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Impulse Response of Clad Optical
Multimode Fibers
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Loss, coupling, and delay differences among the modes of multimode
fibers influence their response to inlensity-modulated optical signals. This
“baseband’’ response is derived here from a time-dependent conlinuous
description of the power flow in the fiber. Particular attention is given to
the output as a function of angle and to the impulse response, its width
and symmetry. We find that coupling narrows the impulse response
but, at the same time, causes additional loss. Under practical condi-
tions, this loss may limit the usefulness of coupling for the purpose of
reducing the mode dispersion. We calculate a possible data rate of 12
Mb/s for a 10-km repeater spacing and an effective numerical aperture
of 0.1, but we show that further vmprovements can be gained from an
optimization of the coupling characteristic and of other parameters.

I. INTRODUCTION

Although single-mode operation of clad optical fibers is possible and,
in general, offers very good transmission characteristics, multimode
fibers have two advantages: They impose less stringent requirements
on the optical carrier (they transmit even the incoherent light from
a luminescent diode) and their larger dimensions alleviate splicing
problems or at least relax the tolerances required for connection.
Typically, the core diameter is of the order of a hundred wavelengths
and the fiber therefore transmits thousands of modes, even if the index
difference between core and cladding is only a few percent (corre-
sponding to a numerical aperture of 0.2 to 0.3).

The usefulness of such fibers depends on their dispersion characteris-
tics. Delay differences among the many modes! distort the signal and
certainly produce a signal response inferior to that of the single-mode
fiber. For certain systems, on the other hand, overall system economy
may place the desirable information rate of individual fiber channels
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in a range where the characteristic signal response of multimode fibers
is adequate (below 100 megabits per second, say). In such systems,
multimode operation would surpass single-mode operation because of
the advantages mentioned earlier.

Effective use of the multimode fiber would presuppose the excitation
of a large number of modes right at the input with the objective of
transmitting all of these modes to the receiver. Experiments that have
approximated these conditions have revealed a rather intricate re-
sponse to short input pulses both in liquid- and solid-core multimode
fibers.2:? For example, the width of the output pulse did not increase
linearly with fiber length, but showed a less-than-proportional increase
for long fibers. Coupling among the modes and a dependence of loss on
mode number seemed to play a part.* In some fibers, this resulted in an
optimal mode distribution (causing lowest overall loss) which com-
prised only a fraction of the modes capable of propagating. Measure-
ments of the coupling strength showed that a total exchange of power
between two modes was likely to occur within less than a meter of
fiber.5 This result made it elear that a perturbation theory depending
on small coupling rates was not applicable. A closed and unrestricted
description was achieved by assuming a modal continuum rather than
thousands of individual modes. In this theory, mode coupling took the
form of a diffusion process not limited to small coupling amplitudes.

The work discussed here extends the approach outlined in Ref. 5 by
taking the velocity differences among the modes into account. We first
consider fibers in which the optimal (steady-state) mode distribution
does not include modes close to eutoff. The power in the fiber is calcu-
lated as a function of time and output angle (mode number) for the
case of a short input pulse. Particular attention is given to the “fiber
impulse response” obtained by integrating over all angles at the out-
put. A simple formula relates the output pulse width to the fiber length
and to the attenuation and coupling parameters. The latter can be
measured in short samples (a few meters in length) permitting the
immediate computation of the pulse broadening in a long fiber and,
hence, of the obtainable data rate for a given fiber length.

