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This paper presents a comprehensive theory of mode coupling in
optical fibers with imperfections. The paper begins with the derivation of
a general coupled wave theory based on the modes of the ideal fiber. The
general theory is applied to a stmplified description of guided and radia-
tion modes of the fiber that is valid for small core-cladding index differ-
ences. The simplified theory results in expressions for the coupling coeffi-
cients that are nearly as simple as those of the slab waveguide. As an
exvample, the theory is applied to the calculation of radiation losses caused
by pure core diameter changes and by elliptical deformations of the fiber
core.

I. INTRODUCTION

Dielectric optical waveguides support a finite number of guided
modes and an infinite number of radiation modes.! Even if the number
of guided modes that can be supported by the waveguide is reduced to
one, the presence of the infinite number of radiation modes forces us
to be concerned about mode conversion phenomena. Coupling among
the guided modes of a multimode optical waveguide (multimode wave-
guide refers to the guided modes) is caused by imperfections in the
refractive index distribution or the geometry of the optical waveguide.
Its effects may be beneficial for reducing the delay distortion that re-
sults from uncoupled multimode operation.?:? Coupling between guided
modes and the continuum of radiation modes is usually not desired
unless the waveguide is intended to serve as an antenna. However, a
certain amount of coupling is unavoidable and results in scattering
losses. ! 4:®

E. G. Rawson has calculated light scattering from fiber waveguides
with irregular core surfaces by an approximate technique.® However,
his method is not suitable to calculate coupling between guide modes.
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A theory of radiation losses in round optical fibers has been presented
in Ref. 7. This theory was based on a field expansion in terms of the
exact modes of the fiber. Because of the complicated mode fields, a
theory based on the exact modes of the guide is very tedious and re-
sults in equations whose numerical evaluation is difficult and costly.
However, Snyder® and Gloge® have shown that the description of the
modes of dielectric waveguides can be greatly simplified if it is assumed
that the difference of the refractive indices of core and cladding is only
very slight. This assumption allows an approximate treatment of the
mode problem, resulting in very much simpler field expressions. The
coupled mode theory based on approximate modes yields expressions
for the coupling coefficients that are almost as simple as those for the
slab waveguide. The entire coupled mode theory thus becomes simpler
and its numerical evaluation becomes cheaper.

This paper starts out with a derivation of the coupled wave equations
in terms of modes of the ideal guide. This mode description is somewhat
different from the coupled mode theory in terms of local normal modes
used by Snyder.!0! It results in simpler expressions for the coupling
coefficients. The exact coupled mode theory is then applied to the
problem of coupling between the simplified waveguide modes. We limit
the discussion to coupling caused by changes or imperfections in the
waveguide geometry. Coupling caused by refractive index inhomo-
geneities, which could be handled in a similar fashion with the use of
the exact expressions for the coupling coefficients and the approximate
mode description, is not discussed in this paper.

Finally, we apply our results to the problem of scattering losses of
guided modes caused by diameter changes and elliptical deformations
of the waveguide core. We also derive simplified expressions for the
coupling coefficients between guided modes far from cutoff and discuss
coupling between guided modes caused by deformations of the fiber
core and by curvature of the waveguide axis.

I1I. EXACT COUPLED MODE THEORY

The dielectric optical waveguide with imperfections is defined by

a certain refractive index distribution n = n(z,y, 2) that enters
Maxwell’s equations:

V X H = twe,n’E (1)

V X E = —iwu H. (2)

E and H are the electric and magnetic field vectors of a general field
distribution in the waveguide. The fields are assumed to have the time
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dependence e*!, with radian frequency w; €, and u, are the vacuum
values of the electric permittivity and magnetic permeability. In addi-
tion to the refractive index distribution n of the real waveguide, we
consider the index distribution n, that defines an ideal guide from which
the real guide deviates in some way.

We decompose the fields into their transverse and longitudinal parts.
The electric field is thus represented by the equation

E = E( + Ez (3)
and the magnetic field is given by
H=H, + H.. (4)

By using a similar decomposition of the ¥ operator (e. is a unit vector

in the z-direction),

9
v_vl+ezay (5)

Maxwell’s equations can be written in the form

v, X H. + (ez X %) = jwen’E, (6)
and
v, X E., + (e, X %) . (7)

The longitudinal field components are expressed in terms of the trans-
verse field components

1
E. = Toe? v, X H, (8)
and
H, - -1 v,xE. (9)
W,

The modes of the ideal waveguide with index distribution n.(z, y) are
defined as solutions of the equations

vV, X 3. — iB.(e. X 3,,) = twenid,, (10)
and
Ve X &: — ?:,Ba(ez X 8:'!) = —iwﬂuscvl,- (1]-)

The index » is a mode label and 3, is the propagation constant of the
»th mode. The longitudinal components of the mode fields are similarly
expressed as

1

Twe Me

&: = vV, X 3¢, (12)
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and

WK, = — 1 V: X & (13)

AT

The transverse field of the waveguide with the index distribution
n(x, y, z) is now expressed as a superposition of modes of the ideal

waveguide.
E; = Z apsyl, (14)

and
¥ = Z b, 3. (15)

The summation symbol in (14) and (15) indicates summation over
guided modes and integration over radiation modes. Indicating the
index » by the symbol p in case that it belongs to the continuum of
radiation modes, we have to replace

Zv—vzf:dp- (16)

The sum in front of the integral on the right-hand side of (16} indicates
a summation over the various types of radiation modes.

