Copyright © 1973 American Telephone and Telegraph Company
TrHE BELL SysTEM TECHNICAL JOURNAL
Vol. 52, No. 6, July-August, 1973
Printed in U.S.A.

On the Selection of a Two-Dimensional
Signal Constellation in the Presence
of Phase Jitter and Gaussian Noise

By G. J. FOSCHINI, R. D. GITLIN, and S. B. WEINSTEIN
(Manuscript received February 1, 1973)

A long-standing communications problem 1is the efficient coding of
a block of binary data inlo a pair of in-phase and quadrature components.
This modulation technique may be regarded as the placing of a discrete
number of signal points in two dimensions. Quadrature amplitude modu-
lation (QAM) and combined amplitude and phase modulation (AM-PM)
are two familiar examples of this signaling format. Subject to a peak or
average power constraint, the selection of the signal coordinates is done so
as to minimaize the probability of error. In the design of high-speed data
communication systems this problem becomes one of great practical sig-
nificance since the dense packing of signal points reduces the margin
against Gaussian noise. Phase jitter, which tends to perturb the angular
location of the transmitled signal point, further degrades the error rate.
Previous investigations have considered the signal evaluation and design
problem in the presence of Gaussian noise alone and within the framework
of a particular structure, such as conventional amplitude and phase modu-
lation. We present technigues to evaluate and optimize the choice of a signal
constellation in the presence of both Gaussian noise and carrier phase
Jjitter. The performance of a number of currently used or proposed signal
constellations are compared.

The evaluation and the optimization are based upon a perturbation
analysis of the probability density of the received signal given the trans-
mitted signal. Laplace’s asymptotic formula is used for the evaluation.
Discretizing the signal space reduces the optimal signal design problem
under a peak power constraint to a tractable mathematical programming
problem.

Our results indicate that in Gaussian noise alone an improvement in
signal-to-noise ratio of as much as 2 dB may be realized by using quadra-
ture amplitude modulation instead of conventional amplitude and phase
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modulation. New modulation formats are proposed which perform very
well in Gaussian noise and additionally are quite insensitive to moderate
amounts of phase jitter.

I. INTRODUCTION

A very attractive modulation format for coherent high-speed data
transmission is the family of suppressed-carrier, two-dimensional signal
constellations of which quadrature amplitude modulation (QAM) and
combined amplitude and phase modulation (AM-PM) are two ex-
amples. In this paper we will consider using this more general signal
format, which is equivalent to the arbitrary placement of a discrete
number of signal points in the plane, subject only to a peak or average
power constraint. The object will be to mitigate the major statistical
transmission impairments encountered on the voice-grade telephone
channel, such as carrier frequency offset, carrier phase jitter, and
additive noise. Qur attention is focused on constellations of 16 points,
since this seems to be the largest constellation which is practical
for the typical telephone channel. However, the techniques we develop
are applicable to constellations of arbitrary size.

The placing of signal points in the plane is a long-standing problem
that has received considerable attention in the past. Previous investi-
gations'~* have considered the signal evaluation and design problem in
the presence of Gaussian noise alone and within the framework of
a particular structure such as combined amplitude and phase modula-
tion. When Gaussian noise is the only transmission impairment, it is
well known that at high signal-to-noise ratios (>25 dB) the signal
points should be placed as far apart from each other as possible (the
circle-packing problem). In the application to high-speed digital com-
munication systems, the two-dimensional signal design problem be-
comes one of great practical significance because the dense packing of
a large number of signal points markedly reduces the margin against
random noise and phase jitter. The signal design problem in the pres-
ence of both phase jitter and Gaussian noise has not been solved before
and is the subject of our discussion.

Coherent receiver structures have recently been proposed which em-
ploy an adaptive equalizer* to compensate for any linear distortion,
low-frequency phase jitter, or small amounts of frequency offset intro-
duced by the channel. A phase-locked loop® may be used to suppress
high-frequency phase jitter and frequency offset. Of course, the output
of a phase-locked loop will still deviate somewhat from the optimum
demodulating phase angle. One purpose of this study is to assess the
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effect of such phase errors on the system error rate and to indicate how
this knowledge can be incorporated into the system design.

By system design we have in mind the selection of both a particular
two-dimensional signaling format and the decision device placed at the
demodulator output. In order to pursue these objectives, we discuss:

(#) the relative immunity of various signal constellations as a func-
tion of the degree of noncoherency (i.e., the size of the phase
error);

(#7) an efficient iterative procedure for determining optimum signal
formats under a peak power constraint;

(747) system performance for the following hierarchy of decision de-

vices: easily implementable, optimum in Gaussian noise, and
a maximum-likelihood detector which uses the statistics of the
phase error;

(#v) the accuracy required in any phase-locked loop to attain a satis-

factory error rate; and

(v) the resulting error rate when no attempt is made to track the
jitter.*

Our approach is to assume that intersymbol interference has been
effectively eliminated by the equalizer while the phase-locked loop, if
there is one, has only partially removed the phase jitter. Thus the
equalizer output will be the sum of the partially coherent’ transmitted
signal and additive Gaussian noise. We adopt a phenomenological
model which assumes that the (slowly varying) phase error has
a Tikhonov density.® The Tikhonov density is associated with a con-
ventional first-order phase-locked loop whose input is the sum of a
sinusoid (whose phase is being tracked by the loop) and Gaussian
noise. Under our assumed operating conditions of high signal-to-noise
ratio, this density will closely approximate the actual phase density.
When no attempt at tracking is made,* the jitter is modeled as being
uniformly distributed in a reasonable peak-to-peak range. For each
of these jitter densities, the probability density of the demodulator
output, conditioned on the transmitted symbol, is used to estimate the
error rate. This estimate is of the minimum distance type, where the
“distance,” which reflects the presence of phase jitter, is measured in

*In the sequel, we will use the term jitter as a catch-all when referring to phase
jitter and/or frequency offset.

T A partially coherent signal is one whose carrier phase is jittered by a random com-
ponent which is not uniformly distributed in the range (—m, =).