The results may also shed some light on the prospects of mode cou-
pling introduced artificially as a means of equalization: It has been
predicted that, under certain circumstances, increased mode coupling
reduces the signal distortion (ultimately forcing all energy to propagate
at an average velocity).®” The objective of this paper is to outline an
analytic approach which can answer these and other questions.
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II. TIME-DEPENDENT POWER FLOW EQUATION

The differential equation obtained in Ref. 5 for the power flow in
multimode fibers was originally derived from the mode characteristics
by assuming certain statistics for the modal field coupling. By making
some approximations acceptable for high-order modes, a description
results which admits a simple ray-optics interpretation. Each high-
order mode can be represented by a characteristic ray propagating
inside the core along a meridional zigzag path. Internal reflection guides
the rays at the core-cladding interface and limits the range of angles
which can be formed with the guide axis. If n and n. are the indices of
core and cladding, respectively, and

Ne
A=1-7 (1)

is a small difference, the maximum angle is given by the condition of
critical internal reflection which is approximately

frmax = V2A. (2)

The rays form a uniform distribution within the cone of apex angle
& max-

If the core cross section permits many modes to propagate, the rays
are so densely spaced that their distribution can be considered as con-
tinuous. The state of the fiber at a point z and at time ¢ can then be de-
scribed by a distribution P(8, z,{) where 4 is a continuous variable.*
Reference 5 expresses the incremental change dP in the power P as
a sum of two terms:

() A loss —A62Pdz; this term comprises attenuation effects in the
cladding and the core-cladding interface and increases as the
square of the characteristic angle 8. The coefficient A is measured
in m~!rad~2 f-independent loss is omitted, but can easily be
incorporated later in the final solution.

(77) Mode coupling; in practical multimode fibers, coupling was
found to occur essentially only between closely adjacent modes
and, for this reason, takes the form of a diffusion process in the
ray picture. The incremental increase in P(8, z) as a result of
diffusion is (1/6)(8/06)(6DaP/a8)dz, a term typical for radial
diffusion in eylindrical configurations. D is a coupling coefficient

* 0 is related to the transverse wave number u of the corresponding mode by
u = nkf where £ is the vacuum wave number.
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which, for most of the following discussion, is assumed to be
independent of 6.

The total variation in P thus becomes

14 oP
= —Ap? ol oL
dP ABsz+Baa(6D ae)dz. (3)
If P is a function of time ¢, we can also write
aP arP
Equating (3) and (4) and dividing by dz results in the equation
aP  diaP ) aP
7+£a—t_"AGP+0ae(eD ) (5)

The derivative dz/dt is the velocity of the power P(6) or, equiv-
alently, the group velocity of a mode with characteristic angle 6. By
using the relation between 6 and the transverse wave number u, we
can calculate this velocity from eq. (25) of Ref. 8. Except for the few
modes close to cutoff, we obtain the simple relation

dz _ ¢ |
dt ~ n(l + 6%/2)

It relates the mode velocity to the vacuum light velocity, ¢, reduced by
n because of the material retardation and by a factor 1 + 6*/2 which
accounts for the increased path length as a result of the zigzag propaga-
tion. The derivative dt/dz required in (5) is the inverse of (6) and has
the meaning of a delay per unit length. If we ignore the delay n/c
common to all modes (it can be added later if necessary), we obtain
from (5) and (6)
aP aP

oP
= = — 2P - = ).
0z AGP — 5. 0 5 +5 690 (GD aa) ™

(6)

With the help of the Laplace transformation

p(,%9) = [~ P62 0t ®)
0
we can write (7) in the form
9P _ _ s 9p
az "+ 6 96 (w ao) )

where
o = (1 4 ns/2cA)l. (10)
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Except for the factor o2, (9) agrees with (22) of Ref. 5; we can there-
fore use the solution derived there if we replace A by A¢? For the
Gaussian input distribution

pin = f(0, s) exp (—6?/03), (11)
we obtain
p(8,2,5) = f(z,5) exp [—6%/0%z, s)] (12)
where ;g .
, _ 0% 002 + 0% tanh oy.z
0%z, 5) = o 0% + oc02tanh oy,z (13)
and
f(0, 5)e O3
flz, 8) = ©% sinh gy,z + ¢ ©2 cosh oy.2 (14)
with
0, = (4D/A)} (15)
and
Yo = (4DA)L (16)

For cw excitation (s = 0), the angular width ©(z, 0) changes mono-
tonically from @, to O, as z increases. The width ©. characterizes
a distribution which propagates unchanged (at steady state) and with
the minimum overall loss coefficient v,. It seems practical to excite
this distribution right from the beginning. The condition ©, = @,
will therefore receive particular attention in the following. The solu-
tions (12) through (16) assume that @, and ©,, are so small compared
t0 Bmax = V24 that practically no light propagates at angles close to
the critical one. In other words, modes close to cutoff do not take part
in the transmission process. Experiments have shown that the steady
state in certain liquid-core fibers (C2CY¢, in quartz, for example) is of
that type.

