.0 for N = 3. The larger the
value of K, the larger the value of §; beyond which the curve for N = 3
saturates.

In the case of the Chebyshev solution to the optimal filter design
problem, a formula can be derived for the impulse response duration
N of a filter whose response meets specified values of &, 8, and F,.
Since F, is not specified, this result is useful only as a first guess of
a value of N which meets specifications on all four filter parameters.
From the discussion given earlier in this section, f = F, when z = 1.0.
Thus, eq. (11) can be used to solve for X, as

_ 3 — cos (2rF,)

= 1 F cos @rF,) (24)

Xo
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Fig. 5—Plots of D versus logo 82 as a function of K and &, for the N = 127 Cheby-
shev solutions.
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Equation (8) may now be used to solve for N as

2 cosh™! (1 + 61)
8s

N=1+ . (25)

_, | 3 — cos (2rF,)
1
cosh [1 + cos (2w F',) ]

Using trigonometric identities, eq. (25) can be simplified to the form

cosh™! (ﬁl + 51)
82

cosh™! ((ES(ITFJ ) .

For these values of X, and N, F, may be obtained from eqs. (10) and
(11). If the transition width obtained is too large (too small), N is then
decreased (increased) until the desired specifications are approximately
achieved. (Since there is only one Chebyshev solution for fixed &, 8,
and N, exact values of both F, and AF cannot usually be obtained.)
As will be seen later, eq. (26) forms the basis for estimating a lower
bound on the filter order required to meet given design specifications
on AF, §;, and é,.

As mentioned earlier, Chebyshev polynomials can be used as the
optimal solution in the case when there is one ripple in either the pass-
band or the stopband. To see how this second case can be handled, con-
sider the Chebyshev polynomial T a(x) where T (Xo) = (1 + 82)/8,
and M = (N — 1)/2. As shown earlier, this polynomial represents an
optimal filter with passband ripple §,, stopband ripple §;, passband
cutoff frequency F,, and stopband cutoff frequency F.. Consider the
function R y(z) defined as

N=1+

(26)

Ry(z) =1 —§Tu(—z + X0 — 1), (27)

where —1 <z < X,. An examination of the properties of Rj(x)
shows

() Ru(x) is a polynomial in x of degree M.
(77) In theinterval Xy — 2 < 2 < X, Rx(2) oscillates between the
values 1 — 8, and 1 + §,.
(¢47) In the interval —1 =2 = Xy — 1 — X,, Ru(z) goes from
—82 to 52.

If we define 7, and 7, as the equivalent filter cutoff frequencies, then
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it is readily shown that

f,=05—F,
| 28
F,=05—F, (28)

Thus R (z) is a polynomial with only one stopband ripple which satis-
fies the filter optimality criterion. In summary, to design Chebyshev
approximations with only one stopband ripple, one merely makes the
substitution

61 = 32
8y = 8,

. 29
F,=05—F, (29)
F,=05—F,

and solves for an equivalent filter with one passband ripple using the
formulas of this section.

The data on the Chebyshev solutions provide valuable insights into
the behavior of the design relationships between filter parameters in
more general cases. These data and their design relationships are pre-
sented in the next sections.

III. MEASUREMENTS OF D

Earlier, it was shown that the transition width or, equivalently, the
performance measure D for the Chebyshev solutions (i.e., either small
F, or large F',) was generally significantly smaller than for most of the
range of values of passhand cutoff frequency. To obtain data on a more
realistic set of filters, the value of D was measured for a large number of
extraripple filters designed with the constraint that the number of pass-
band and stopband ripples were the same. In this manner, the passband
and stopband widths were almost equal and, thus, the measured data
would characterize the parameter set over as wide a range of values of
81, 82, and F, as possible. Six different values of N were used including
N =3, 7, 11, 19, 51, and 127. Over 1500 filters were designed to
cover the parameter range 0.00001 =< §; < 0.5, and 1 = K = 500
(K = 8,/8,). Figures 7a through 7i show plots of D versus 20 logio (32)
for the nine values of K and the chosen values of N. All these data are
presented since they are fairly general and may be useful in a wide
variety of contexts other than this paper. (Also, their measurement re-
quired almost 3 hours of computer time on a fairly fast processor.)