* Since the passband equalizert will determine the optimum static demodulating

phase, the absence of a phase-locked loop does not imply the use of an arbitrary de-
modulating phase.
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a non-Euclidean manner. The error rate is given for various signal
constellations and detector structures under peak and average power
constraints. By discretizing the received signal space, an iterative
procedure is developed to determine (locally) optimum signal formats
under a peak power constraint. This technique, which assumes a maxi-
mum-likelihood detector, makes use of an efficient search procedure
developed by Kernighan and Lin.®

The system model and the problem formulation are presented in
Section II. An asymptotic estimate and an upper bound on the error
rate are developed in Section III. A comparison of the relative im-
munity of some popular signal constellations and detectors to phase
jitter is described in Section IV. Section V discusses a technique to
obtain locally optimum signal structures under a peak power constraint.*

II. SYSTEM MODEL AND PROBLEM FORMULATION
2.1 Preliminaries

We consider the two-dimensional synchronous data communication
system shown in Fig. 1. Binary data are first grouped into blocks of
M bits, and each block of M bits is then mapped into one of 2 two-
tuples (a, b). The sequences {a:} and {b:} amplitude modulate, re-
spectively, an in-phase and quadrature carrier to generate the trans-
mitted signal

m(t) = %‘, axp(t — kT) cos wet + 2 bp(t — kT) sin w.d, (1)
k

where 1/T is the symbol rate,! p(-) represents the transmitter pulse
shaping, and w, is the carrier frequency. It will be assumed that the
two-tuples are equiprobable. The received signal at the output of the
bandpass filter is given by

) = (T asalt — KT) = T buy(t = KT) cos (@ + &)t + 6(0))
- (% awy(t — kT) + ZEZ bi(t — kT))
X sin ((we + A)t + 6(1)) + n(t), (2)

where z(t) and y(t) are the system (baseband) in-phase and quadrature
impulse responses,® A is the carrier frequency offset, 6(¢) is the random

* The present authors have recently treated the two-dimensional signal design
problem under an average power constraint.”

t Note that the data rate is M /T bits/second.

! These pulses represent the cascade of the transmitter shaping filter, the channel,
and the receiving filter.
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Fig. 1—An in-phase and quadrature data transmission system.

phase jitter, and n(f) is additive Gaussian noise. The received signal,
which is sampled at the symbol rate, is adaptively equalized and
then coherently demodulated with the aid of a phase-locked loop.®
The demodulated output, denoted by the sequence of two-tuples
zr = {(2k %)}, is then processed by the (simple) detector to give the
output sequence {(dy, bx)}. The system error rate is just the probabil-
ity that (d, bs) differs from the transmitted two-tuple (ay, by).

2.2 Basic Model

For the purposes of this study, it will be convenient to assume that
the equalizer has completely eliminated the intersymbol interference
present in x(¢) and y(¢), but that the phase-locked loop has only par-
tially compensated for the carrier phase jitter. The in-phase and
quadrature demodulator outputs, at the kth sampling instant, are
then given by

2(kT)
5k T)

ay o8 ¢ — by sin ¢ + n(kT),

ax 8in ¢i + by cos ¢ + n,(kT), (3)
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Fig. 2—Effect of Gaussian noise and phase jitter on transmitted symbol.

where ¢; is the (slowly varying) phase error in the tracking loop, and
ne(kT) and n,(kT) are, respectively, the in-phase and quadrature
Gaussian noise components.* Dropping the time index, eq. (3) can be
rewritten to give the basic model

z = Rs +n, 4)

where the vectors are given by’

() () 2 ()

and the matrix R is the rotational (by an angle ¢) transformation

_ (cos¢ —sin qb)_ (5)

sin ¢ cos ¢

* Recall that n.(kT) and n,(kT) are independent Gaussian random variables with
equal variance, No. It should be noted that 2N, is the noise power contained in the
bandwidth of the received signal.

t We denote the values that @ and b can assume b;r a' and bW, respectively, and
the values of the transmitted symbols by st = (a%},b@).
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Fig. 3—Quadrature amplitude modulation.

As we show in Fig. 2, the effect of the phase jitter is to rotate the trans-
mitted symbol, s, by an angle ¢ ; thus the demodulator output, z, is dis-
persed in an angular manner due to phase jitter and in a circularly sym-
metric way due to the Gaussian noise. The receiver will make an error
when these perturbations move the demodulator output across the
decision boundary associated with the transmitted symbol. For a par-
ticular transmitted data sequence, the demodulated sequence will be
scattered about the transmitted points in a manner which reflects the
combined effects of phase jitter and Gaussian noise. For the transmitted
signal constellation of Fig. 3, which is known as QAM, a typical scat-
tered demodulated sequence is shown in Fig. 4. As one might expect,
for those signal points further away from the origin, the angular dis-
placement becomes more apparent. An estimate of this effect is given
by the mean-square error between the transmitted and demodulated
symbols. For small values of jitter, this error is obtained from (4) by
noting that

ey _ fCcosd —1 —gin ¢ @ ~ (—b,-) .
z S”_( sin ¢ cos¢—1)sJ+n~¢ a; +n;

averaging the norm-squared of both sides gives*

Elz — s[* = No + agf[s|% (6)

* The notation |z]| denotes the Euclidean norm of z; additionally the notation
(z, 8) will be used to denote the inner product of z and s.
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Fig. 4—Received signal points in a QAM system.

where o3 is the variance of ¢ and E denotes the statistical average.
Thus, because of phase jitter, signal points located further from the
origin are subjected to a larger mean-square error.

2.3 Probability Density of the Demodulator Output

In order to evaluate the system error rate, the probability density
function (pdf) of the phase error must be specified. The pdf of the phase
error in a phase-locked loop that is tracking the angle of the two-
dimensional data signal given by (2) is not yet known, but as explained
below it can be approximated by the following (Tikhonov) density®:

1 g cos @

p@) =gy, el s ™
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where Io(-) is the modified Bessel function of the first kind and « is
a positive number. As is shown in Fig. 5, @« = 0 implies a completely
incoherent system, while @ = « corresponds to a completely coherent
system. For large values of @ (e > 100), we have the useful relation
(in radians). (8)

2 .
Ty =

R =

Since the above density arises from a first-order phase-locked loop
whose input is the sum of Gaussian noise and a sinusoid (whose phase
is being tracked by the loop), it is felt that for high signal-to-noise
ratio, for negligible intersymbol interference, and for slowly varying
phase jitter the actual phase-crror density will closely resemble the
Tikhonov density. This simple model will be quite useful in studying
the effect of phase jitter on the system error rate.

The pdf of the demodulator output, conditioned on the transmission
of s, is given by

plzls?) 2 p,a@) = [* pizlo)ie)is, (©)

where it is noted that the output density conditioned on both s‘¥ and
¢ is given by

1 1 .
piel®) = o exp | = g3 2 = Rsvle] (102)

1 1 ) )
- - _ g2 )
2N, ex"{ o, Lz = sV + 262, )
— 2z, Rs“”)]}- (10b)
Substituting the Tikhonov density into (9) gives

1 1 . )
PA®) = o, exp { = g7 Lz = 59 + 262,57}

(@) 5 [ exp 3 [((2,59) +aNo) cos ¢
+ (z, 81) sin ¢ Jdg, (11)

(where if s = [|s]|(cos @, sina) then sVt = |[s||(sin @, —cos a)),
and we recognize the latter integral as

1 (7, V(G 5 F o + @ 57 )

Assume a = k/N, (k a constant). Employing the well-known result
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Fig. 5—Tikhonov phase jitter density p (¢) = exp (a cos ¢)/2rls ().