Closed-form Laplace transformations of (12) exist only for the
approximations given in the limits z << 1/y, and z > 1/y, and these
two cases are discussed in Section III. Certain important character-
istics of P(6, z, t), however, can be derived for all z, as we shall see in
Section IV.

III. CLOSED-FORM SOLUTIONS FOR THE IMPULSE RESPONSE

In a practical communication system, the multimode fiber is likely
to be fed with a pulse #(0, £) whose width is typically of the same order
as the broadening expected in the fiber. Its Laplace transform f(0, s),
appearing in (12) and (14), and its dependence on s therefore cannot
be ignored. We assume, however, that the input is simultaneous in all
modes being excited, in which case ©, is independent of s. Sacrificing
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generality for clarity, we restrict this discussion to the practical input
condition ®, = O.; the general case can be treated in exactly the same
way, but leads to more complicated results.

In the case of a short fiber, we replace sinh ovy,z and tanh ¢y.2 in
(13) and (14) by the argument ov.»z and set cosh oye2z = 1. With the
help of (10), (15), and (16), (12) then becomes

p(8,z,8) = lf—(l?j ) exp [—02 (Giﬁ + g—zs)] (17)

Y2

which has the Laplace transform

—52/@2
g’%’)ﬁ F(0,t — nd%/2c). (18)

The denominator 1 + v,z expresses the loss in the short distance
z; exp (—6?/©?) indicates that the input condition has been conserved,
and F(0,t — n6%/2c) shows that the portion of the input pulse #(0, {)
which propagated at an angle 6 was delayed by n6%/2c. Clearly,
coupling has not affected the propagation at this distance.

The total output is obtained from the integration®

P(g,z,t) =

q(z, 8) = 2':r[:D (8, z, 8)0d8. (19)

For 2<< 1/v,, we obtain with (17)

- Wf(or S) @,2, .
7 (1 + v2)(1 + n®%zs/2c)
If we now set f(0,s) = 1, which corresponds to an infinitesimally

short input pulse of energy 1, the Laplace transformation of (20) yields
the impulse response of the fiber:

(20)

2em

w2+ 722) exp (—2ct/nO2%z). (21)

Q(Z, t) =
The assumption of a mode continuum has the consequence that the
impulse response is a continuous and well-behaved function, in spite
of the somewhat artificial condition of an infinitesimally narrow input
pulse. That @ extends mathematically to infinity results from the as-
sumption of the unbounded distributions (11) and (12). Remember
that this assumption was acceptable since 8, = 0, < Omsx. The same
condition limits Q(f) practically to a time interval narrower than
n62.x2/2c, which is the delay between the fastest and the slowest mode.
Since (18) and (21) neglect mode coupling, they could have been ob-
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IMPULSE RESPONSE Q

DELAY T/T

Fig. 1—Impulse response according to (24) normalized for equal peak values and
plotted versus normalized time for different fiber lengths.

tained without the help of the power flow equation. They were derived
here merely for a better understanding of the physical implications
involved.

In the case of a very long fiber, we may use the approximation
tanh ¢v,2 = 1 and sinh oy,2z = cosh 0v,2 = % exp ¢v.z in (13) and
(14). Equation (12) thus assumes the form

2
P = p P [—o(67/0; + 7.2)] (22)
which leads to
2702
4= 73, P (—0vw2) (23)

where p is integrated over all angles 8 with the help of (19). After intro-
ducing (10) for ¢ into (23) we can form the Laplace transform of g¢(s).
By using the condition v,z > 1, we arrive at

t 1\ 22Tt
Qz,t) = @E\/% (m + g) exp (— L 4"; — T) (24)
where
n n 07

T 24 T 2y.

