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A theory of traffic-measurement errors for loss systems with renewal
input 18 developed. The results provide an accurate approximation for the
vartance of any differentiable function of one or more of the following basic
traffic measurements taken during a given time interval:

(z) The total number of attempts (peg count)
(12) The number of unsuccessful attempts (overflow count)

(#72) The usage based on discrete samples (TUR measurement) or on

contrnuous scan.

The approximation s given in terms of the individual variances and
covariance functions of the three measurements. Asymptotic approrima-
ttons for these moments are obtained using the concept of a generalized re-
newal process, and are shown to be sufficiently accurale for telephone
traffic-engineering purposes.

As an application of the theory, we examine the variances of the standard
estimates of the load and peakedness (variance-to-mean ratio) of an input
traffic stream for a time interval of one hour. Other possible applications to
Bell System trunking problems are discussed.

I. INTRODUCTION

In the Bell System, there are a number of traffic measurements
which can be made on any given trunk group. For a standard time
interval (0, ¢] of one hour, the three most important measurements are:

(z) A(t), the number of attempts (peg count);
(¢7) O(t), the number of unsuccessful attempts (overflow count);
and
(272) La(t), an estimate of usage based on 36 discrete samples (TUR
measurement).

When all three measurements are available, several statistics can be
formed to estimate traffic parameters of interest. For instance, the
967
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ratio O(f)/A(t) is an estimate of call congestion. Two other important
parameters are the peakedness (variance-to-mean ratio) and the load
of the input traffic. An estimate of the load is given by the function

o — La(t)/36
IO
A

while an estimate of peakedness is a complicated function of A(f),
O(t), and L4(t) which is usually obtained by iteration using the Equiv-
alent Random method.!

Since the trunk-engineering procedures are based on such estimates,
it is important to know their statistical accuracy. For instance, it
would be useful to know the error inherent in a prediction of the re-
quired size of a trunk group (to obtain a specified grade of service)
based on the estimates of offered load and peakedness of the input
traffic. Such a result could be used to determine the number of single-
hour measurements necessary to ensure a desired accuraey in the pre-
diction, to determine the optimum number of measurements from a
cost-effectiveness point of view, or to evaluate the consequences for
trunk provisioning of using a given number of measurements.

Many results concerning the accuracy of the individual traffic mea-
surements (7) through (#4%) have been obtained previously, but most of
these have assumed the arrival process to be Poisson. For example,
assuming Poisson arrivals, the variance of the usage measurement
La(t) was obtained by Benes,2 and the variance of the measured call-
congestion O(t)/A(t) was given by Descloux.? More recently, the vari-
ance of O(£)/A(t) was obtained for arbitrary renewal input by Kuczura
and Neal. The variances of some nonstandard traffic counts were
considered by Descloux,’ and numerical results were obtained for the
case of Poisson input.

Using the concept of a multidimensional renewal process, we develop
a general theory of errors which provides an estimate of the variance of
any differentiable function of the measurements (1) through (). Con-
sequently, our results can be used to answer many questions similar to
those mentioned above. The variances of the estimates of offered load
and peakedness of the input traffic will be derived in Section IV as
examples which illustrate our general theory.

Section II contains the derivation of an approximation for the vari-
ance of a function of the three traffic measurements. The approxima-
tion is given in terms of the individual variances of (z), (#), and (i)
and the covariance functions between them.
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Section I1I contains the mathematical model used to derive the vari-
ances and covariances. Section V contains a summary and an outline
of other possible applications.

II. STANDARD ERRORS OF FUNCTIONS OF RANDOM VARIABLES

For completeness, we present those results from the theory of stan-
dard errors® which are required below. Let £, £», and ¢; be random
variables and g a real-valued function. Assume that {; has a mean
0:, g(£1, &2, £3) has finite mean and variance, and g is differentiable at
the point (6, 82, 8;). Using a Taylor series expansion we have, to first
order,

g(Ey, £z, £3) — g0, 0, ;) = _}:a: (&: — 8)) (;_% . (1)
=1 1

We are assuming that the observation period will be sufficiently large
so that the contribution of the higher-order terms can be neglected.
This assumption will be justified in our model.