that for large values of argument Io(x) = /| Vz/|, and assuming « is
sufficiently large and N, is sufficiently small, we get

; ~ 1 aN, _ L
Pi®) =~ 5., \/wf((z, S0 aNo)? + ((z, 801" exp ( 2N,
X {llz, s@|* + 2(z, ) + 2aN,
— 2V((z, s9) + aNo)? + (z, sh'h)!j). (12)

In the error rate computations we shall eventually make, we will have

k so large compared to the practical range of (z, s9") that the coeffi-

cient multiplying the exponential of p;(z) can be taken to be (2aN,)~L
Thus, for our purposes,

1 1 .
pi(z) = 22N, &P [— 3N, d*(z, 5“’)] ) (13)
where
d¥(z,8) £ [|lz — s[|? + 2(z, 5) + 22N,
— 2|V z]?[[s[|* + 2aNofz, s) + (aNo)?|. (14)

The form of eq. (13) is very reminiscent of the density in Gaussian
noise alone, and to further suggest such a similarity we refer to d(z, s)
as the “distance” between z and s. It is important to emphasize that
this function is the key to assessing the combined effect of Gaussian
noise and phase jitter on the system performance; through its use we
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SNR =25dB, AND RMS PHASE JITTER =9 DEGREES

Fig. 6—Constant distance contours: values of z for which
2N op; (z2) = exp{— L s,-)} = 1072, 104, 10",
2N,
d? given by eq. (14).

are able to give a very suggestive geometric interpretation of the jitter
phenomenon as well as accurate estimates of the error rate. In Fig. 6
we show some contours of constant “distance” (i.e., points which are
equiprobable) about a given point. Note the angular orientation and
similarity of these ‘“banana’ shaped contours to those obtained ex-
perimentally (Fig. 4).

Our procedure will be to use (13) and (14) to estimate the error rate
for various constellations and detector structures; however, before we
do this, we first wish to discuss some properties of the function d(z, s)
which will be useful in estimating the system performance, and then to
consider the conditional density p;(z) in the absence of a phase-locked
loop.

2.4 Some Properties of the Jitter Distance d(z, s)

() A requisite property that d(z, s) should possess is that for vanish-
ingly small jitter the distance between points becomes Euclidean. This
is easily verified by expanding (14) in terms of 1/a and observing that

ll,i"lo d¥(z,s) = [lz — s/~ (15)
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(#) Since we do not expect the distance between an arbitrary point
and the origin to be affected by phase jitter, it is reassuring to note that

d2(zJ O) = ”2”2: (16)
and that a similar property holds for points on the same ray, i.e.,
d¥(z, kz) = (1 — k)¥z[?, k> 0. (17)

(777) A “bonus” property is that even though (14) was derived for
large o (small jitter), the expression

lim d*(z, s) = | |lzl| — lsl| |* (18)

is quite reasonable in that, for completely incoherent systems, all
points on the same circle are indistinguishable.

(fv) An interesting consequence of (14) is that points are now closer
together than their Euclidean distance. To demonstrate this, we use
the Schwartz inequality to show that the non-Euelidean part of d%z, s)
is always negative, i.e.,

(z,8) + aNo = |V][z]?[s]? + 2aNo(z, s) + (aN0o)*| (19)
since squaring gives
(z,8)" + 2aNo(z, 8) + (aNo)® = [|z]|*][s]|* + 22N o(z, 5) + (aN0)*
which upon cancelling becomes the Schwartz inequality
(z,8)* < [z[|*[s][*.

(v) If both the signal and noise power are scaled by the same con-
stant for a given jitter level, a, it is clear that the conditional density is
unchanged. Thus the signal-to-noise ratio and the mean-square jitter
a are the natural parameters for characterizing the system.

(vf) A natural question to ask is whether or not d(z, s) is a convex
metric*® in the plane or, of more practical interest, if some sufficiently
accurate approximation to d(z, s) is a convex metric in some circle
centered about the origin. As we shall see later, if such an approximate
representation can be obtained, some tedious error rate computations
may be done quite simply. While the requirements of symmetry and posi-
timty can eastly be shown to hold in the eniire plane, J. E. Mazo has re-
cently informed us that his results in Ref. 8 tmply that d(z, s) is not a

* A convex metric is & metric which possesses the midpoint Eroperty, i.e., for any
two points x and y there is always a third point z such that d(x,z) = d(z, y)

= (1/2)d(x, y).
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convex melric in any circle about the origin for any value of 2N,. The
question remains open as to whether or not d(z, s) admits an accurate
convex metric approximation in a neighborhood of the origin. Appendix
B reports the results of an investigation of this question.

By considering the above properties, it is apparent that a signal
constellation will be relatively immune to small amounts of phase jitter
either if the error rate (or minimum distance) is determined by a point
at the origin and any other signal point, or if signal points on the same
circle are widely separated (the more circles the greater the Gaussian
noise penalty).

2.5 Probability Density in the Absence of a Phase-Locked Loop

In a subsequent section we will compare the performance of various
signal constellations, and the following question naturally arises: Can
we, by judicious signal design, eliminate the need for a phase-locked
loop?* Preliminary to answering this question we must obtain the den-
sity of the demodulated signal in the absence of a phase-locked loop.
For simplicity we model the jitter as arising from the single tone

o) = A cos (vt + ¢), (20)

where 24 is the peak-to-peak jitter, w; is the jitter frequency, and ¢ is
a uniformly distributed random phase. For this model, the jitter den-
sity is given by

1 l¢| = A

p(®) = | Ax 1_(%)2 : (1)

0 l¢| > A

To determine the density of the demodulated samples we use (9) and
(10) to write

P®) = oy, O {‘ 2, Lz = 5911 + 262 stﬂ)]}

4 1 . o
Xf_A exp {N—U [(z, s(?) cos ¢ + (z’ S(J)) sin ¢.:|} p(¢)d¢

which for small (<12 degrees) peak-to-peak jitter becomes

pia) ~ oy o | = g 2 = 59l | e, (22)

* The equalizert is capable of determining the optimum demodulating static phase,
so that the demodulation is noncoherent only to the degree that the untracked jitter
degrades the error rate.
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where M 4(-) is the moment-generating function of ¢, and

-1

EJ' N, (ZJ s(ﬂl)- (23)

For the jitter density given by (21) it is easy to show that
My(&) = T(A|&]); (24)

thus we have the familiar form

. = _1 — L 2 67] ]
p!(z} - ZTI'NU exp I: 2Nl} D (ZJ s4 ) ] (25)
where

DXz, s) = |z — s — 2Ny tn I, (;f—r I s“‘“)l)- (26)

Tt is useful to summarize our work up to this juncture. Using the
simple model (4) and the phase-error densities (7) and (21), we have
derived the conditional density of the demodulated two-tuple with
and without a phase-locked loop. Equations (13) and (14) and (25)
and (26) are the desired expressions. In the next section we will use
these densities to estimate the system error rate.