T (25)
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An evaluation of (24) is shown in Fig. 1 for various normalized lengths
vez. The plotted impulse responses are normalized for equal peak
values.

The normalizing distance 1/7v. is the distance within which a 1-neper
loss is incurred as a result of the 8-dependent loss characteristic. Note
that additional #-independent loss can be present. As indicated by (21),
T is the 1/e-width, which the impulse response @ would assume at the
distance 1/v, if no coupling were present. Closed-form solutions for
@Q are available only in the two cases discussed here, but another very
practical characterization of the fiber output distribution can be ob-
tained without performing the Laplace transformation.

IV. PULSE DELAY AND PULSE WIDTH

Because of a general relation between P(t) and its Laplace transform
p(s), we obtain the mth moment of P(¢) from

mp

as™

(=1

- f tmPds. (26)
=0 0
To achieve a suitable normalization we set m = 0 which yields

p(s = 0) = f " Pat (27)

0

and divide (26) through (27). This leads to

otnp| [0 (t — 8)mPd

(_l)m ) (28)

as“‘ a0 o

Pdt
/.
where
(—1)Pdt
§="p—— = — atanp (29)
Pdt 8 lu=e

0

The second derivative represents the variance of P(t) and, hence,
a measure of the width of P(¢):

® p— 2
2 fﬁ t—aPdt
e = = .
f " pat 9s* a0
0

(30)
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The third derivative

® —_ 3
3=fn C=OPE
’ f " Pdt 68" li—o
0

is generally called the “skewness” of the distribution P(f). The ratio
n/7 is a measure of the asymmetry of P and, as we shall see later, per-
mits an immediate estimate of the value of v,z without the knowledge
of any other fiber parameters.

The fact that the Laplace term ns/2c¢ appears in (9) as part of the
sum Ag? = A 4+ ns/2c permits us to use the relation

amp(b, z, s) _ g)mWWWJJD
as™ -0 (2c aAm™ (32)

(31)

which will greatly simplify the following calculations.
Let us now apply (30) and (31) to the general solution (12) assuming
again the special but practical condition ®, = @.,. We obtain

36(0) = 3 [m + (g—z - %) (1— e—w)] (33)

for the mean delay (in addition to the overall delay nz/c) and

2 2
Tp(f) = g ['sz + (g)_z - 2‘) — 2702 (2% — 1) e 2t
toetrer — (%22 - i) eﬂv-a]’ (34)

for the half-width of the pulse. Figure 2 shows dp and 7p plotted as
a function of v,z for 8 = 0 and # = ©,. At first, a replica of the input
pulse (r = 0) propagates in every mode without broadening and
merely suffers a mode-dependent delay n6%/2¢, as we learned already
from (18). Very soon, however, the pulses in the individual modes
widen; they begin to overlap even before the length 1/, is reached.
Once 1/, is passed, the pulse width in all modes increases mainly as
T(v»2)}. Compared to this increase, delay and pulse width differences
in different modes become negligible since they cease to increase for
large z. Specifically,

T 1 f2
sp(0) = 5 (’ymz _§+@ﬁ)’ for v,z > 1 (35)
and

5 g\
r5(6) = g(%z _ ;’ + %) for 7oz > 1. (36)
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Fig. 2—Delay and time spread of the fiber output on axis and at an angle ¢ = 0.