Taking the expectation of (1), we see that the mean value of g is
approximately g(6i, 8., 6;) since E[¢; — 6;] = 0. We also have

Var [g(£1, £z £)]
-s[f -]

= ):( g) Var [6] + 22

i=1

dg dg

38, 90, Cov [&, £2]

dg dg
36, 965

9g 99

+ 25, 36, 98

Cov [EIJ 53] +2-— Cov I:Ezr 53] (2)
After setting & = A(t)/t, &2 = O(f)/t, and #; = L4(t)/36 the above re-
lation becomes the starting point for our theory of traffic-measurement
errors. It approximates the variance of any differentiable function of
the measurements in terms of their variances and covariances.

In the next section we derive expressions for the required moments.
These, together with the first partial derivatives of g, approximately
determine the variance of g. If the function g is too complicated to be
differentiated analytically, differencing may be used to approximate the
partial derivatives. An example of this procedure is given in Section IV
where we discuss the variance of an estimate of the peakedness of a

stream of offered traffic.
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IIT. MATHEMATICAL MODEL

Consider a system of ¢ servers serving customers whose arrival
epochs constitute a renewal process. We assume that the interarrival
times are independent and identically distributed according to the dis-
tribution F having mean 1/\, and that the service times are in-
dependent and identically distributed according to a negative-exponen-
tial distribution with unit mean. If all servers are occupied when a
customer arrives, he leaves and has no further effect on the system. If
an idle server is available when a customer arrives, service begins
immediately.

Let (0, t] denote a time interval of length ¢ which commences at a
stationary point for the arrival process.” (Such a point is often said to
be chosen at random on the time axis.) Let A(f) be the number of
arrivals and O(¢) the number of blocked attempts in (0, ¢]. Finally, let

L) = f 0‘ Cluw)du (3)

where C(u) is the number of busy servers at time u, be the total usage
in (0, t]. Note that L(t)/¢ is a continuous-scan estimate of the carried
load.

As was pointed out in Section 11, the individual first two moments
of A(t), O(t), and L4(t) and the corresponding three covariance func-
tions are sufficient to obtain an estimate of the variance of any func-
tion of these measurements. By numerical experimentation, we
found that the covariance functions Cov[A(t)/t, La(t)/36] and
Cov[O(t)/t, L4(t)/36] are, for our purposes, well approximated by
Cov [A(t)/t, L(t)/t] and Cov [O(t)/t, L(t)/t], respectively. However,
the variance of L(f) ean be significantly smaller than the variance of
Ly(t) so that, in general, we must use Var [L4(f)] in our applications.

In the next two sections, we derive the individual and joint moments
of A(t), O(t), and L(¢). In Section 3.3, we obtain the variance of L4(t).

3.1 A Multidimensional Renewal Process

Assume that the system described above is in statistical equilibrium?,
lett,, n = 0, 1,2, ---, be the instant of time at which the nth overflow

*That is, the time until the first arrival after { = 0 has the remaining life-time
distribution H(f) = A Juf [1 — F(z) Jdz.

t That is, the system has been in operation sufficiently long prior to { = 0 so that
system-state probability distribution at ¢ = 0 is the limiting (or stationary) dis-
tribution P{C(0) = k} = pi = limuss P{C(u) = k}. It follows that for any ¢t =0,
P{C(t) = k} = ps, i.e., the process {C (), t =0} is stationary.
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oceurs, &) < 0 < t; <ty < --+, and define X, = ¢, — {»_1. Now let
K, ,n=1,2, ---, be the number of arrivalsin (¢,_i, ¢, ] and

I,,“w‘fhl Cludu, n=1,2 -,

{

be the total usage in (f.,_1, . ].
Sinee holding times are exponential and arrival epochs constitute a

renewal process, the sequence of times t,,n = 0,1, 2, - - -, are regenera-
tion or renewal points in our model. Hence X,, K,, and [,, n = 1,
2, .., are sequences of independent and identically distributed

random variables.
If we now define the row vector

X, = (1, I(,,, I”), n = ]rzy cee

then it follows that {x,, X.}, n =1, 2, ---, is a multidimensional
renewal process.” Moreover, setting
7(t) = ZX..,

where the sum is taken over all n such that 0 < ¢, = {, we see that for
large t,
7(t) = (0(1), A@t), L(?)).

Sinece this formulation corresponds to the concept of a generalized
renewal process as communicated by J. M. Hammersley in the dis-
cussion of W. L. Smith’s paper,” his results apply directly to our model.
In particular, we shall use his equations (25) and (26) to compute the
moments of 5(t).