ITI. ESTIMATING THE ERROR RATE

In this section we give two estimates of the error rate: an asymptotic
(high SNR) evaluation and an upper bound. Consider the arbitrary
signal constellation shown in Fig. 7, where the decision regions are de-
noted by R;. The detector, which is specified by the decision regions,
will declare that s has been transmitted if and only if the demodu-
lated vector z falls inside R;. Because of various practical considera-
tions, principally ease of implementation, the mathematically optimum
detector will not always be the one which is built.

3.1 Asymptotic (High SNR) Error Rate
The probability of error is given by

M
P, = ;§1 PiP e, (27)

where the p;’s are the (taken to be equal) a priori probabilities and P.;
is the conditional error rate. The conditional error rate is just the prob-
ability that z falls outside B; when s(? is transmitted, i.e.,

P,; = Pr [z & R;|s' transmitted ]. (28)
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Fig. 7—Typlca1 decision region about signal point s;, with minimum distances to
boundary shown for Gaussian noise alone (no phase jitter) and for large jitter (angu-
lar displacements highly likely).

This quantity may be written, using the conditional density p;(z), as
P, = f pi(z)dz. (29)
z(ER;

Let z§ denote a point of global minimum for the function d? or D? on
the decision region boundary and let M; be the number of times this
minimum is achieved on the boundary. Let (u, ») denote an orthogonal
coordinate system erected at z; with the positive u axis pointed along
the boundary line in a clockwise direction and » pointed outside R,.
Then, as is shown in Appendix A, for a high signal-to-noise ratio
(No— 0) with aN, = k, the conditional error rate is given by

M; N —d:
Po= 2 |—Toam P 3w, s (30a)
v ou?

For the case of Gaussian noise alone (no phase jitter) d? becomes the
ordinary Euclidean distance and the partials in (30a) are easily evalu-
ated. In this case, with s the signal(s) closest to s#, we have

S s 4 g@
! 2
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and
ad? ) )
- = (1) — gl
oy = 50 = 5

a%d?

el

=z%
=17

Hence, for the Gaussian case,

_ M; No o —ls® —s?*
Pei = 3w —so) N7 P 8N, ’ (80b)

a useful formula in its own right.

In terms of the distance functions d(-) and D(-), the asymptotic
error rate is determined by the point on the decision boundary “closest”’
to the transmitted signal. Of course, in the presence of phase jitter,
this point will generally differ from the closest point according to
a Euclidean measurement. In Fig. 7, the indicated point on the vertical
boundary segment is the closest point to s; in the Euclidean sense.
As phase jitter increases, those points with a radial coordinate nearly
equal to that of s; becomes closer to s;. So for large phase jitter,
the point indicated on the boundary segment above s; is the “closest”
point. Thus the exponential decay in error rate is quite similar to the
asymptotic Gaussian result since it is of the form

exp [ —dan(5)/2N o], (31)

where dmin(7) is the minimum distance (measured in a non-Euclidean
manner) to the jth decision boundary. The minimum distance can
sometimes be obtained analytically, but most often must be obtained
by a computer search of the boundary.

The minimum distance to the jth decision boundary is particularly
easy to determine if the function d(-,-) is a metric which possesses the
midpoint property, i.e., for each distinet pair of points s and s
there exists a third point z* such that

1d(s®, s9) = d(s@, z,) = d(z,, s?).

If this is the case, let z; denote any point on the decision boundary be-
tween s and s? and the triangle inequality gives

d(s, z.) + d(s®, z;) = d(s®, sP). (32a)
Since for maximum-likelihood detection

A(s9,2) = d(s, 2,
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minimizing both sides of (32a) over the decision boundary gives

d(s'?, z*) 2 min $d(s?, s?) (32b)
=7

where z* is the point on the boundary closest to s, Note that (32b)
would provide an upper bound on (31). Since the midpoint z* clearly
lies on the boundary, z* = z,, and (32b) is satisfied with equality,
the minimum distance is given by

d(s®, z*) = min 3d(s®, s07). (32c)
j=i

Since the Euclidean metric is convex, eq. (30b) could be directly
obtained from (30a) by using (32¢c).

3.2 An Upper Bound on the Error Rate (for Small Jitter)

In systems which use a tracking loop, an upper bound on the system
error rate may be obtained, for small jitter, by considering Fig. 8. This
figure shows the transmitted point s, the decision boundary R;, and
several nested regions C; (defined by contours of constant probability),
where

C; = {z:d*(z,8Y) = ¢;}.

\\/

Fig. 8—Nested equidistance contours [distance defined by eg. (13)] about signal
s; in arbitrary decision region. Contour ¢;*, at distance d;*, defines d;* as the shortest
distance to the boundary.
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If we let € denote the first contour which touches the boundary, then
it is clear that

P.; = Pr[z € R;|s® transmitted] < Pr [z & Cj[s]

-/ oy POV

1 )
) 2 OF [‘ 5N, 7 S"’)] e (33)

For small jitter, the exponent may be expanded in the first power of
1/a, to give

a(x,8) = [x = sl* = - (x, 8% (34)

for which the contours of constancy are ellipses. Transforming the
ellipses into circles and changing to polar coordinates enable us to inte-
grate (33) to get

S S
1 — “s(.‘f)”2
alN,

P = exp [—dfla/2No]. (35)

Again d{}, is the minimum distance to the jth decision boundary which
for convex polygonal decision boundaries can be determined analyti-
cally. For high SNR, the above bound is useful up to 1.5 degrees rms
jitter. Because of the similarity of (30a) and (35), we will use only the
former asymptotic results in the sequel.

IV. A COMPARISON OF VARIOUS SIGNAL CONSTELLATIONS

In the preceding section we have presented a means of evaluating the
asymptotic (high SNR) error rate for a given signal constellation and
detector structure. In terms of the minimum distance, measured via
the appropriate noise/phase-jitter distance function to the jth decision
boundary, we have

M. N 1 2
Pﬂwgpjz”T”_!sT_)”-\/fexp[—z—Mdﬂ“]- (36)

The minimum distance will be obtained by a computer search of the
decision boundary. It should be emphasized that comparisons based on
the asymptotic error rate are not exact but rather indicate order-of-
magnitude effects.
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Our comparisons will be made by varying the following quantities:

(7) signal constellations
(#7) signal-to-noise ratios
(#47) rms jitter
(iv) decision boundaries

(v) phase-error density.

Clearly the pie may be sliced several ways, so let us first say a few
words about each of the above variables.