For the derivation of coupled differential equations for the expansion
coefficients a, and b, we need the orthogonality relations of the modes
of the ideal waveguide.

f ) f " e (8 X 3eS)dady = 2 I%Tpa”“‘ a7
—o0 J —o0 o

The asterisks indicate complex conjugation. The symbol é,, indicates
Kronecker’s delta for discrete values of » and u; it is zero if one of the
indices labels a guided mode while the other labels a radiation mode,
and it becomes Dirac’s delta function if both indices label radiation
modes.

The series expansions (14) and (15) are now substituted into the
equations (6) through (9). Making use of the fact that the mode fields
satisfy the equations (10) through (13), we obtain

> {(% + iﬂ,a.) (e, X 3C,;) — twe (n? — n%)a.a.g}= 0 (18)

v

and

da, |, . 1
Z {(a}“ + I".Bvbv) (ez x av!) + w—eobwvt

X [(771 - ) (7. xacn)]} _0. (19)



MODE COUPLING IN OPTICAL FIBERS 821

We take the scalar produet of (18) with & and of (19) with 3¢}, After
integration over the infinite cross section, we obtain with the help of
the orthogonality relation (17)

db

2 T =2 Ky a, (20)
and
d _
ﬂ,; + 1 .B.u =2 Z kmbﬁ (21)
with the coupling coefficients
_wéolﬂﬂlfm[w 2 __ 2 :ﬁ‘
K, wp g .. ). (n? — n2) &y~ &, dzdy (22)
and
Fo_ —1 lﬂui
K 4£we,, e —» R"‘ v

n2

X [(l - %2) v, X scw] dedy. (23)

Equation (23) can be brought into a simpler form with the help of (12)
and by performing a partial integration

- _wEolﬁquwfwTin 2 2\ p* |
by = WP g ) o) un (n 1) 8, &.dxdy. (24)
Finally, we introduce the amplitudes ¢{" and ¢ of forward and back-
ward traveling waves by means of the transformation

Gy = ofPle it + ci e (25)

and

by = cfPeitn — cf et (26)
Substitution into (20) and (21), addition and subtraction of the result-
ing equations, and regrouping of terms results in the desired coupled
wave equations

)
df(:;z = ¥ {KSPeiPeitusoe 4 Kol eiButhz ) (27)
v
def™ (=) (F i (ButBa) 2 el e Puhe
dz = Z {va "Gy e wTHr + va c, ‘e Ko } (28)
v

The coupling coefficients are defined as

Kﬂﬂ — “’50[ f _no { |ﬁ,‘| anl &,

+q 18] i 38 8,2} dady. (29)

B; n?
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The factors and superscripts p and ¢ indicate the symbols (4) or (—)
or the corresponding factors +1 and —1. The propagation constants
8, are positive quantities. The coupled wave equations (27) and (28)
provide an exact description of the imperfect waveguide in terms of
normal modes of the perfect guide. The use of normal modes of the
perfect guide results in the simple general form (29) for the coupling
coefficients.

Our coupled mode theory can be applied to any type of waveguide
problem such as waveguides with refractive index inhomogeneities,
tapers, or bends. It may be that the expansion in terms of ideal modes
of the waveguide does not provide the most convenient basis for some
problems. For the description of tapers, for example, we face the follow-
ing situation. Consider a waveguide which is perfectly straight and uni-
form up to a point where its cross section begins to increase. After
some distance, the taper connects to a uniform waveguide of constant
cross section. If we use the modes of the smaller guide for our mode
expansion, we see immediately that the coupling coefficients have non-
zero values not only on the taper itself but also throughout the entire
waveguide of larger cross section. Even though our description is
precise and yields the right answers, it is inconvenient for the problem
at hand. It would be far better to use so-called local normal modes that
do not themselves describe wave forms in any real waveguide but corre-
spond at each point z along the nonuniform guide to the modes of
a hypothetical uniform guide whose cross section coincides locally with
that of the waveguide under study. Using local normal modes results
in coupled wave equations of the form (27) and (28) but with different
coupling coeficients. In case of the taper, these coupling coefficients
would be nonzero only on the taper itself but would vanish on the uni-
form waveguide sections. Local normal modes are obviously better
suited for the description of tapers. For the description of waves in
bent waveguides it would be most convenient to use modes that locally
correspond to a straight waveguide whose axis is tangential to that of
the actual guide. In addition to these problems of convenience, there
exist problems of convergence of the series expansions (14) and (15).
A series expansion in terms of ideal modes may converge more slowly
than an expansion in terms of local normal modes. However, we shall
see that we can use the series expansion in terms of ideal modes to treat
most problems of waveguides with only slight refractive index differ-
ences between the core and cladding materials. In addition, it is usually
possible to guess the form of the coupling coefficients of a particular
expansion from the coupling coefficients for the ideal mode expansion.
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For the purposes of this paper, we restrict ourselves to the descrip-
tion of waveguides with piecewise constant refractive index distribu-
tions and allow only deformations of the cross section of the waveguide
core. Figure 1 shows a typical waveguide imperfection. The refractive
index distributions » and n, coincide inside of the core and in the clad-
ding region. They differ only near the core-cladding boundary. If the
boundary has moved outward from its ideal position, the index differ-
ence n? — n? equals n} — 73 in the region where the actual core over-
laps the ideal cladding; it vanishes everywhere else. If the core bound-
ary has moved inwards, we have n? — n} = —(n} — nj) in the region
where the actual cladding overlaps the ideal core and zero values
everywhere else. The field components that multiply the refractive
index difference term in (29) are either continuous, if they are tangen-
tial to the boundary of the ideal waveguide, or they jump by a factor
(n1/n9)* if they are normal to the ideal core boundary. If we restrict
the discussion to core boundary displacements that are so slight that
the fields can be considered constant over the region of the displace-
ment and to weakly guiding fibers with (n;/n. — 1) < 1, we obtain
from (29)