It is remarkable how similar the plots of D versus log 8; for the more
general case of Fig. 7 are to the identical plots for the Chebyshev solu-
tions. Similar behavior for small D is expected, since D tends to 0 as
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81 + &, tends to 1.0 independent of N, F,, and F,. However, the ap-
proximately linear behavior of D as a funetion of log 8, and log K (for
large N) is unexpected. Another similarity between the two cases is the
independence of D of (N — 1) for large N. The tendency of D to
saturate for small values of N is yet another similarity between the
curves. The main difference between the sets of curves is that, in the
Chebyshev case, D is approximately independent of §; for small &;.
This behavior is not observed for the extraripple filters of Fig. 7.

A summary of the behavior of D for N = 127, as a function of log 8,
for various values of either K or 8,, is presented in Fig. 8. The values of
8, used were 0.5, 0.2, 0.1, - - -, 0.00002, whereas K ranged from 1 to
500 as in Figs. 7a through 7i. In some sense, this figure represents a set
of design curves for high-degree low-pass filters. In the next section,
we show how the data of Fig. 8 can be approximated by linear and non-
linear fits, and how simple modifications can be made to correct the
results for values of N less than 127.

IV. DATA-FITTING PROCEDURES

In order to make most efficient use of the data of the previous sec-
tion in a practical design problem, it is useful to express the relation-
ships between the filter parameters in a simple manner. Since we know
of no way of deriving exact analytical formulas, as in the Chebyshev
case, a minimum mean-square relative error fit to the data over a re-
stricted but reasonable range was sought. Both a linear and a nonlinear
fit to the data of Fig. 8 (N large) were obtained. Corrections for smaller
values of N were then obtained giving a complete set of design rules.

The data of Fig. 8 suggest that except in the region D = 0 (large
values of §;) a simple linear fit can be obtained. The curves of Fig. 8
were assumed to be of the form

Dyuin = a 4+ blogye (82) + clogw K,
a = —0.803,
b= —1.359,
c= —0.737.

(30)

Il

where Dy is the predicted value of D. The values for a, b, and ¢ were
chosen to minimize the sum of the squares of the relative differences
between Dy1y and D for the N = 127 data for values of 8; in the range
0.01 = 6;; 0.01 = 6.. The reason relative rather than absolute errors
were considered is that a fixed percentage error in D, 8D, approximately
gives a fixed percentage error in N, §N, when transition width is held
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Fig. 7—Plots of D versus logio 8. as a function of N for K = 1, 2, 5, 10, 20, 50, 100
200, 500 for the case of extraripple filters with the same number of passband an
stopband ripples.



PERFORMANCE D

OPTIMUM FIR LOW-PASS DIGITAL FILTERS

785

20 LOG, o (5,)

Fig. 7 (continued).

b
S5
s 7,:"27
{e)
3
N, =N,
2 K =20
1
0 | |
()
Np = Ns
K =50
1 | |
ND = Ns (g)
K =100
| ] ]
(h)
Np =N,
K =200
| ] _l |
(i)
N‘J =N,
K = 500
0 [ | | | | |
—100  -90 —80 70 —60 -50 —40 —30 —20 -10



786 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—-AUGUST 1973

PERFORMANCE D
w

y m?
=
=

T
HH H
o EFW@NE' ﬂ Siiiaa
100 -%0 -80  -70 —60 50 -40  -30 —20  —10 0
20 LOG g (5,)

|

it

Fig. 8—Plot of D versus logio 3; for the N = 127 data of Fig. 7 showing curves for
various values of K and 8;.

fixed, as in most design problems, i.e.,

8D _ 8N —1) N
D N-1  ~N-1

(31)

Figure 9 shows a plot of the relative error of the predicted values of
D versus log 8, for §; = 0.01, 0.005, 0.002, - -, 0.00002. Except for
a small region on the curve 8§, = 0.01, the relative error is less than 1.0
percent for the entire range of 8, and 8 considered. Based on a value of
N = 127, a relative error of 1.0 percent in D is equivalent to an error
of 1.26 samples in N, or approximately one-half a filter order off from
the correct order. Errors of this magnitude are generally considered to
be quite small, i.e., the prediction is reasonably good.