Let u.(e) = E(X?) be the nth moment of the interoverflow times
from a group of ¢ servers and

b= [ edre-

For brevity, we denote the arrival intensity »; ' by M. From Ref. 4, we
have the first moments of A(f) and O(¢) already computed:

E[A®)] = M,
E[0O0)] = - @
m(e)
From eq. (25) of Ref. 7, we have
EL@)] = o (5)

wle) ’
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where
wa(c) = E[I1]-

Again, from Ref. 4 and Ref. 7, the variances and covariances of the
three measurements for large {, omitting terms which behave as o(¢),
are given by

Var[A(f)] ~ :—?[Vz — 1],
Var[0(H)] ~ cm) Cualc) — wi(e)],

Var [L(t)] ~ #—2) (i()wale) + uale)wd(e)
— 2ui(c)en(c) B[ X 11,1}, (6)
Cov [A(), O()] ~ r‘@ (haa(e) — ELK X1},

Cov [0(t), L(H] ~ rf) (ua(@)wr(©) — wa(QE[XI:]),

Cov[A(®), Li#t)] ~ F@ {u(Q) E[K11] + Mua(e)wr(c)
- ?\ul(C)EEX1IIJ — wi(c) E[ XK, 1} -

We now need to compute the various moments and joint moments of
X1, Ky, and I, appearing on the right-hand side of (4), (5), and (6)
in order to evaluate the approximate expressions for the moments and
joint moments of A(f), O(t), and L(t). Note that the mean and variance
of A(¢) are known since A = »i* and v, are computed directly from F.

3.2 The Joint Disiribution of K,, X1, and I,

The development here parallels that of Section 2.2 in Ref. 4. Let
he(w, r, n) be the joint density function defined by

2
hﬂ(w:l T’ ﬂ) = aa

WP{Xléw,LSr,K1=n}-

By considering the two mutually exclusive events {the cth trunk re-
mains busy throughout (0, w)} and {its complement}, and using a
renewal-type argument, we arrive at the following integral equation:

n—1 w u r—uv
ho(w, r,n) = e ®hey(w,r — w,n) + > fo [0 fo e "he—1(u, 8, k)

k=1

Xhe(w —u, r— 8 — v, n — k)dsdvdu, (7)
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in which the time variables « and » run concurrently from an overflow
epoch.
The following boundary conditions hold:

he(w,r,m) =0, for r>cw or r <0,
hc(w: cw, n) = e~cwf(w)51.n,

where f = F’ and 8;,» = 1 for » = 1 and is zero otherwise.*
If we define

velz, 4, 2) = i [w fm e~ vh (w, r, n)z*drdw , (8)
n=1J0 0
then it follows from (7) that
_ y+Dyealet+y+1,92) )
) = T &, 4,0 F e F 1 1,4, 2)

Motivated by the work of Riordan® and the success of the approach
taken in Ref. 4, we set

(9)

(y + 1)D.(z, y, 2)

'YC(I: Y, z) = Dc+1(:b‘, v, 2) ) (10)
where Dy(z, y, 2) = 1, and, as can be seen by setting ¢ = 0 in (8),
_y+1
Dl(mr Y, 2) - 2¢($) y (11)
where
$(z) = f: e—='dF (1)
Furthermore, for m = 1,
Dnii(z, y, 2)
= Du(z, y 2)+[M—I]D (+y+1,9,2)- (12)
m ’ ) 2¢($) mi~ b ’
If we now define
A= Ny, 2) = 1 y+1 (13)

IRZCR Rk
then using (11) and (12) and mathematical induection one can show that
Dn(z,y,2) =1+ _fl(— 1)5(?))\0)\1---7\_{,1- (14)

=

* In our model we assume that the interarrival-time probability distribution func-
tion is differentiable. However, with more formalism, the same results can be obtained
for the more general case; e.g., the one-point distribution function for constant
interarrival times.
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Now, since

P L ai+j+k
E[X{HKY] = (—1)" EYTEER Ye(2, ¥, 2) z=y=0
for k = 0, 1 and %, j = 0, we can compute the required moments di-

rectly by means of differentiation. Omitting all of the details of the
operations indicated, we obtain

ul(C) = nD,
1
w]_(C) = Dc —_ 1. ( 5)
where
D.=DJ(1,0,1) =1+ i (—1)"(;) AoAy- Ay,
=1
with
=1 — L .
TS T ek + 1)