g 2 _ 2 2r
Kgo = — el 213 (¥ y,) — a] .
X [p&u & + g8 &.]}de.  (30)

It is noteworthy that the approximate coupling coefficient (30) is
identical to the coupling coefficient (13) of Ref. 12 for the local normal
mode expansion. The only difference in the appearance of these two
coupling coefficients consists in the fact that the derivative of the
boundary function instead of the function itself appears in Ref. 12 and
that the entire expression is divided by 8, — 8,. It has been explained

. ~— ACTUAL CORE—CLADDING BOUNDARY r{x,y,z)

/
IDEAL CORE—CLADDING BOUNDARY —
Fig, 1—Sketch of a fiber with distorted core-cladding interface.
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in a different place® that it is the Fourier component of the boundary
function at the spatial frequency 8, — 8, that determines the coupling
behavior of the modes. This fact makes it clear that (we write f instead
of r — a for simplicity)

1 df

8. — By) dz (31)

is fully equivalent to the function f itself as far as its effect on mode

coupling is concerned. We can carry the argument one step further and
replace f with

1 _af

(B — Bu)? d2?

If we replace f = r — a in (30) with (32), we obtain a coupling coeffi-
cient that vanishes in straight, uniform waveguide sections. It is not
hard to guess that a coupling coefficient of this type belongs to an ex-
pansion in terms of local normal modes of a hypothetical waveguide
that is tangential to the curved axis of the actual guide. The modifica-
tion of (30) that is indicated by (32) is thus particularly suitable for the
description of mode coupling caused by bends of the waveguide axis.
A description in terms of ideal modes or even in terms of local normal
modes of a hypothetical guide with straight axis is unsuitable for a de-
seription of waveguide bends since it leads to coupling coefficients that
do not vanish on the straight waveguide section behind the bend. This
brief discussion shows that it is not hard to modify the coupling coeffi-
cients of the ideal mode coupling theory to extend it to the case of local
normal mode expansions of different types.

(32)

III. SIMPLIFIED DESCRIPTION OF GUIDED MODES OF THE FIBER

A. W. Snyder® realized that the modes of round fibers and their
eigenvalue equations simplify considerably if use is made of the fact
that (ni/ns — 1) < 1 applies to most fibers of practical interest. D.
Gloge® went one step further and showed that the mode fields become
simple in appearance if they are expressed in Cartesian instead of
the more conventional deseription in cylindrical coordinates. Gloge’s
technique is useful for even more complicated waveguide structures
such as tubes.*

We write down the field expressions for the guided modes of the
round fiber without derivation.® The mode fields can be polarized in
two mutually orthogonal directions. We have for one polarization in
the core region for r < a
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8. = idx I:J.;H('CT) { et I)¢}

%, —cos (v + 1)¢
#aen { 0= 00 (o
6= asie [ "
=~ [t {2 18]
~ st {0~ D21 )
3, = —nd {27 A2 0,) {;ﬁf iii}' -

The field in the (infinite) cladding region for r > a is obtained from the
field expressions (33) through (36) by replacing the amplitude constant
A with [J,(ka)/H"(iya)]A. In addition, we replace « with 7y and the
Bessel function J,(xkr) with the Hankel function of the first kind
H{"(zyr). The parameters « and vy are defined as (k2 = w2e,u,)

K = (nik* — @)} (37)
and

vy = (B2 — nikHi (38)
The remaining field components vanish, 8, = 0 and 3¢, = 0. The two
sets of circular functions that are shown in the field equations are neces-
sary to obtain a complete set of orthogonal modes. The functions in the
upper as well as those in the lower position belong together. We have
used n to indicate n = n; = n,.

The set of guided modes is still not complete unless we also include

the orthogonal polarization. We have again for r < a(8, = ¥, = 0)

.. ¢AK[JH4“ﬂ {am(y—k1)¢} ) {gﬁ(v-—1)¢}] (39)

=3, sin (v + 1)¢ e
_ cos v¢
8, = AJ,(xr) {sin V¢} .

Ak e sin (v + 1)¢
J'Cg — W ;—; Iin-}—l(Kr) {—COS {y + 1)¢}

it |00

—d B [y o [eosve]
5, = nd 8] MDJ..(U‘) {sin v¢} -
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The field in the cladding is again obtained by the replacements men-
tioned above.

The mode amplitudes must be related to the power P (that is the
same for all the modes). We have for the fields (33) through (36) and
for the orthogonally polarized field (39) through (42)

4 4 }& v:P :
s (43)

eyratn(ni — nd)k?|J,—1(ka)J1(xa) |

2 for v =10
&= {1 for v #0 (44)

The eigenvalue equation of these simplified fiber modes is

Joa(ka) _ . H®(iya)
“Txa) Y HP(iva)

With the help of the functional relations of the eylinder functions, it
is easy to show that (45) is also valid if » — 1 is replaced by » + 1.