In an effort to improve the fit and extend the range of applicability
of the approximation, & nonlinear formula was chosen for D. Based on
the data of Fig. 8, it was observed that the slope of the curve of D
versus logo 8 changes nonlinearly with log 8;. The simplest approxi-
mation was to try a fit which was linear with respect to log 6. and
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quadratic in log 8,. Such a fit is of the form

Dy = [ai(logio 81)* + as loge 61 + as]logy 6,
+ [as(log 81)% + as logie 8, + as].  (32)
The constants a, to as were chosen to minimize the mean-square rela-

tive error for the N = 127 data over the range 0.1 = 4, = 0.000001,
0.1 = §, = 0.000001, and turned out to be

5.309 X 103
a; = 7.114 X 1072
a; = —4.761 X 107!
a; = —2.660 X 103
as = —5.941 X 107
ag = —4.278 X 10~.

ay

Figure 10 shows the relative error of the predicted value of D as a func-
tion of log é; for values of 8, from 0.1 to 0.00002. The peak percentage
error is 1.3 percent, and over most of the range the percentage error is

1.5

OPTIMUM LINEAR FIT
N =127 DATA, Ng =N,

RELATIVE ERROR OF PREDICTED D IN PERCENT

-15 1 | | | |
-100 -90 -80 —70 ~60 -50 —40
20 LOG, 555}

Fig. 9—The relative errors in fitting the data of Fig. 8 with a linear curve over the
range 6; < 0.01, for various values of 5, (N = 127).
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N =127 DATA
OPTIMUM NONLINEAR FIT
N =N

0.00002

—-100 -90 —80 —70 —60 -50 —40 -30 -20

20 LOG, 4(8,)

Fig. 10—The relative errors in fitting the data of Fig. 8 with a nonlinear curve over
the range §; < 0.1, for various values of &, (N = 127).

much smaller. Clearly, this prediction formula is acceptable for almost
any design application.
Figure 11 shows a summary of the predicted values of D as a func-

tion

of stopband attenuation for a wide range of values of passband

ripple. In this case, passhand ripple in dB is defined as

Passband ripple = 20 logio (1_;5) , (33)
P
Stopband attenuation = —20 loguo (3.), (34)
where
24
and
5. = 0 (36)
145

These data correspond to standard design data for continuous-time
filters where the frequency response magnitude is constrained to be less

than or equal to 1.0
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Fig. 11—Plots of D versus 20 logiod: for various values of the parameter
20 logyo (1/1 — 8,), where &, = 25,/(1 -f- 61 as calculated from the optimum non-
linear fits to the data of Fig 8 (N = 127

V. CORRECTIONS FOR SMALL VALUES OF N

The formulas in the previous section are accurate for predicting D
(or, equivalently, N) for values of N greater than about 51. As seen from
the curves in Fig. 7, as N decreases, D decreases for fixed values of &,
and K. It is also seen from Fig. 7 that the differences increase with
decreasing é&; or, equivalently, increasing transition width. An examina-
tion of the relative deviation of Dy, the predicted value of D, from its
true value as a function of transition bandwidth showed that, inde-
pendent of N, the deviations could be simply approximated by a curve
of the form

Deor = f(K)(AF)?, (37)
where D, is the correction term and f(K) is of the form
J(K) = (0.51244 log,o K + 11.01217). (38)

(The constants in eq. (38) were again obtained by a minimum mean-
square relative error data-fitting procedure.) Thus, using eqs. (37) and
(38), a formula for D which depends on N, K, and §; can be obtained.
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Adopting the notation