Note that D. is the reciprocal of the generalized Erlang-B blocking
probability B.. Moreover, with the aid of the results obtained in Ref.
4, we have

wa(c) = 2[wi(c) + 1] ; [wi(f) + 1] — 2[ D 4 DPo7),

wale) = Z—TM(C) + 2u4(c) ic§1 ui(k) — 2u, D100

(16)
where
D gititk D 17)
¢ dridyioet (29, 2) et Y (
The required derivatives are given by
am — 5 (—1yif © oo [ L SR
DI = 3 ( 1):(3.) Aohs- - -Ajy [An ot
DO = 3 (—1)i () Aohy- A | B4 By S
=1 J Ay Al

Aj—l] '
where Q; is the derivative of Ax(z, 0, 1) evaluated at » = 1, i.e.,
Q = ¢'(k + 1)
o*k + 1)’
and Qy is the derivative of M\:(1, 3, 1) evaluated at y = 0, i.e.,

g kS 1
TRk +1) ¢k + 1)
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Similarly, we have the joint moments

LX) = 2n(en(e) + 1] X [on(s) + 1]
J — (1 4 ») DI — 4, DO,
E[K:X:] = mle) + f—lm(c) + X (k) + nD® — DY, (1)
=1

ECKI] = 2[ai(0) + 11 L [ex(e) + 1]
! _Délm) _— Dgow) + I)g(l]l)J
where

e e 1 1 1 .
Dc(om)=Z(_1)J(J_)A0Al...Aj_1|ilE+A_]+..._|_ _J].

j=1 Ajiy

3.3 Variance of Discrete-Scan Estimate of Usage

Our present mathematical model assumes that the measurement of
usage, L(t), is made by means of continuous scanning, as can be seen
from the definition of L(f) in eq. (3). In practice, however, usage is
estimated by discrete scanning. The number of busy trunks is sampled
at constant intervals of time, say r, and the integral in (3) is replaced
by the finite sum

La®) = & C(kr), (19)

where
n(t) = max (k:kr = 1).

This procedure introduces a sampling error in the evaluation of the
integral. As we shall see later, the difference between the variances of
L(t) and Lg(t) can sometimes be large enough that the discrete-scan
variance of usage must be used to estimate accurately the variance of
g in eq. (2). In this section we indicate how the variance of L,(f) is
computed.

Let n = n(t) be the number of discrete samples in (0, ¢]. In trunking
applications, ¢ is usually taken to be one hour (about 20 mean holding
times) and, since r is normally set at 100 seconds, n = 36. Since the
process {C(t), t = 0} is stationary, from (19) we have

Var [Lu()] = nR(0) + 2 X (n — R(j7), (20)

where R is the covariance function defined by
R(t) = E[C(0)C(H)] — E[C(0)JE[C()]. (21)
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Since P{C(0) = k} = P{C(t) = k} = px,

() = 3 kps >; iPu(t) — mi, (22)
where
Pii(t) = P{C({t) = j|C(0) = ki, (23)
and
m; = gl kpk (24)

The problem of determining the transition function in (23) has been
treated by Takdcs in Chapter 4 of Ref. 9. However, he uses a renewal
point for ¢ = 0, i.e., his origin is chosen at a point immediately after an
arrival has occurred. His result, though not directly applicable, can be
modified in a straightforward manner to take account of our different
location of the origin. We state here the analogue of his Theorem 3 for
the case of a stationary origin and give a proof in the appendix. We
use 1/u to denote the mean service time throughout the statement and
proof of the theorem.

Theorem: Let t = O be a stationary point for the arrival process described
above. Then the Laplace transform of (23) 1s given by

Ti(8) =f0m e"Py;(t)dt = i (— 1)‘_'(;) Bri(8), (25)

i=j

where

Buls) = 1 — (s + du) Yuils) (k) 1 [1 _ d(s + i,u)]

#(s +1u) (s + iw) (s + 1u) (s + tu)
o = [e0/ £(5) o]
AEQ el 20 mmiatis]

S OEN ENORES 22

o Pr (s + ) .
CJ(S)_,'I}()I—d)(S—'-?:#), .7_0:1:2:"':
C—l(s) =1,

8() = [ emara),
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and ¢(s) is the Laplace-Stielijes transform of the distribution (24), that
18,

8(s) = 21 - 6(9)]

Taking the Laplace transform of (22), substituting for m;(s), and
simplifying, we obtain the following expression for p(s), the Laplace
transform of the covariance function E(?):