(i) Signal constellations: For the purposes of signal evaluation we
will consider the existing 16-point constellations QA M, 8-8, and (4, 90°)
shown in Figs. 9a through 9c. The circular constellation (4, 90°) has
signal points equally spaced (i.e., 90 degrees apart) on four circles. This
large angular spacing of points on the same circle suggests that this
constellation will be insensitive to small amounts of phase jitter. The
ratio of outer radius to inner radius (r./r;) for the 8-8 constellation is
1.59, found by Lucky! to minimize the error rate in Gaussian noise.
8-8 is an optimized form of AM-PM in which signal points on the outer
circle do not lie on the same radial lines as those on the inner circle. It
offers an order-of-magnitude improvement (over AM-PM) in error rate
in the presence of Gaussian noise. We will also consider the new circu-
lar modulation formats 1-5-10, 1-6-9, 5-11, shown in Fig. 10. The
optimum ratio (r:/r;) is very close to 2 for these constellations as we
have determined by equating the three smallest nearest-neighbor
distances.

(¢¢) We consider peak and average SNR's, P, and P,,; respec-
tively, chosen so that P, (no jitter) is <107% These quantities are

5

i I |
i I !
I I !
$-——-- PN S -y
! i ! ] 159
3 -1 : i' 3 5
A A I B
A = B S
(a) (b) (©)

Fig. 9—Existing signal constellations: (a) quadrature amplitude modulation
(QAM), Ppesk/Psv = 1.8; (b) modified AM-PM (8-8), ppesk/Pav = 1.43; (c) circular
constellation, (4, 90°) Ppeak/Pav = 1.85.
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(b)

Fig. 10—New signal constellations: (a) 1-5-10, Ppeak/Pav = 1.42; (b) 1-6-9,
Ppeak/Pav = 1.525; (¢) 5-11, Ppeak/Pav = 1.31.

defined by

Ppx = max [|s][*/2N,,
1

P = L3 st
K
aveg 16 1; “S ” /2Nu

(#1) Our attention is focused on the practical range of residual
(from a PLL) jitter of <3 degrees rms.

(iv) We will consider both the boundaries which are optimum in
Gaussian noise (straight lines) as well as more practical boundaries for
the circular formats (polar wedges).

(v) The Tikhonov density will be taken as representative of those
systems which use a tracking loop, while the peak-to-peak density will
be used to model the raw (untracked) phase jitter.

The error rate curves are grouped as follows: Figure 11 shows the
error rate vs rms residual phase jitter (Tikhonov density) under aver-
age and peak power constraints for the six constellations described
above. For each constraint, a Gaussian noise power (and thus an SNR)
is assumed which places the curves in a useful operating range, and the
receiver is presumed to use the Gaussian optimum decision region
boundaries. These boundaries are piecewise-linear contours constructed
from segments of perpendicular bisectors of lines joining signal points as
shown in Fig. 12a for the 1-5-10 constellation. This is equivalent to
deciding in favor of the signal point closest in Euclidean distance to the
demodulated point. Figure 12b shows a more “practical”’ set of deci-
sion boundaries for the 1-5-10 constellation. Figure 11 indicates the
immunity of the (4, 90°) constellation to small amounts of phase jitter
at the expense of an error rate more than an order of magnitude greater
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/ (4,90° J—%
77 A
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o
> (4,907) / f—
-l
= Wy 8-8
E 1077 1-5-10 / /
8 5-11 1-5-10, 1-6-9
o
/ 5-11
=
10-8 QAM
SNR =22 dB SNR =23dB
10-¢
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RMS JITTER IN DEGREES

Fig. 11—Error rate vs jitter with a phase-locked loop: (a) average power con-
straint; (b) peak power constraint.

than those of the 1-5-10, 1-6-9, and QAM constellations. In practical
operation with a tracking loop, any of these alternative constellations
will almost always outperform the (4, 90°) constellation.

Figure 13 shows the error rates vs SNR, again under average and
peak power constraints, in the presence of Gaussian noise alone (no
phase jitter) and with 1.5 degrees rms residual phase jitter in addition

(a) (b)

Fig. 12—Decision region boundaries for part of 1-5~10 constellation: (a) Gaussian-
optimum decision region boundaries; (b) practical decision region boundaries.
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Fig. 13—Error rate vs SNR for channels with and without phase jitter; Gaussian-
optimum receiver is assumed to have a phase-locked loop: (a) no jitter, average power
constraint; (b) no jitter, peak power constraint; (c¢) rms jitter = 1.5 degrees, average
power constraint; (d) rms jitter = 1.5 degrees, peak power constraint.
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Fig. 14—Probability of error for receiver with “practical”’ decision region bound-
aries for the 1-5-10 constellation and with phase-locked loop: (a) average power con-
straint; (b) peak power constraint.

to the Gaussian noise. Although some of the curves shift their relative
positions (at least under the average power constraint) when phase
jitter is added, the good performances of 1-5-10 and 1-6-9 are main-
tained. QAM performs respectably and the (4, 90°) constellation comes
in last.

Figure 14 is similar to a reduced Fig. 11 except that the “practical”’
set of decision region boundaries is presumed for the 1-5-10 constella-
tion. As can easily be seen, the Gaussian optimum boundaries for QAM
are also practical boundaries, and the jitter-immune (4, 90°) constel-
lation is shown to best advantage by presuming Gaussian optimum
boundaries. Under the average power constraint, QAM is superior to
1-5-10 below about 1.5 degrees rms jitter. Under the peak power con-
straint, 1-5-10 is uniformly superior to QAM. The (4, 90°) constella-
tion does not show an advantage until the rms jitter reaches 2.5 to 3
degrees.

Figure 15 is a set of error rate vs SNR plots with practical decision
region boundaries for 1-5-10. Curves are shown for Gaussian noise
alone (no jitter) and 1.5 degrees rms jitter. Only the average power
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Fig. 15—Probability of error vs SNR for G&ussian-oBEmum receiver with “practi-
cal’”’ decision region boundaries for the 1-5-10 constellation and with phase-locked
loop: (&) no jitter, average power constraint; (b) rms jitter = 1.5 degrees, average
power constraint.

constraint is presumed. As before, QAM shows an advantage in the
absence of phase jitter and still does well in the presence of moderately
severe residual phase jitter.

Figure 16 presents some data for receivers which do not use tracking
loops. In this case the peak-to-peak density of eq. (22) describes the
raw jitter. Curves are plotted vs peak jitter under average and peak
power constraints. Some interesting features are the resistance of 1-5-
10 up to a threshold of about 8 degrees peak-to-peak jitter and the
rapid deterioration of the performance of QAM.

Figure 17 shows the performance vs SNR for the receivers without
tracking loops when the peak-to-peak jitter is 12 degrees. This is the
only instance for which the (4, 90°) constellation looks relatively good,
but here, too, the 1-6-9 constellation performs slightly better. QAM, of
course, does rather poorly.