(1) Dy (52, K) = Dy of eq. (32)*
(13) D(8s, K, N) = predicted value of D as a function of N as well
as 8 and K
(75%) D(8s, K, N) = true value of D,

we obtain the relation
Dcn(ah K) - D(ah K: N) = f(K)(AF)z (39)

Thus, in a design case where &, K (or 81), Fp, and F, (i.e., AF) are
specified and the problem is to estimate N, the impulse response dura-
tion required to meet these specifications, eq. (39) can be used directly
since

D(éy, K, N) = (N — 1)AF. (40)
Thus, combining eqs. (37) and (38) and solving for N gives

A closed-form expression for D(8,, K, N) may be obtained by sub-
stituting eq. (40) for D(s:, K, N) in eq. (39) and solving the quadratic
equation for AF. Equation (40) is then used to give D(5s, K, N). Thus,

we get,
J’(K)(AF)2 + (N — 1)AF — Dy(82, K) = 0 (42)

o = G (W1 AR -) @

_ N -1 4f(K)Do(8:, K) _ .
D, K,N) = —23,(—10—(\/1 + G ) 1) (44)

In the limit, as N tends to infinity, eq. (44) shows D(s,, K, N) tends to
D,(8s, K) as expected.

Using eq. (44), the relative error of the predicted value of D from the
true value was measured for the data for N = 3, 7, 11, 19, 51, and 127
with 8; < 0.1. The relative errors for values of K from 1 to 500 are
plotted in Figs. 12a through 12f. In all cases, the worst relative error in
D is sufficiently small that the equivalent error in N is less than one
sample. Thus, for all practical purposes, the design equations above
serve as a useful guide for estimating the order of the filter required to
meet design specifications.

* Eq. (32) gives Dyt as a function of 3, and 8, but since & = K3, it is also im-
plicitly a function of » and K.



OPTIMUM FIR LOW-PASS DIGITAL FILTERS 791

VI. SUMMARY OF DESIGN PROCEDURES AND EXAMPLES

Based on the results presented in this paper, it is now possible to give
a set of rules for estimating the filter impulse response duration re-
quired to meet given design specifications. These rules are as follows:

(z) Check if either ; or 8 is greater than 0.1, in which case the
graphical data of Fig. 7 are used directly to estimate N.

(i2) Caleulate a value of N, call this Ny, corresponding to the extra-
ripple case where N, = N,, from the equation

_ Dy(8y, 82) — f(K)(AF)?
- AF

N, + 1,
where D,(81, 82) is the optimum nonlinear fit to the data for
large N and is given by:

Dw(él, 52) = [5309 X 1073 [lOglu 61]2 + 7.114 X 102 lOg[u 81
— 04761] IOglu b2 — [266 X 1073 (log1e 51}2
+ 0.5941 logy, 8, + 0.4278]
and f(K) is given by

f(K) = 0.51244 log,, (K) + 11.01217.

(772) If the desired value of F, is less than or equal to 0.04 (let us
call this case 1), or if the desired value of F, is greater than or
equal to 0.46 (case 2), then the estimate of N is obtained in
rule (7v). Otherwise, the value N; of rule (#z) is used as the
estimate of N.

(#v) To obtain the value of N, for the Chebyshev solution for case
1, eq. (26) is used to get a first approximation to N.. N, is then
systematically varied until a Chebyshev solution is obtained
which meets specifications on &, 8., and AF. (As discussed
earlier, it is not generally possible to find a Chebyshev solution
which meets specifications exactly on all four filter parameters.)
For casc 2, 6, and 8, are interchanged, and F, is replaced by
0.5 — F,, in order to solve for N, from eq. (26). In cases where
this rule is applied, the value N. obtained is a lower bound to
the true value of N,. No upper bound may be given in this case.
A discussion of this problem is given below.