The simplified guided modes listed here are not the same as the usual
HE and EH modes of the round fiber. It can be shown?® !5 that the simpli-
fied modes listed in this paper result from the usual fiber modes as super-
positions of an HE and an EH mode. The HE,,, , and EH,_,,, modes
have very nearly the same propagation constant, they are almost de-
generate. Since this degeneracy is not perfect, our simplified modes are
not modes in the true sense of the word. They decompose into the
HE,,. , and EH,_;,, modes of the round fiber as they travel along the
waveguide thus changing their shape. A true mode is defined by the
fact that only its phase changes (in the lossless case) as it travels down
the guide. However, the approximate modes do form a complete
orthogonal set of modes and can thus be used to express any field that
can exist in the fiber. Even after one of the approximate modes has
decomposed into HE and EH modes, it can again be expressed in terms
of approximate modes at this point. The fact that the approximate
modes are not true modes in the usual sense does not limit their useful-
ness for studying mode conversion and radiation problems.

The important fundamental HE;; mode of the fiber corresponds to
the lowest-order approximate mode with » = 0. This is a true mode
that does not decompose as it travels along the waveguide.

A =

with

(45)

IV. SIMPLIFIED RADIATION MODES OF THE FIBER

The radiation modes of the fiber can again be simplified by using
(ny/ny — 1) < 1.16 There is a slight complication, however. The simpli-
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fied description of the guided modes was made possible by the fact that
they are very nearly transverse modes, their transverse components
being much larger than their longitudinal components. The radiation
modes are nearly transverse only if their propagation constants are
nearly 8 = n.k. Since the continuous spectrum of radiation modes ex-
tends from 8 = —mn.k to B = nsk, only the modes in the immediate
vicinity of the two end points of this interval are also nearly transverse
modes. Throughout most of the spectral region of 8 values, the ap-
proximation corresponding to that for the guided modes does not
work. However, we can still use the fact that the refractive indices of
core and cladding are nearly identical and use the radiation modes of
free space in the region where our mode approximation technique fails.
A simplified treatment of all the radiation modes is thus also possible.
The two approximations complement each other. In the region near
B = =£nsk, where we use the approximate radiation modes of the guide,
the free-space radiation modes do not work very well because reflec-
tions at the core-cladding interface at grazing angles are important.
Inside of the 8 range, where the waveguide mode approximation
method fails, we can use the free-space radiation modes with confidence
since the interface does not cause much reflection for waves passing
through it at reasonably steep angles.

We begin by listing the approximate radiation modes of the fiber for
8 near =£n.k. The field equations are very similar to those of the guided
modes. In the fiber core at » < a we have

 iBs sin (v + 1)¢
AP

+ Jua(or) {_Z‘; 8 - Bz}] (46)

cos v¢ |
sin vqu-

_ tBo e [cos (v + 1)¢
T \/.u: [""*1(”) |sin (v + 1)¢}

cos (v — 1)¢
— Joa(or) {sin o —1) ¢}] (48)

Gn
=
I

= BJ,(or) { 47)

Y B cos 18]

3, = —nB i8] junJ.(w) {sin w} (49)
The remaining field components vanish. The propagation constant 8 is
a continuous variable for radiation modes unrestricted by an eigenvalue
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equation. The parameter ¢ is defined as
o = (nfk? — g%} (50)

Instead of specifying the modifications that are required to transform
the expression of the field inside of the core into the expression for the
cladding field, we state the field in the region r > a in detail.

sin (v + l)cb}

g, — Ce [(Hsl {(o7) + DHE(po7)) {

28 —cos (v + 1)¢
+ (Hn) + DHEA0) { oy 0 — et en
8, = CULr) + DHr) | o (52)

e [e . cos (v + 1)¢
i, = — ﬁJ}t:a [ (Hs-?-l(PT‘) + DHSﬂl(PT)) {sin (V + l)qﬁ}

— (H®,(or) + DH®,(or) {“"“ (v — D¢ }] (53)

sin (v — 1)¢
= — i £o (1 @ cos v .
% n¢ 18] Vo (H®(pr) + DH(er) {sin vqb} (54)

H® and H® are the Hankel functions of the first and second kind. The
parameter p is defined as

p = (nik® — gL (55)

The amplitude coefficients are

- iTTa [oJ,s1(ca) HP (pa) — pJ,(ca)HZ (pa) 1B (56)

and
_ UJI+1(°'G)H§1)(PG) — PJr(U'a)Hn(-lf-l(Pa) .
UJV+1(UG)H:S2)(PG') - PJN(U'G')HSE?-I(PG)

For the field with the orthogonal polarization, we simply state the field
expressions inside of the core. It should be apparent from inspection of
(46) through (57) how the field expression in the cladding is obtained
from that of the core. The relations between the amplitude coefficient
are the same in either case. We have forr < a

__1iBg cos (v + 1)@
=% [J’“(w) {sin v+ l)dw}

A

D = (57)
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&. = BJ.(or) { cos ”*"} (59)

sin v¢

iBs [e, sin (v + 1)¢
g, = \/7{ ,+1(07') —cos (v + 1)¢:|
sin (V — 1)¢
+ J_i(o7) [ —cos (v — 1) ]} ©0)