To calculate delay and width of the impulse response @(t), we must
first apply the integration (19) to the general solution (12). This yields
¢ = 70O sinh 0y,2 + cosh ov,2) "% (37)

Now, by forming the first and second derivative of g according to (27)
and (28), we obtain
— T 1 — g 27,2
ba = g | ez + 31— o129 (38)
and

2

The ratio /T is shown in Fig. 3 plotted versus the normalized fiber
length y.z. For z << 1/v«, the width r approaches 7T'y.z, as expected
for negligible coupling. At z = 1/4y,, 7 begins to follow a new
asymptote

}
TQ = T ['ywz(l — 2e72=%) + % — e e ie“‘"-‘] . (39)

7 = (T/2)(v<2)". (40)

The quality of the approximation (40) is amazingly good even for
small z.
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Fig. 3—Relative width of the impulse response plotted versus the normalized
fiber length. The two straight lines show the asymptotic behavior for very short and
very long fibers,

The amount by which r deviates from 7Ty, z indicates the (desirable)
effect of coupling: The width of the impulse response increases less
with coupling than without,® the increase being proportional to 2}
rather than z.

V. SOME GENERAL RESULTS FOR LONG FIBERS

The simple approximation (40) ecan be obtained directly from (23) if
o in the denominator of that equation is set equal to unity. In this case,

g = 0% exp (—ov.2) (41)
independent of the input condition. By applying (32) to the approxi-
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mation (41), we obtain

" tmQat o
2

- ( - 'Yuoz) (42)
= A=
f Qdt

where Q is the inverse Laplace transform of ¢(s) and hence the impulse
response as before. Equation (42) is an important and powerful rela-
tion which permits us to calculate all moments of the impulse response
from the steady-state loss coefficient of the time-independent power
flow equation.

If we let m = 2 in (42), we obtain (40) as expected. For m = 3 we
have

(3Z'Yen) ¥ (43)

ro| N

n =

—

which according to its definition (31) describes the “skewness’ of Q(t).

The ratio
/7 = (9/v2)"" (44)

is a measure of the asymmetry of the impulse response. For large 2,
n/r approaches zero and, hence, Q(t) becomes a symmetric function.
We can compute this function by introducing ¢ = t' + Tv.2/2 with
¥V < T7,2/2 in (24). The impulse response

Q(t) = % (21/v=z)t exp (—vwz — 2t'%/T?v,2) (45)

is then Gaussian in time with the variance = of (40).

The asymmetry parameter (44) can be used to determine 7,. Par-
ticularly if merely the order of magnitude of 7, is of interest, this can
be obtained, with some experience, from a quick look at the asym-
metry of the impulse response.

Another conveniently measurable fiber characteristic is the angular
width O, of the steady-state mode distribution. It can be obtained
from a scan of the (angular) far-field distribution at the end of a long
fiber (z > 1/v.). If we define the effective numerical aperture NA of
the fiber as the sine of the apex angle of this cone of radiation (measured
at the 1/e-points of the intensity), then

NA = nsin O, = n0,. (46)

Using (15), (16), (25), and (40), we can now write the width of the im-
pulse response as
_ (NA)?

2nec

(2/472)". (47)

T
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This formula clearly shows the improvement, and the penalty, that
results from coupling. Uncoupled, uniformly attenuated modes cause
the impulse response to broaden to an effective width of 2(NA)2/2ne
in z km of fiber. This width can be reduced by a factor (4y,2)? in ex-
change for an increase in the overall attenuation by 4.35v, dB/km.

The physical contents of these results can best be summarized if we
define a “coupling length” L = 1/4vy,. As shown in Fig. 3, this length
marks the point at which the width of the impulse response changes
from a linear to a square-root dependence on length. Together with this
change, the impulse response undergoes a transition from the exponen-
tial shape (21) to the Gaussian shape (45). The inverse of the coupling
length (in km) is very nearly equal to the excess loss (in dB/km) in-
curred because of the coupling phenomenon.

Equation (47) as well as the previous results are limited to fibers in
which the coupling coefficient D is independent of 8. The study of
liquid-core fibers, on the other hand, has given us reason to believe
that, in some fibers, D decreases with increasing 6. This characteristic
could have a desirable effect on the impulse response and the excess
loss, since it reduces the power flow toward the lossy modes (large
angles) while, at the same time, enhancing the coupling among all
other modes. We therefore studied the general case

D(6) = D,6, v=10,1,2,..., (48)
in some detail.