Several comments are necessary about these rules before proceeding
to some examples. The discussion in this paper has concentrated on two
regions of the curve of AF versus F,—the Chebyshev solutions and the
case of extraripple filters with an equal number of passband and stop-



792 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1973

N =127

RELATIVE ERROR OF PREDICTED D IN PERCENT

-4}

(c)

-6 ] ] | 1 ] | ] |
-100 -90 —-80 -70 —-60 50 —40 -30 -20 -10
20 LOG,4(5,)

Fig. 12—Plots of the relative errors in fitting the data of Fig. 7 using the corrected
values of D for N = 3, 7, 11, 19, 51, and 127.
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band ripples. The justification for such emphasis was the results shown
in Figs. 2 and 3 which indicated that the extraripple solution for
N, = N, was fairly representative of a large region of the curve of
AF versus F,, except in the case where F, was either very small or very
large, in which case the Chebyshev solution became important. Also,
as seen from Fig. 2, between extraripple solutions, the curve of AF
versus F, peaks up. However, it is seen that in many cases one can
“gpproximately” bound the maximum between extraripple solutions
by the next lower-degree extraripple solution. Since the design equa-
tions can predict AF for this case (the next lower-degree extraripple
solution), a good bound on N can be obtained for a reasonably large
region of the curve of AF versus F,. In these cases, the value given by
rule (77) is good to within +4 in the worst cases, i.e., large values of
K, and generally to within +2.

(a)
3 N2
T
=
=]
=
z
=]
=
% N
<
o
=
(b)
o
b
T
E
=]
= N-2
z
=1
[
Z
i N
o
=

PASSBAND CUTOFF FREQUENCY (FD)

Fig. 13—Explanation of the types of behavior of curves of transition width versus
passband cutoff frequency.
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In the region of the Chebyshev solutions, however, such bounding
procedures no longer are valid. An explanation of the difficulties which
may be encountered is given in Fig. 13, which shows two types of curves
of AF versus F,. Fig. 13a shows the case, discussed above, where the
extraripple solutions of impulse response duration N — 2 are approxi-
mately midway between extraripple solutions of impulse response dura-
tion . In this case, the next degree solution bounds the maximum AF
between extraripple solutions. Figure 13b shows the case where the
extraripple solutions of impulse response duration N — 2 have ap-
proximately the same values for AF and F, as the extraripple solutions
of impulse response duration N. In these cases, there is no good bound
on the maximum value of AF between adjacent extraripple solutions.
The case of Fig. 13b corresponds to regions of ¥, near 0.0 and F, near
0.5, i.e., in the regions of the Chebyshev solutions. In these cases, as
discussed in rule (i), there is only an underbound on N, and no
overbound.

The choice of a value of 0.04 in rule (77z) as the width of the region
during which the behavior of N can only be underbounded was ob-
tained from the data of Fig. 3 which shows that, beyond this region, the
variation in the values of AF for extraripple solutions is small.

Figures 14 through 16 illustrate typical behavior of the curve of
minimum value of impulse response duration N, to meet given specifi-
cation on 4;, 8, and AF as a function of F,. Figure 14 shows data for
the case 4; = 0.01, 6. = 0.0001, AF = 0.158. The value of N, from

27
Z 25 - 5, =0.01

w

w E 5, =0.0001

a

s 23

g AF =0.158

b=

=2

I

[

5 K

E “

4 19 -

o

g L

5

z 17

gl b))

0 0.04 0.08 0.12 0.16 0.20 024 0.28 0.32 0.36
PASSBAND CUTOFF FREQUENCY (Fy)

Fig. 14—Optimum values of N to meet given design specifications on §,, &;, and
AF, as a function of F .
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84 L | | | | | [ I

0 0.1 0.2 0.3 04
PASSBAND CUTOFF FREQUENCY (Fp}

Fig. 16—Optimum values of N to meet given design specifications on 8, 62, and
AF, as a function of Fj.

rule (¢7) is 21, and the values of N, are 19 (for small F;) and 13 (for
large F,). Over the region 0.06 < F, < 0.32, N is within 2 of the nomi-
nal value of N; = 21. Over the entire range of F',, N is within 4 of the
value N, = 21. The data of Fig. 14 correspond to the case of Fig. 13a.