8 cos v
ic, = nB 187 J( ){sinmp} (61)
It remains to relate the amplitude coefficient to the power P. Because
of the continuous mode spectrum, it is not possible to normalize the
radiation modes with a finite amount of power. The parameter P is
defined by the relation

) ) *
%f_ f‘ (8, X 3¢5) -e.dzdy = %Pb‘(p — ). (62)
The amplitude coefficient B is thus [e, is defined by (36)]
( Bo )}(gp P}
B = fo (63)

Venar| o ,—1(oa) HO(pa) — pd(ca)HO1(pa) |

It is important to remember that the radiation modes listed so far are
valid only in the immediate vicinity of 8 = Zn.k. Inside the 8 range,
we use the radiation modes of homogeneous space with refractive
index n2. These modes can be expressed in a number of different ways.
The simplest expressions would result from a plane-wave representa-
tion. However, for our present purposes, it seems advisable to use field
expressions that resemble most closely the radiation modes (46)
through (54) and (58) through (61) in order to achieve continuity of the
field expressions throughout the entire 8 range. The modes of the
homogeneous medium (in vacuum we would say free-space modes) are
simpler than the radiation modes of the fiber, since one expression ap-
plies throughout all of space. There is no need to treat the fields inside
and outside of the core separately. The field expressions that satisfy
our requirements are [p is defined by (55), we use n = n,]

iCp n ¢+ Dé
8, % I:JH.I(.DT) { —cos (v + l)d’}

sin (v — 1)¢
+ Jomaler) {—cos (v — l)qu (64)

6. =10 (65)
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8, = CJ.(p7) {"."s ”"5} (66)

sin v

_ iCp e cos (v + 1)¢
== ﬁ\/n: [J’“("T) {sin v+ 1)¢}

cos (v — 1)¢
s {81 o

Sl (3 ) e {22
(% — %) Ju-;-z(P") {gﬁ: E: ::_- gi}
+ Ju—a(pr) {zzf E: - gi})] o

e, = S2 (8- ) o { _om b S 00

= deston { et @

cos (v
The orthogonally polarized modes are

Gt (2330} 0ot 2 2)] o

8, = CJ,(pr) {c."s ”¢} (71)

sin v¢
&,=0 (72)

_iCp [e sin (v + 1)¢
5{3: = 2k tho I:Jv+1(pr) { —Co8 (p + 1)¢}

+J,_1(,,;){ :;’;@—};g}] (73)

r% — %’E)[Jm(pr) { _ii;; E: i ggi}
sin (v — 2)¢
— Jp—2(Pr) { — oS (y — 2)¢ }] (74)
+ ’%k) Jer) {;ﬁf ::}
8 nk cos (v + 2)¢
o T8~-)(J»+z(f-ﬂ') {sin v+ 2)46}

1)
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The amplitude coefficient C is related to P
]
445" koBP
C =1 onGT 5 779 T [ (76)
The modes of the homogeneous medium, like all the other modes, are
mutually orthogonal among each other. With the help of the relations

T@H@) — L@ HO@) = = (77a)
and
T(DH(@) — Jy(x) HO (z) = — ;f; (77b)

it is easy to show that the radiation modes of the homogeneous medium
and the radiation modes of the round fiber reduce to the same expres-
sions in the limit [8]| = nJk, ny = ne = n.

V. COUPLING COEFFICIENTS FOR CORE-CLADDING IMPERFECTIONS

We consider a fiber whose core-cladding interface is described by the
function
r(z,y,2) = a + f(z) cos (m¢ + ). (78)

If we choose a different function f(z) and different phase ¢ for each
integer m and sum over the second term on the right side, we generate
a Fourier series which allows us to describe core-cladding imperfections
of the most general kind.

We assume that a given mode labeled » is traveling in the waveguide
and ask for the coupling from this mode to all other guided and radia-
tion modes. The function f(z) can be separated out from the coupling

coefficient by defining
K, = Kmf(z)- (79)

We have mentioned earlier that the longitudinal field components
of the guided modes are much smaller than their transverse compo-
nents. The same statement is true for the radiation modes only if their
propagation constant 8 is very nearly equal to #nsk. For || values
much smaller than n.k, the longitudinal field components of the radia-
tion modes can be as large as or larger than the transverse components.
The coupling coefficients contain scalar products of the two fields that
are coupled together. Coupling coefficients that involve at least one
guided mode are thus determined primarily by the transverse compo-
nent of both fields, since the product of the longitudinal components is
small over most of the range of 8 values. We thus neglect the contribu-
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tion of the longitudinal components and gain the advantage of much
simpler expressions for the coupling coefficients. The only region of the
8 range where the longitudinal components could make a significant
contribution to the coupling process is near § = 0. Outside of a small
region near 8 = 0, our approximation is reasonably accurate. To this
approximation, modes with orthogonal (transverse) polarization are
not coupled by core-cladding imperfections of the form (78).

For coupling between two guided modes » and u we obtain from (30)
and (79) with the help of the field expressions

Row — Cwn Dyoyud s (k@) u(k,a) ) (80)
. Veue, 2iank[ | J,—1(6,@)Jss1(k0) yo1(ku@)J wia(x,a) | J*

The factor e,m can assume the values 4, 2, 1, or 0. It is zero unless
u = » &= m. Table I shows the values of e,mn for all possible cases. The
factor e, is defined by (44), «, and v, are determined by (37) and (38).