The advantage of using a phase-locked tracking loop with QAM and
1-5-10 can be seen from the above data and a simple calculation. If
the raw phase jitter is modeled by

Q(t) = A cos [wit + ¥],
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Fig. 16—Probability of error vs. peak-to-pesk jitter for Gaussian-optimum receiver
without a phase-locked loop: (a) average power constraint; (b) peak power constraint.

where ¢ is uniformly distributed from —= to = and 24 is the peak-to-
peak jitter, then a rule of thumb® suggests that the residual rms jitter
out of a tracking loop is of the order of 0.1 X 24. For 4 = 6 degrees,
this rms value is 1.2 degrees. A comparison of the curves of Figs. 11 and
16 shows that substantially lower error rates are achieved by the re-
ceiver with a tracking loop. The performance of constellation (4, 90°)
s relatively unaffected by the introduction of a tracking loop.

A further conclusion that can be drawn from the numerical data is
that the QAM constellation, which is simple to generate and to de-
modulate, performs quite well in Gaussian noise alone or (with the aid
of tracking loop) Gaussian noise plus phase jitter. More circular con-
stellations, such as 1-5-10 and 1-6-9, appear to offer a moderate fur-
ther advantage at the expense of greater complexity.

V. OPTIMUM SIGNAL CONSTELLATIONS UNDER A PEAK POWER CONSTRAINT

In this section we discretize the received signal space to obtain a
tractable optimization problem. The discretizing is such that the M
signal points are selected from a circle containing L points while the
received points lie in a circle of N (N > L) points (note: M < L). We
make the following two comments concerning this approach to solving
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Fig. 17—Probability of error vs SNR for Gaussian-optimum receiver without a

phase-locked loop: (a) peak-to-peak jitter = 12 degrees, average power constraint;
(b) peak-to-pesk jitter = 12 degrees, peak power constraint.

N

20 205

the problem:

(i) the level of discretization must be fine enough to provide a good
approximation to the continuous problem, and

(47) the outer radius must be chosen so that for all practical purposes
the probability that a received point lies outside the outer circle is
negligible. The peak power constraint simply means that no signal
points can be selected outside the L circle.

5.1 Discrete Mazximum-Likelihood Formulation

If we denote the received point, z, by 4’ and the transmitted signal,
s, by “j,” then the perturbation of the transmitted signal due to
Gaussian noise and phase jitter may be summarized by a transition
matrix whose elements are defined by

p(i| j) = Pr [receiving ‘2"’ | transmitting ““;"" ]
i=12 ---N (37)
j = 1: 2! <M.

Il

The transition probabilities may be computed by integrating the condi-
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tional densities p;(z) over an appropriate region. It is convenient to
work with the maximum-likelihood receiver (i.e., the optimum decision
boundaries are used) which receives “z”’ and declares that ‘¢’ was
transmitted, where

pC[&) > pil)), i =& 5,6=1,2 ---M. (38)

Note that we have (temporarily) fixed the M points in the signal con-
stellation. It is easy to see that the probability of being correct is given
by

N
Pr [correct] = Zi Pr [correct|receive “2”’ ] Pr [receive ‘2”7, (39)

but by Bayes rule
Pr [correct|receive ‘2" ]
= Pr [send ‘¢, |receive “i'"]

_ Pr [receive “4”’|send “£,”] Pr [send ‘"]
- Pr [receive ‘4" ]

(40)

Substituting (40) in (39) and recalling that the transmitted signals
are equiprobable gives

Pr [receive “7”"|send “f;""]

™M=

Pr [correct] = ;—f

1 X .
=H£P(3lfl‘); (41)

and the optimum constellation is the M signals (or columns) that
maximize

> 214, (42)

Note that since p(Z|{;) is the maximum entry in the ith row of the
transition matrix, the problem is one of selecting M out of L columns
such that the sum of the row maxima is maximized. The error rate may
be determined from (41).

5.2 Optimum Constellations

A heuristic program for solving the combinational optimization
problem posed by (42) has been developed by Kernighan and Lin.®
Their process is based upon iterative improvement of either known
initial constellations or random initial starts. For each start, a “locally
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optimum” solution is found in the sense that no change of position of
a single signal can improve the criterion. The heuristic process is very
fast and, for the resolution we require, 20 random starts can be pursued
to completion in 25 seconds. For particular values of rms phase jitter
and noise power we find, among the best of 20 local optima, reaffirma-
tion of known solutions and in some instances new competitive con-
stellations. For example, for a peak signal energy of SNR = 22 dB,
Figs. 18, 19, and 20 give the best among the 20 local optima for an
rms of 0, 1.5, and 3 degrees, respectively. As expected, the 0-degree
solution has a 5-11 character and the 1.5-degree solution has a 1-5-10
character. On the other hand, the 3-degree solution is somewhat of
a surprise; it has a 1-6-9 character. The (4, 90°) constellation, which is

. . . .. s s e & .
. . c @ e e e e . ® . .

. . . . . . . . . . .

Flg 18—Optimum slg'na] const.ella.tmn Peak SNR = 27 dB, no jitter (courtesy of
W. Kernighan and S. Lin)
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Fig, IQHOBtimum signal constellation: Peak SNR = 27 dB, 1.5 degrees rms jitter
(courtesy of B. W. Kernighan and 8. Lin).

best at 3 degrees among heretofore considered designs, has an error
rate only a few percent worse than that of the 1-6-9 constellation.

A byproduct of the development of the above procedure is the
demonstration of the fact that numerical quadrature routines offer
a competitive alternative to asymptotic techniques and bounding
methods for the estimation of system error rates.

VI. CONCLUSIONS

Comparisons have been made of several well-known two-dimen-
sional signal formats in the presence of Gaussian noise and phase
jitter, at high signal-to-noise ratios and under both peak and average
power constraints. It has been demonstrated that, under an average
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Fig. ZO—OEtimum signal constellation: Peak SNR = 27 dB, 3 degrees rms jitter
(courtesy of B. W. Kernighan and 8. Lin).

power constraint for systems which have a high-quality phase-locked
loop (rms residual jitter <1 degree), QAM had the lowest error rate
of all candidate constellations. If the residual jitter is <1.5 degrees
rms, the 1-5-10 constellation becomes extremely attractive since it is
immune to phase jitter in this range and provides the same asymptotic
(no-jitter) error rate as QAM. For small amounts of jitter, 1-5-10 and
QAM have a 2-dB SNR advantage over the (4, 90°) constellation which
is “immune” to phase jitter. Both these constellations offer a 0.5-to-1-
dB advantage in SNR over conventional AM/PM signaling techniques.
Thus, under an average power constraint, both QAM and 1-5-10 merit
consideration.

For a peak power constraint, in addition to making comparisons
similar to the above, we have been able to attain the optimum signal
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constellations for various levels of jitter. Qur comparisons indicate
that, for jitter <1 degree, QAM suffers a 1.5-dB SNR penalty with
respect to the 5-11 constellation, while 1-5-10 suffers a 0.1-dB penalty.
At 1.5 degrees rms jitter, 1-5-10 again is superior to both QAM and
5-11 (by 4 and 1 dB respectively).