The steady-state parameters 0, and v, can be obtained as general
functions of A, D,, and v by using the Rayleigh-Ritz procedure.® Due
to (42), twofold derivation of v, with respect to A then yields directly
the effective width of the impulse response. This calculation leads to

_ (NA)?

2ne

[2/(4 + )7 ] (49)

where NA = n0,, denotes the effective width of the output radiation
as before. For v = 0, (49) reduces to (47). An exponent » > 0 indeed
narrows the impulse response, although not very significantly. For
D = D,/84 for example (a strong angular dependence indeed), = is
only 0.7 times narrower than in the case D = const.

Another limitation of these results is the requirement that
0, < (24)% If this is not the case, the steady-state distribution is
generally determined by a sharply rising loss term at fm.x = (24)%
rather than by the quadratic term 462 Under these conditions we find
that the functional relation (47) still holds, although with different
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coefficients, so that for practical distributions D(#) the width » can be
up to three times smaller than indicated by (47) or (36).

As a typical example, we shall use (36) to compute the data rates
achievable. Let us assume that we had means to design and manu-
facture a coupling structure in the fiber which produced the desired
excess loss 7, and the desired numerical aperture. For simplicity we
assume the input pulse to be somewhat narrower than the fiber impulse
response so that (36) gives a good measure of the half-width of the ex-
pected output pulse. We then choose a data rate

B = 1/2+. (50)

We assume the core loss common to all modes to be 4 dB/km and al-
low 50 dB of loss between repeaters.

Using (36) we can then calculate the excess loss and the repeater
spacing necessary for a desired data rate. These results are plotted in
Fig. 4. A 1-dB/km excess loss decreases the possible repeater spacing
by only 25 percent but, at the same time, triples the data rate. An at-
tempt to further increase the data rate by even more coupling is costly:

REPEATER SPACING IN km

125 12 11 1M 8 8 7 6 & 4
T T T T T 1T 1

400
2

200
4

100
6

60
10

40
—20

20
CORE LOSS 4 dB/km 4o

10l 50 dB BETWEEN REPEATERS

- 60

6
| [ I | [ [ 100
0.01 002 004 0.1 0.2 0.4 1 2 4 10

EXCESS LOSS IN dB/km

Fig. 4—Width of the impulse response plotted versus the excess loss incurred be-
cause of coupling for 4 dB/km core attenuation and 50 dB loss between repeaters.
Right side shows equivalent data rates. Repeater spacing is shown at the top.

DATA RATE IN Mb/s
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Another threefold increase in the data rate requires 4 dB/km excess
loss, and divides the repeater spacing in half. The results of Fig. 4, of
course, are based on a uniform coupling distribution and an excess loss
increasing as #% As mentioned earlier, more favorable distributions
could result in an impulse response permitting a higher data rate, al-
though there may be practical limitations to the extent of this
improvement,.

VI. CONCLUSIONS

The description of fiber modes by a continuum results in a partial
differential equation whose solution yields the response function of the
fiber. We find a characteristic length indicating the region in which the
impulse response changes from an exponential to a Gaussian shape.
Beyond this length, the width of the impulse response increases only as
the square root of the fiber length. In practical fibers, the inverse of
this length turns out to be proportional to the excess loss incurred be-
cause of the coupling phenomenon. The latter may represent a prac-
tical limit to the improvement that can be gained from coupling. As
an example, we find a data rate of 12 Mb/s achievable for 10 km re-
peater spacing and an effective numerical aperture of 0.1, The data
rate is inversely proportional to the square of the numerical aperture.
Thus half the numerical aperture permits a fourfold increase of the
data rate. Another increase of the data rate without a penalty in loss
or numerical aperture is theoretically possible by artificially creating
a more suitable coupling characteristic in the fiber, but it seems that
the technological requirements for doubling or tripling the data rate
in this way are high.
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