Coupling between the guided mode » and radiation modes x must be
described by two different coupling coefficients depending on the value
of the propagation constant 8 of the radiation mode. For values of |8|
close to nsk, we use the radiation modes of the fiber and obtain

Rwo = Ewm
By —
€€,

P(:_: — l)i')'ﬂ/;J..(xpa)J,.(ua)

X ralFoatot) o) | o wa(e@) Ho D (pa) — pJ f(ea) H21(pa) |
(81)

For 8 values inside the range —n2k < 8 < mak excluding the end points,
we use the radiation modes of homogeneous space and find

L H
e k LA AN B
Rweo — Eurm P I:?’L (ng 1) Pﬁ] Yo o(ks0)J (pa).
T Vee, i[2(87 + n%?) | Jo1(a)J a(na) |

Use of (77) allows us again to see that (81) and (82) become identical
in the limit ny = ns = n, 8| = neok.

The coupling coefficients for the approximate guided and radiation
modes of the round optical fiber allow us to solve a large number of
problems involving fibers with core-cladding interface irregularities.

(82)

VI. FAR-FROM-CUTOFF APPROXIMATIONS

For purposes of multimode operation it is often desirable to have
simple expressions for the eoupling coefficients which are valid far from
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TABLE I—TABULATION OF THE FACTOR é,m FOR ALL PoOSSIBLE
COMBINATIONS OF ANGULAR FIELD DEPENDENCE OF THE MODES
AND THE CORE-CLADDING INTERFACE DisTORTION

€um = 0 unless specified otherwise

incident mode spurious mode distortion
COS v¢p COS u¢ cos me
v=u=m=10
5 [¥= 0, u=m
Curm = u=0 vr=m
1 O<uy=vEtm
0<u=m-—vp
incident mode spurious mode distortion
sin vg sin g €O8 M
0 vorpu=
ewm = 1 11 O<p=v+tm
-1 0<p=m-—v»
incident mode spurious mode distortion
cOS v sin ug sin me
0 =0
2 v=0, p=m
Cwym = 1 u=v + m
-1 0<pu=v—m
1 O<p=m-—v
incident mode spurious mode distortion
cos v sin ug cos M
Cum = 0
incident mode spurious mode distortion
cos vg co8 ug sin me
eum = 0
incident mode spurious mode distortion
sin v sin ug sin me
eum = 0

cutoff. We obtain such approximations by using the approximation for
large argument of the Hankel function (ya >> 1)

| 2 )
My ~ _= p—ilwl4tv (w2 p—va
HMY(ivya) z.ﬂ__me e e, (83)
With (83), we obtain from (45) for ya > 1
vJo(ka) = —xd,—1(ka). (84)

We remarked earlier that (45) is also valid if » — 1 is replaced with
v + 1. We thus also have

v (k@) = xJ,1(xa). (85)
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Multiplying (84) with (85) and taking the square root results in

vJ(ka) = k[ —J,—1(ka)J,1(ka) J
= k[ |Jy-a(ka)vya(ka) | T2 (86)

Far from cutoff, (86) allows us to write the coupling coeflicient (80)
between guided modes in the simple form

Rgo — Powm tsto_, 87
. Ve,e, 2iank 87
Very far from cutoff, ya — =, we obtain the approximate eigenvalue
equation

Ju(wa) =0 (88)

from (84) or (85). The roots of the Bessel function J,(x,a) thus deter-
mine the values of x,a that appear in (87). For higher-order modes «,a
becomes large so that we can approximate

J(ka) ~ \/E cos [x,.a — (v + %) %] (89)

Equation (88) requires that the argument of the cosine function equal
(2N + 1)x/2. This leads to a direct determination of

K = (v + 2N + %) g (90)

with N = 0, 1, 2 - - - . The equations (87) and (90) provide us with an
approximate determination of the coupling coefficient between two
guided modes without the need for solving a transcendental eigen-
value equation. In a strict sense, we would have to label « and the
coupling coefficient with N as well as ». We refrain from burdening the
symbols with too many indices.

The coupling coefficients between guided and radiation modes can
similarly be simplified far from cutoff of the guided modes. The far-
from-cutoff approximation of (81) is

REwo — €pym p (n_2 - 1) ‘V,_x,J,,(o-a)
mn

- (9
Ve,e, iwa|od p_1(ca) HP (pa) — pd y(oca) H (pa) | ®1)

This equation is valid only for |3| values very close to n:k. The coeffi-
cient that describes coupling between guided modes and the radiation
modes of homogeneous space, eq. (82), leads to the far-from-cutoff
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approximation

L [n (Z- 1) kpﬁ]wp(pa)
Ry = 7= = - : (92)
e i[2(68% + n?k?) ]!

This expression is valid inside the range —nsk < 8 < n.k but not near
|@| = nok. For most scattering problems, it is sufficient to use the
coupling coefficients to the radiation modes of the homogeneous
medium. Only if the seattering is sharply forward or backward directed
do we have to use the slightly more complicated expression (91) of the
coupling coefficients to the true radiation modes of the round fiber.
In the remainder of the paper, we apply our results to special cases.