Based upon the peak and average power constraints, the new modu-
lation format 1-5-10 appears to make extremely efficient use of avail-
able signal power and for a slight increase in modulation/demodula-
tion complexity offers considerable immunity to moderate (<1.5
degrees rms) residual phase jitter. QAM systems which employ high-
quality phase-locked loops will also be operating very efficiently, pro-
vided that the residual phase error is <0.8 degree rms.
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APPENDIX A
Method of Laplace

Let g(z) and h(z) be continuous real functions on [a, b] where h(x)
is also twice continuously differentiable. Then, if k(x) attains a single
maxima at ¢ (¢ < ¢ < b), we have that

b p—
f g(x)eMWAaEdy ~ g(c)et!hia) h_”z(jg (k—0)

(read ~ as asymptotic to). The proof is not difficult and the key steps
can be found in Papoulis® or in Jones.!! This analysis technique for
estimating an integral for large values of the parameter k is called the
method of Laplace.

An immediate application of this method used in the body of this
paper is
ea

V27ra

For estimating system error rates, a certain two-dimensional version
of Laplace’s method is needed. Particularly, we shall investigate the
following two-dimensional integral:

1 éff exp{%h(z)}dz [z = (u,9)]

(¢ = ).

In(a) £ 50 [ encotdg ~
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for small k. The function %(z) we shall be concerned with is assumed
to have the following properties:

(3) h(z) is twice continuously differentiable such that £.(0) <0,
hu.(0) # 0, and 0 is the unique point of maximum for A(z) in
» = 0.* Thus we also assume k., of (0) < 0.
Let G, = {v = 0, u? + v* < r}
(#7) For some r > 0,

lgr*l?}//exp{l]éh(z)}/lal.

e (LBVR(O) /[ exp {Ilc [h(z) — h(O)]},

(v20}

Rewriting / as

it is easy to conclude that for each ¢ > 0

I~ e(mmo)j: [: exp {i [h(z) — h(O)]}-

We shall proceed to integrate with the exponent in the integrand re-
placed by its local representation

e(l.fi:]h(l])fs f; exp {% (Ao (00 + Au(0)u?/2 + huu(O)uv]} dvdu.

The absence of h.(0) and &,,(0) follow directly from (7). Integrating
(dv) we get

1
I~ e(lfk}h(ﬂ)[! k exp {]; [h.(0)e + huu(O)ue]} -1
- 7o(0) + hus(0)u

) ¢ e(l,’k(huu(O) (u2/2)dla, .

We appeal to the first paragraph to integrate each term involved in
this subtraction. Take ¢ small enough to avoid the singularity at
w = —h,(0)/hy,(0). The first term is asymptotic to

ka:z\/% {exp %c [h(O) + ho(0)e — }I:ﬁ 62]}

*In this appendix, subscripts are used to denote partial derivatives, e.g.,

ah
ho(0) = "

(u, ) =(0,0)
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while the second is
k32 —2r

— = [—ET @k,

ho(0) N hyu(0)
Since for ¢ small enough h,(0)e — [A2,(0)/h..(0)]e* < 0, we conclude

—kr [—or
~ 7.00) VEaa(0) ©

In error rate computations one is often integrating over the exterior
of a convex polygon. In the body of this paper we encounter the case
where h(z) has a finite number of global maxima on the boundary, at
most one on each side, and none at the vertices. Let z, be the nth local
maximum. Map the exterior half-space containing z, into the upper-
half plane via a rotation, composed with a translation taking z, — 0.
Then the method of the last paragraph can be applied. The process is
repeated for each maxima and the results sum to the required asymp-
totic estimate of the exterior integral. The fact that the exterior half-
spaces containing distincet points of maxima may overlap is of no conse-
quence. Furthermore, in our applications, A(z) is symmetric with re-
spect to each z; and the process need only be completed once and the
answer multiplied by the multiplicity of the maxima.

I

h0) [k,

APPENDIX B
The Nature of d(z, y)
B.1 Introduction

Let V be a vector space endowed with a scalar product {(x,y) and
a norm derived therefrom. It is not known whether d,(x,y): V X V —
|R| defined by

dy(w,y) = (Ix(I* + Iyl + 2y — 2| V]x[*lyl|* + 2y (x, y) + +72))12

is a metric for any values of vy (0 < ¥ < =). Nor is it known whether
d,(x, y) is a metric in any sphere centered about the origin. Similarly,
the status of the midpoint property is also unknown to us. However,
from Ref. 8, we know that these two properties cannot hold simultane-
ously for any v in any sphere about the origin.

Concerning the metric question, the difficulty (as usual) is the
triangle inequality. By definition d.(x, ¥) is symmetric in its arguments.
Positivity follows easily from the Schwartz inequality,

dy(x,5) = {[x — y||* + 2(x, y) + 297!
— 2| V[Ix[]*[y]® + 2y~ [yl + 72} = | Ixl — [yl | = 0.
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Notice d(x,y) > 0 unless 2 = y. If d,(z, y) is a metricon V X V for
a particular value of y then it is a metric for all v (0 < ¥ <); thisis

easily obtained by employing the mapping z — [Vy|z.

B.2 One-Dimensional Case

In the special case V = R we can show di(z, y) is a metric. In one
dimension we have (the “1” subseript will now be suppressed)

d(ry)=_f|$—yl wy+120
- L[V Fp)r+2 ay+1=20

To show the triangle inequality, first notice that, if three points a, b,
and ¢ are on the same side of zero, the distances are all Euclidean. So
for the remaining cases to be investigated we assume one point has
a different sign than the other two. Notice d(z, y) = d(—=x, —y) so we
lose no generality by assuming ¢ = b = 0 = a. Two subcases remain:
(4) only d(c, @) is non-Euclidean; (i7) d(c,a) and d(b, @) are non-
Euclidean. For (i) the distances involved are (¢ — b), (b — a), and
I[(a + ¢)? + 22]¥2|. Now |[(a + ¢)* + 22]"?| < ¢ — asince, by squar-
ing, this is equivalent to 1 + ac = 0. To show
(c—b) £ (b—a) + [[(a+ 0?2+ 227
and
(b —a) £ (c—b)+ [[(a+ )+ 2277,
it is enough to show
[(c +a) — 2] = [(a + ) + 2°]

since squaring both sides when the right-hand side is positive can only
weaken the inequality. The last inequality can be simplified to
b2 — be < 1 + ab for which the left-hand side is negative and the right-
hand side is not. On the other hand, (#%) is immediate since ¢ — b,
V(@ + ¢)? + 4, and V(b + a)® + 4 can be identified as sides of a tri-
angle with apex (—a, 2) and base points ¢ and b. Notice d does not
have the midpoint property since d(10, —10) = 2, yet the only points
y satisfying d(10,y) = 1 are 9 and 11, but both d(9, —10)
d(11, —10) exceed 2.