_ N [1—9(s+1)7] _ mi
p(s) s+1{1 s+1[ PICEY H' 5

/et g (5) t)}{AMIé(;)c,is)
+(8)\4‘Tzﬁg:—§z§§1(c) :}8)
VRS ! [1_9.5(j)3j

=2 (s + 7Ci(s) o(7)
+ I_MBJH]} , (26)

#(7+ 1)

where
_es ()L /s ()L
&‘QE(JG/E(JQ’
C-=f[ ¢ (iu) =12 .
7T — ¢(in)’ ’ re !
Co=1,

and m; and m., the first and second moments of the distribution {p:},
are given by?*

° A

my = 2, kpr =~ (1 — B,),
k=1 u

ma = 3 k*pp = my + \[B: — ¢B.].
k=1

Note that m, is the carried load and B, is the generalized Erlang-B

blocking
c 1
B=1/5(5)a
:‘gﬂ AY:

Equation (26) has been inverted analytically for the case of Poisson
input.? When ¢(s) does not have the simple expression of this special
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case, analytical inversion appears to be complicated. However, for the
purpose of computing the variance of Lu(t) for our trunking applica-
tion, it is unnecessary to obtain an explicit inverse of p(s). We found
that the numerical inversion scheme described by Eisenberg!® is com-
putationally efficient and gives satisfactory results.

To illustrate the difference between continuous-scan and discrete-
scan measurements for the case when the input traffic is of the overflow
type, we computed the estimates of the variances of L(t)/t, the con-
tinuous-scan estimate of the carried load, and L4(f)/36, the discrete-
scan estimate, for various trunk-group sizes and ¢ = 20 mean holding
times—i.e., about one hour. For these results, the interarrival-time dis-
tribution of the arriving traffic was obtained by using the Interrupted
Poisson process with a three-moment match.!!

The case for ten trunks is typical and is presented in Fig. 1 where
o1y = VVar [Lq(t)/36] and o = VVar [L(¢)/t] vs « are graphed for
z=1,2 and 4.

Since the variance of L4(t)/36 must be at least as large as the vari-
ance of L({)/t, our results show that the asymptotic estimate of
Var [L(f)/t] has a small positive bias, especially for low loads. Our
simulation results verify this observation and also indicate that the
asymptotic approximation becomes more accurate as the input load
increases. Notice that the variance of L4(t)/36 is about equal to the
variance of L(t)/t at low loads. As the load increases, the relative error
introduced by discrete scanning can increase substantially. Finally, we
found that for fixed load and peakedness, the relative difference be-
tween Var [La(t)/36] and Var [L(t)/t] decreases as the trunk-group
size increases (an effect not shown in the figure).

IV. TWO APPLICATIONS

We give two applications of our results, in which we obtain the ac-
curacy of the estimates of two traffic parameters. In the first example,
the parameter is the offered load as given in Section I. For the second
example, we discuss an estimate of the peakedness of the offered traffic.

4.1 Accuracy of an Estimate of Offered Load

Suppose we have observations A(t), O(t), and L,(t) recorded. Then
for the measurement period (0, ¢ ], &, an estimate of the offered load (in

erlangs), is given by
& = LA, 00), Lun] = 240232, (21)
- 40
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ANALYTICAL APPROXIMATION
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Fig. 1—Standard deviation of carried load measurements vs offered load using
discrete-scan and continuous-scan measurements on a 10-trunk group for ¢ = 20
mean holding times.

Obtaining the required derivatives of g as indicated in eq. (2), sub-
stituting into (2), and simplifying, we have the following expression
for the variance of the offered-load estimate in (27):

Var [€] = = {Var [0()] + Var [La(®)] (j—tb)2

+ B Var [A(f) ] + 2 Cov [L(1), 0(1) ]
— 2B, Cov [L(t), A(t)] — 2B, Cov [O(), A(t)]}- (28)

Now using egs. (6), (15), (16), and (18) to substitute for the various
quantities on the right-hand side of (28), we can compute Var [&].
To test the approximation (28), we computed the variance of &, as
outlined above, for trunk-group sizes of ¢ = 10 and ¢ = 40 trunks, for
input traffic streams of the overflow type having different combinations
of load and peakedness values. We also used a computer simulation to
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Fig.
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2—Standard deviation of offered-load estimate vs offered load for ¢ = 10
trunks. The measurement interval is 20 mean holding times.

estimate Var [4] at several points. The numerical results are displayed

in Fig. 2 for ¢

10 trunks and Fig. 3 for ¢ = 40 trunks where

oa = VVar [@] vs ais displayed forz = 1, 2, 4, and 10 (again for ¢ = 20

mean holding times).