VII. COUPLING CAUSED BY WAVEGUIDE BENDS

We consider the case of a straight fiber that is connected to a fiber
section that is bent with a constant radius of curvature and finally con-
tinues in a straight section. If the curved piece of waveguide causes
considerable mode conversion, the system of coupled equations (27)
and (28) must be solved. However, for slight mode conversion, we can
use the approximation that the incident mode does not change very
much while power builds up in some of the spurious modes. In this
case, we obtain the following approximate solution from (27):

eu(l) = e0) QL K ()6 Gutneds, (93)

We assume z = 0 at the beginning of the curved section of length L.
The deseription (32) is most appropriate in this case. The second de-
rivative assumes the constant value 1/R, with R being the radius of
curvature of the circular bend. We thus obtain from (79) [with f
replaced by (32)] and (93)
2 2

SO = e - ) g 9
We obtain K,, from (80) or in its “far-from-cutoff” approximation
from (87). The integer m appearing in (78) must be set m = 1 in this
case, since we want to describe a continuous offset of the fiber which
results in a bend. It is apparent that the amount of power transfer be-
tween the incident and the spurious mode depends critically on the
separation between the two propagation constants. The sine factor in
(94) describes the phasing between the two modes. If the incident and
spurious modes travel with equal phase velocity, power would be
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transferred from the incident mode to the spurious mode in proper
phase so that all the power could be exchanged between the modes. If
both modes have different phase velocities (and our formula holds only
in this case), the two modes get out of step so that after some distance
the power that is fed from the incident mode to the spurious mode tends
to interfere destructively and destroys the power that has already been
transferred. The power in the spurious mode thus builds up and decays.
This process does not involve reconversion of power from the spurious
to the incident mode, since this process is not included in our perturba-
tion solution.

It can be shown that a guided mode of the type (34) produces a ring-
shaped far-field pattern if it is allowed to radiate out of the end of the
fiber. The maximum of the ring as seen from the end of the fiber ap-
pears at an angle

Ky
b =% (95)
The circular far-field pattern on a sereen is broken up into 2» bright
dots corresponding to the angular intensity maxima of the field dis-
tribution in the fiber. The angle 8, is useful to distinguish guided modes
experimentally. It may thus be of interest to express (94) in terms of
this mode angle. Using (87), (95), and

B, ~ mak — =% = ik — g2 (96)
vy ~ Tt] 2?11]6 1 27%1 vy
we can write (94) in the following form:

R E 26n.49202 . L

E: = Eﬁkt_4a2R2(Bf —+ Bﬁ)ﬁsmﬂ(ﬁ,‘ — ) 5 (97)

For all practical applications, the separation between the angles 6, and
8, is so small that we can replace them with one angle 6. According to
(90) we get for the difference

™
6, — 6.= A0 = % 5 (98)
if @ = » &= 1. We restrict the discussion to coupling between modes
with the same value of N but adjacent » values. If the results of this

discussion are implemented, (97) assumes the form

2 B EEn 26:2g4n4

Cu
e.e, w R0

Cy

sint (8, — ) 5" (99)
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This equation shows that the amount of power transfer caused by
waveguide bends decreases with increasing mode angle.

Next we consider random bends. It has been shown in Refs. 3 and 17
that the exchange of power among randomly coupled modes can be
described by coupled power equations. The power coupling coefficient
is given by

h.ur = lKnrl 2F(-‘g:-l - ﬁr) (100)

F(B. — B.) is the power spectrum of the coupling function f(z) or of its
equivalents (31) or (32). Using (32) and writing 1/R instead of d*f/dz2,
we obtain for the power coupling coefficient for random bends

_ Gn L 1)
h#v - €€y 462?12’62(;3“ _ ﬁ,)‘ C (R (101)

with the power spectrum of the curvature function

C (_1) = (‘L . Lei(ﬁrﬂ,)zdz
R VL!: R®@

2
>- (102)
The symbol { ) indicates an ensemble average.

The guided modes suffer radiation losses even in uniformly bent
waveguide sections, R(z) = const.!319 These curvature losses cannot
be obtained by perturbation theory and thus are not included in our
discussion. However, our perturbation theory includes mode conver-
sion losses between guided modes and radiation losses caused by
changes in the waveguide curvature.

In terms of the mode angle 6, (102) can be written in the form

_ el 4nka® i)
ho = 2222 0 (3 (103)

The dependence on the mode angle is contained only in the power
spectrum of the curvature function.

With the help of the coupling coefficients (91) and (92), radiation
losses caused by random bends can be calculated. However, the explicit
expression will not be given here.

VIII. MODE CONVERSION AND LOSSES DUE TO DISTORTED CORE-CLADDING
INTERFACES

Instead of writing down the general formula for the power coupling
coefficient between guided modes based on (80), we restrict ourselves
to the far-from-cutoff approximation. From (87), (95), and (100) we
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obtain
Eprm k26262

h;.w = F(IBIJ - nBv) (104)

e.e, 4a’n?
1 [ 1(2)ei BuBnady N. (105)
(&, )