This last observation shows that the open spheres in this metric
space are not all connected. In two dimensions, the boundaries of cer-
tain open spheres are disconnected; specifically, it can be shown that

for certain values of ¢ > 0
{yld(x: y) = 9'}
is a disconnected set if [|y[|%y > 1.
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B.3 Approximating d.(x, y) on the Unit Circle

As mentioned in the text, an important open question is whether
d,(z, y) can be accurately approximated by a convex metric. There
are, of course, many ways in which one can approximate d,(z, y). In
this section we dispose of two approximations which suggest themselves
immediately.

Let us view d,(x, y) on the unit circle. Notice, as y — 0,

IIXPIYT® + 2972, 3) + 2~
~ 4 (1 + (%, ¥} + 7 ( Iyl = y)ﬁ))_

Hence, for small phase jitter,

di(z, y) = |[x — y[* — ¥|x|*]y]*sin* 6,
where # is the angle between x and y, or what is the same,
A1z
x—yl*/ ’

where A(x, y) is the area of the triangle Ozy. Let k., denote the altitude
of Oxy perpendicular to xy; then

d'r(x: Y) = HX - Y“(l - ’thy)l"z-

(%, ¥) ~ [x — ] (1 — 4y

Since h = 1,
[[x — yll(1 — vA3)"* = 0

with equality if and only if x = y so long as v < 1; also, the left-hand
side is symmetric. Notice

A(x; Y) = ”X - y“(l - hgv)l"z

has the midpoint property. Indeed, if z lies on the line segment joining

x and y,
d(x,2) +d(z,y) = d(x,y)

since hye = hay = hye

So we are strongly motivated now to see if A(x, y) is a metric on the
unit disc. Note that if F is any finite subset of the unit dise, then for
v sufficiently small, d(x, y) is a metric on F. This follows from the fact
that for noncolinear triples, the triangle inequality holds properly for
the metric ||x — y||. Perhaps surprisingly, the triangle inequality for
A,(x,y) does not hold for all triplets in the unit dise. This was dis-
covered by linearizing A(x,y) to get &(x,y) = |[|x — y[(1 — v/2h2)
which is likewise a valid approximation for d(x, y) for small 4.
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For 4(x, y), the midpoint property and all requirements for a metrie
hold except for the triangle inequality. The triangle inequality question
is easier for us to investigate for 8(x,y) than for A(x,y) as it de-
velops into a geometrical extremal problem which we can handle. In
solving the extremal problem, a class of vector triplets in the unit dise
emerge for which no value of y > 0 exists such that the triangle in-
equality holds uniformly for the class. Although these triplets arise in
the analysis of &(x, y), they serve just as ruinously for A(x, y).

In order to discuss this geometric extremal problem, we require some
notation. Suppose we have a triangle (nontrivial—positive area) in the
unit disc with side lengths a, b, and ¢ and opposing vertices 4, B, and
C, respectively. Let hq, hs, and k. denote the distance from the origin
to the line containing the side of length a, b, and ¢, respectively.

Write the “triangle inequality’”’ expression for §(x, y):

-yl (1= 5m) & -l (1 - 50)
+lz =3l (1 - 5)-

Changing to the notation just introduced, we have directly that the
triangle inequality holds for 0 < v =< ¥ where v = inf I'(q, b, ¢).

a+b—c
I(a,b,0) £ {ahg F oh3 — ch%}

and the infimum is over all triangles for which the bracketed expression
is positive. This geometric extermal problem is disposed of by substitut-
ing a triangle of the form depicted in Fig. 21. It follows easily
lime.o ' = 0. Thus v = 0 and the only d(x, y) metric is the obvious
one. A straightforward substitution of the three vectors depicted
above into the “triangle inequality” for A(x,y) yields again that for
no fixed ¥ > 0 can the triangle inequality hold for this family of
triangles.

Strikingly, for the class of triplets in Fig. 21, it is easily demonstrated,
via substitution, that the triangle inequality for d,(z, y) holds for an
open interval including v = 0!

B.4 A Metric on the Boundary of the Disc

We end on a positive note: 8(z, ) is a metric on the boundary of the
unit dise for a nontrivial interval [0, y].* It is enough to show inf

* We anticipate applications in phase-modulation systems.
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Fig. 21—Infimizing family of vectors.

I'(a, b, ¢) > 0 where the infimum is over those triangles circumseribed
by the unit circle for which I' is positive. Now A2 = 1 — a?/4 and
similarly for hs and A, so

3 1ad + b5 — ¢3\ 1,
P(“""C)—(l—zm)
Dividing gives
= . 2 2 _ _ _3abc ]\
(a,b,c)—(l 4[a + b2 +c ab + ac + be T
So v > 0 if and only if
u —abc—<m
Spa—l—b—c '

At this point, we must digress and recall some plane geometry from
Ref. 12. First abe/4 is the area of the triangle and 2-(a + b + ¢) is
called a semiperimeter. Given any triangle ABC, extend the two lines
emanating from the apex A. Construct bisectors to the two exterior
angles complementary to the angles B and C respectively. The bisec-
tors meet in a point equidistant from the three lines containing a, b,
and c. The circle tangent to these three lines is called an excircle. See
Fig. 22. The center of the excircle (where the bisectors meet) is called
the excenter and of course the radius is called the exradius. Each tri-
angle has three excircles. Finally from Ref. 12 we need:
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Fig. 22—Excircle tangent to c.
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Fig. 23—Upper exradius bound for excircles tangent to c. Since 0 = ¢ = 2, the
exradii are uniformly bounded.
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Theorem: An exradius of a triangle is equal to the ratio of the area to the
difference between the semiperimeter and the side to which the excircle is
tangent internally.

So if the set of exradii of triangles circumseribed by the unit circle is
uniformly bounded away from infinity, then v > 0 and {8,}o<y<, are
metrics.

To complete the proof, consider any triangle with vertices on the
unit disc boundary. With an isometric transformation of the circle into
itself, we can situate ¢ horizontally with apex C above ¢ in the left
half-plane. The more obtuse the exterior angles at A and B, the larger
the excircle tangent to ¢. So take a horizontal line ¢’ through B and a
line b’ going through A and (0, 1) and replace ¢ and b with a’ and b'.
Clearly, bisectors constructed using a’ and b’ will intersect at a point
further away from ¢ than the excenter of any excircle tangent to ¢. By
similar triangles, the primed bisectors intersect at a distance
2(1 £ V1 — ¢?/4) from ¢ where the sign is plus if ¢ lies in the lower
half-plane and negative otherwise (Fig. 23).
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