STANDARD DEVIATION, o,,, OF OFFERED —

LOAD ESTIMATE

o

o
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X X POINTS OBTAINED BY SIMULATION

3 y— 10 =
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Fig. 3—Standard deviation of offered-load estimate vs offered load for ¢ = 40
trunks. The measurement period is 20 mean holding times.
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The simulation results indicate that for ¢ = 10 and ¢ = 40 the
asymptotic approximation for Var [@] is quite accurate for all ranges
of load and peakedness of interest in trunking applications.

We obtained almost identical results for Var [@] regardless of
whether we used Var [La(t)/36] or Var [L(f)/t]. Apparently, for low
loads (low blocking probability) the aceuracy of @ is dominated by the
accuracy of the usage measurements while at high loads (blocking
near 1) the accuracy of the call-congestion estimate is the dominant
factor. Since the relative difference between Var [La(f)/36] and
Var [L(t)/t] is small for low blocking probabilities, we see that the
accuracy of @ is not significantly affected by the TUR sampling error.

4.2 Accuracy of an Estimate of Traffic Peakedness

When all three of the measurements A(t), O(f), and L4(t) are avail-
able for a final trunk group of ¢ trunks in an alternate-route network,
the peakedness z of the input traffic is estimated in the following man-
ner: First an estimate of offered load & is determined as described in
the preceding section. Then an estimate £ of z is obtained by iterative
methods (using the Equivalent Random method?), such that a single
overflow stream having load @ and peakedness 2 would experience the
call congestion O(t)/A(t) or, equivalently, the resulting carried load
would be L(£)/36.

Thus, there is a well-defined procedure for determining a unique
value for 2 corresponding to A(f) = O(f) > 0 and Lu(f) > 0, i.e., we
have the estimate

£-g[40,00 L]

t 't ' 36
in the required form. However, there is no explicit analytical expres-
sion for g which can be used to obtain the derivatives needed in (2) to
obtain the variance of 2.

In such cases, it is natural to estimate the partial derivatives by first
differences. For example,

g _ 9L0:(1 + A), 82, 5] — g[8y, 62, 65]
071 6,,69,05 6,4

) (29)

where A is a small positive number. Numerical experimentation indi-
cated that A = 0.001 gives sufficient accuracy for the present applica-
tion. Using the first-difference approximations as illustrated in (29)
for the derivatives in (2) we have an estimate for the variance of 2.
We computed the resulting approximation for ¢ = 10 and ¢ = 40
trunks for a range of offered loads «, several values of peakedness z,
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Fic. 4—Standard deviation of peakedness estimate vs offered load for ¢ = 10
trunks. The measurement interval is 20 mean holding times.

and ¢ = 20 mean holding times. We also compared our approximation
with results obtained by simulation. The results are displayed in Figs.
4 (for ¢ = 10) and 5 (for ¢ = 40) where ¢. = VVar [2] vs a is given for
z =1, 2, 4, and 10. Note that o./2 = 0.2 for large «, independent of c.
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Fig. 5—Standard deviation of peakedness estimate vs offered load for ¢ = 40
trunks. The measurement period is 20 mean holding times.
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Fig. 6—Comparison of the standard deviation of peakedness estimates using
discrete-scan and continuous-scan measurements of carried load on a 40-trunk group.

In general, the simulation results are in good agreement with the
approximation. The curves are plotted either for o = z, or else for call-
congestion exceeding 0.01, the range of interest for trunking applica-
tions. When « is smaller than z or the call-congestion is much smaller
than 0.01 (not shown in the figures), the value obtained from the ap-
proximation for Var [2] occasionally tends to be larger than that ob-
tained by simulation. Hence, the approximation may not be adequate
for such applications.