f(2) is the function that appears in (78). Equation (104) is remarkably
similar to eq. (37) of Ref. 3 which was derived for the slab waveguide
model. For comparison of the two equations, it is necessary to re-
member that we have assumed that the angles 8, and 6, are much
smaller than unity and that vd 3> 1 according to our far-from-cutoff
approximation. The difference in the position of n in the two equations
is attributable to the different definitions of the mode angles. In our
present discussion, we consider 6, as the angle of the far-field radiation
cone outside of the fiber, while this angle was defined as the angle of
the plane waves inside of the fiber core in Ref. 3. The correspondence
between the two coupling coefficients requires us to consider the case
of pure diameter changes, m = 0, and assume that both modes have
no circumferential variation, » = 0 and p = 0. In this case, we have
e2,./(4e.€,) = 1 instead of the factor 1/2 appearing in (37) of Ref. 3.
The difference is accounted for if we remember that the round fiber
corresponds to a slab in which both interfaces have irregularities which
are perfectly correlated. The slab waveguide theory of Ref. 3 assumed,
on the other hand, that the two interfaces had uncorrelated irregulari-
ties. This comparison shows that the results of the slab waveguide
theory and the round fiber are in very good agreement. Our present
formula (104) holds for core-cladding interface irregularities of a much
more general kind. Not only pure diameter changes but elliptical
deformations and deformations of even more general shapes are
included.

Next, we turn to the problem of radiation losses. The power loss
coefficient is defined by [compare (9.3-14) and (9.3-42) of Ref. 1]

with

F(ﬁﬂ - IBV)

nak

ay = E i |KIWIZF(IB - Jﬂr) % dg (106)

g
with K,, being the coefficient for coupling between a guided mode »
and a radiation mode with angular symmetry x and propagation con-
stant 8. The power spectrum F is defined by (105) with 8, replaced by
8. Not much can be gained from substituting (81) and (82) or their
far-from-cutoff approximations (91) and (92) into (106). The integral
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in (106) is hard to solve and useful approximations covering the whole
range of correlation lengths have not yet been found. However, using,
for example, (81) and (82) in (106) simplifies the numerical integration
compared to the problem discussed in Ref. 7. The radiation losses can
be calculated from (81), (82), and (106) with much simpler computer
programs and at considerable savings compared to the theory of Ref.
7. We use an exponential correlation funetion

R(u) = (f(2) f(z + w)) = #*exp (— |u|/B) (107)
and obtain (Ref. 1, p. 371)

242 )
B[(ﬁ—ﬁ.)"+3i2]

The resulting radiation losses for pure diameter changes, m = 0, are
plotted for the HE;; mode, » = 0, in Fig. 2 as functions of the ratio of
correlation length B over core radius a for n,/n: = 1.01. The curves
were obtained by numerical integration of (106) with K, of (81) in
the range 0.95n:k < 8| < nok and with K,, of (82) in the range
—0.95n:k < 8 < 0.95n:k. For small index differences between core

(108)

nq/ny=1.01
m=0
v=u=0 V=383

10-2
10-3 | ol ool
102 10-1 1 101 102 108

B/a

Fig. 2—Normalized radiation losses of the HE;; mode, » = 0, as functions of the
ratio of correlation length B to core radius a for different values of ka = 2xa/\ for
pure diameter changes, = 0. ni/ny = 1.01. The dotted line results from using
only “free space’ radmtlon modes.
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and cladding, the losses calculated from our simplified theory are in
perfect agreement with the theory of Ref. 7. For larger index ratios, our
approximate theory begins to fail. For n1/ny = 1.43, the error caused
by our approximation is in the order of 60 percent. The simplification
gained from using (81), (82), and (106) is apparent by glancing at the
complex formulas of Ref. 7.

The dotted line in Fig. 2 was computed by using the radiation modes
of homogeneous space alone so that (82) instead of a combination of
(81) and (82) was used in (106). It is apparent that the radiation modes
of homogeneous space are not suitable to calculate the radiation losses
for large values of B/a. It was pointed out in Ref. 5 that large B/a
ratios lead to forward scattering. The radiation makes small angles with
the core-cladding interface so that reflection at this interface becomes
important. It is thus necessary to use the radiation modes of the fiber
for 8 values near nsk.

Our theory allows us to calculate radiation losses for more general
core-cladding interface distortions. As a second example, we consider
elliptical deformation, m = 2, and plot the result of the numerical inte-
gration of (106) in Fig. 3. The power spectrum (108) of the function
f(z) [defined by (78)] was used again. We also used a combination of
radiation modes of the fiber and of free-space radiation modes in the
same way as indicated before. The radiation losses caused by elliptical

1

ny/ng=101
m= 2

v=20
m=2

10-1—

(a3/72) ag

10-2

103
102 101

7
Laal 1 a0
1 100 102 108
B/a
Fig. 3—HE,, mode radiation losses caused by elliptical deformations, m = 2, of
the core-cladding boundary. ni/n: = 1.01.
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core-cladding interface irregularities are smaller than those of pure
diameter changes.

Actual numerical values of radiation losses obtained from curves
like Fig. 2 and Fig. 3 were discussed in previous publications.!.57

IX. CONCLUSIONS

We have presented a simplified theory of mode coupling in imperfect
round optical fibers. The simplification was a result of restricting the
discussion to fibers with small values of ni/ns — 1. The simplified
theory results in much simpler expressions for the guided and radiation
modes of the fiber and consequently leads to simple expressions for the
coupling coefficients. For small core-cladding index differences, the
simplified theory is in excellent agreement with more general theories.

The principal contribution of this paper is a tabulation of coupling
coefficients for coupling between guided and radiation modes that are
necessary for solving mode coupling problems caused by general core-
cladding interface imperfections. A general coupling theory based on
the modes of the ideal fiber is also presented.?
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