Figure 15 shows data for the case 8; = 0.01, 6; = 0.0001, AF = 0.032.
The value of N; from rule (#Z) is 101, and the values of N, are 95 (for
small F,) and 55 (for large F,). Over the region 0.1 < F, < 0.38, N is
within 2 of the nominal value of N; = 101. However, in the region
0 £ F, < 0.036, the value of N fluctuates from a minimum of 95 (the
Chebyshev lower bound) to a maximum of 117. The explanation of this
erratic behavior of N is seen in Fig. 16. Figure 16a shows the data of
Fig. 15 on an expanded horizontal scale, and Fig. 16b shows a plot of
the approximate curves of AF versus F, for all values of N from 95 to
117. The heavily traced parts of these curves show the lowest-order
solution which just meets specifications on AF. From Fig. 16b, it is
clear that in the vicinity of the first few extraripple solutions, the curves
of AF versus F', are exceedingly steep. Hence, a slight change in F,
greatly increases the required order solution to meet specifications. In
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Fig. 16—Explanation of the behavior of the data of Fig. 15 in the region 0 < F,
= 0.036.

these cases, it is impossible to estimate the exact filter impulse response
duration which is required. Instead, only a lower bound can be given.
Fortunately, as seen in Fig. 15, the regions in which this erratic be-
havior can occur are limited.

We conclude this section with a set of examples which illustrate the
use of the design rules.
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Ezample 1: Find the minimum value of N required to meet the specifi-
cations §; = 0.05, & = 0.0001, F, = 0.19, F, = 0.21.

From rule (i) we get Ny = 129.7 which is rounded to 129. (Herein,
all values of N will be rounded to the nearest odd integer.) Since F,
is far from the range for the Chebyshev solutions, the value of 129 is
used as the appropriate estimate. The actual filter impulse response
duration required is N = 131, although the N' = 129 filter just missed
meeting specifications.

Ezample 2: Find the minimum value of N required to meet the specifi-
leations 8, = 0.01, 8, = 0.0001, F, = 0.213, F, = 0.373.

From rule (i) we get Ny = 19. Since F is again out of the range of
the Chebyshev solutions, the value 19 is used as the estimate of N.
The actual filter impulse response duration required is N = 19.

Ezample 3: Find the minimum value of N required to meet the specifi-
cations &, = 0.1, 8, = 0.1, F, = 0.12, F, = 0.19.

From rule (i) we get Ny = 11. Since F, is out of the range of the
Chebyshev solutions, the value 11 is used as the estimate of N. The
actual value of N is 11. In this case, it is interesting to note that the
value of N, for the Chebyshev solution is also 11. This example points
out that, for filter specifications leading to small values of N, there is
very little variation in the actual value of N as F', varies. This observa-
tion has been made earlier with respect to Fig. 14.

Ezample 4: Find the minimum value of N required to meet the speci-
fications §, = 0.01, 8, = 0.0001, F, = 0.36, F, = 0.497.

From rule (i) we get N, = 23. Since F, is within the bounds of rule
(#47) (case 2), N, is computed from rule (i) as 13. The actual value of
N is 19. In this case, the lower bound is within three filter orders of the
true solution.

VII. SUMMARY

This paper has presented a wide variety of data on the relationships
between design parameters for optimal low-pass FIR linear-phase digi-
tal filters. Analytical formulas were derived for the Chebyshev solu-
tions, i.e., when there was only one passband or stopband ripple. Ap-
proximate fits to the data using nonlinear relationships between AF,
N, 6y, and &, were given in the case where the number of passband and
stopband ripples was equal, and it was argued that these relationships
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were valid over a wide range of values of the filter parameters. Finally,

a
m

simple set of rules for estimating the minimum value of N, which
eets given specifications on F,, F,, 61, and &z, was discussed. Examples

were given to illustrate the application of the rules.
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