In the preceding section, we noted that essentially the same results
were obtained for Var [¢] regardless of whether we used Var [L(t)/¢]
or Var [L4(t)/367] in the computations. In contrast, the variance of 2
is very sensitive to the variance of the usage measurements. That is,
Var [Lq4(t)/36] is required to obtain an accurate approximation for
Var [2]. The errors which can result from using Var [L(t)/t] instead
of Var [Lqa()/36] are illustrated in Fig. 6 for the case of ¢ = 40 trunks.
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V. SUMMARY AND OTHER APPLICATIONS
5.1 Summary

We derived an approximation for the variance of any differentiable
function of the three basic trafic measurements—namely, peg count,
overflow count, and usage (TUR). The approximation is expressed in
terms of the first partial derivatives or first differences of the function,
and the individual variances and covariances of the measurements.
Except for the variance of the TUR measurements, asymptotic ap-
proximations for the required moments were obtained by an applica-
tion of Hammersley’s generalized renewal theory.

The variance of the TUR was given as a sum involving the covari-
ance function for the number of busy servers at equally spaced scan
intervals. The Laplace transform of the covariance function was de-
rived and inverted numerically using an inversion technique described
by Eisenberg.

The results were then applied to obtain approximations for the
variances of estimates of offered load and peakedness (variance-to-
mean ratio) of a stream of traffic of the overflow type submitted to a
loss system. The approximations were in good agreement with results
obtained by simulation.

5.2 Other Applications
5.2.1 Offered Load Estimates Based on Usage M easurements

At present, A(t) and O(f) are not always measured on primary high-
usage trunk groups. Estimates of the single-hour offered load and call-
congestion for such groups are obtained from the TUR measurement
La(t) with an iterative procedure based on the Erlang-B theory. Using
the techniques presented above, one could compare the accuracy of
these estimates with that which would be obtained by using all three
measurements. It should then be possible to evaluate the difference in
statistical accuracy that results from using (or not using) the additional
measurements.

5.2.2 The Optimum Number of Single-Hour M easurements

Normally, 20 single-hour measurements are used to obtain estimates
§ of the correct number of trunks s required to obtain a specified grade
of service. For example, on final trunk groups, the 20 single-hour esti-
mates of call-congestion O(t)/A(t) and usage La(t) are first averaged
and then used to estimate an average load and peakedness of the input
traffic. These average values are used to obtain §.
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It has been proposed that the number of measurements be reduced
in order to lower the data handling costs. However, reducing the num-
ber of measurements would increase the variance of §, i.e., decrease the
accuracy of the trunk estimates. It appears that an optimum number of
measurements could be determined by minimizing a function of the
form

C(N) = x Var [§(N)] + Cw, (30)
where 'y is the cost of taking and processing N measurements, §(N)
is the estimate of s based on N measurements, and X is a cost associ-
ated with inaccurate trunk estimates. The precise form of the function
might require modification. However, the basic idea is to trade off an
increase in the accuracy of the provisioning process due to more ac-
curate trunk estimates (as N increases) against a corresponding in-
crease in cost.

It appears that one can obtain an approximation for Var [$§(N)]
using an extension of the ideas presented in Sections II and III in order
to account for the effects of day-to-day variation in the offered loads.
However, a realistic model to justify (30) or to obtain & and Cy will
require further study.

APPENDIX

We prove here the theorem stated in Section 3.3. We shall need the
following lemma.

Lemma: For the model described in the text, let Y (t) be the number of busy
servers al time t, t = O be a stationary point, and ¥{0) = 1. Now let Y,
be the number of busy servers found by the nth arrival and i, be the ttme of

the nth arrival. Forn =1,2, -+ ,andr = 0,1, ++, ¢, define
AP(s) = E {e—-tn ( YT“)lY(O) = z'}, (31)
and
Yir(s) = };AS?’- (32)

Then we have

vt = 00/ £ (5) o]
EQ)enllEC)ww i)
-[EG) el 2. emsts ]} (83)




086 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1973

where
L ¢ls + tu) -
() = A 7 5 =0.1.2 ...
CJ(S) E)l — (35(8 + Z#)’ J 0: 1 &) ’
C_i(s) =1,
&(s) :fﬂ eodl (1),
and

8(s) = fﬂm e dF(t) = A [: —[1 — P(2)]dt

A
=201 - 43
The proof below is essentially the same as the proof of Lemma 1 of Ref.
9, modified to account for the stationary origin. Forn =1, 2, - - | we
have

E{e“"nﬂ ( Y;+1)|Yn = J, bay1 — 0 = .’L}

g~ (etrm)z (-7 —: 1) Ele=| Y., = j}, for j <e,

g—(etru)z (i) Efes=|Y, = cf for j=c¢,

because under the given conditions ¥, has a binomial distribution
with parameters j + 1 (for j =0, 1, ---,¢ — 1) or ¢ (for j = ¢) and
e~#=, If we remove the condition t,;1 — &, = =, that is, multiply by
dP{t,.1 — t. < z} and integrate over all z, we obtain

E{e—uw ( Yn+1)‘Yn - j} — o(s + ru) (j t I)E{e—mln - i,

r r

for y=0,1,---,¢— 1and
E {e ( Y;+l)‘y,, _ } = oo+ ) (1) Blerl Vo = el

If we multiply the corresponding equations by P{Y, = j} and add
them for j = 0, 1, - -+, ¢, then we get

A5+ = ols + ) [490) + 4 - (, £ ) 40|, 6o
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forr=1,2 ---,cand
AR(s) = $(s)[e(s) "

Since Y(0) = 7 and ¢t = 0 is a stationary point, we have

49 = (1) s + .
Forming the sum (32) we get
vuts) = (1) 66 + 1w
= ol + 1) [ #ol6) +¥ira@) = (, £ ) ¥ets) |,

or

Yir(s) =

#(s + ru) [( )¢(s+m)
[1 — (s + ru) ] é(s + ru)

i = (, £ ) vt |- 39

Dividing both sides of this equation by C,(s) we get

Yirls) _ Yioma(s) ( )iﬁ: i :ﬁ; (r iy ) pie® .

C.(s)  Cra(9) Cro1(s)
Adding these equations over », r — 1,7 — 2, -+, 1 we obtain
Vals) _ & ( i)cﬁ(s tgw 1 ( ) 1
co -5 sermmme 05w
i=1,2 ---,c (36)

Setting r = ¢ in (36) we get

v =5 (s oo/ 5(aw @

Substituting (37) into (36) we obtain ¢ (s) for r =1, 2, ---, ¢. If
r = 0, then
va(s) = E do)[6(5)]
_ %)
1 — ¢(s)

This completes the proof of the lemma.
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We now prove the theorem stated in Section 3.3. Again, the proof is
a slight modification of the proof of Theorem 3 in Chapter 4 of Ref. 6.
Let us define the binomial moments

Bu(t) = X (k)Pm(t), ir=0,1, ¢

k=r r

From the definition it follows that

£ r
Pa = £ (-1 (]) Bt (38)
so that setting
Bir(s) = f : =B, (1)dt

and forming the Laplace transform of (38), we get eq. (25) of the
theorem. It remains to determine B;:.(s).

Let Y(f) be the number of busy servers at time ¢ and let £ = 0 be
a stationary point. The times between those successive arrivals which
find j servers busy are independent and identically distributed ran-
dom variables. Hence, the sequence of epochs immediately preceding
those arrivals which find j servers busy constitutes a renewal process.
If ¥(0) = 7, we will denote the renewal function of such an imbedded
renewal process by M ;(2).

It may be helpful to recall that M () is the expected number of
those calls which arrive in the time interval (0, ¢] and find exactly j
servers busy, given that initially there are ¢ servers busy. Hence, we
can write

Mi(t) = :,_:,IP{tn =t Y, = j|Y(0) =1}, (39)
where ¢, and Y, have the same meaning as in the statement of the

lemma.
If no calls arrive in (0, ¢], then ¥(¢) has the binomial distribution

with parameters 7 and e~*¢, and B, (t) is given by

(7)o - P
where

Ft) = f n' [1 — F(z)]dz.

If one or more calls arrive in (0, ¢], let the last call’s arrival epoch be
u and at that instant let the number of busy servers be j. Now Y (f) has
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the binomial distribution with parameters j+ 1 (if =0, 1, ---,
¢ — 1) ore (if j = ¢) and e #¢~%). Thus, together we have

Butt) = (1) et = F0)]

J+1
,

c—1
+ T (

).[ut eIl — F(t — u) JAM i(w)

+ (c)f; eTmh—w] — F(t — w)JdM.(u). (40)

r
If we introduce the Laplace-Stieltjes transform

wis(s) = [ " emndM (0,

then from (40) we have

Birls) = _(sd’f ;L‘)"#) [(:) i = ﬁg: i ::3
J._cg—jl (j _: 1 ) wii(s) + (i) m,(s)]- (41)

From (39) we have
wi(s) = £ PYo = jJEle=| Vo = j, ¥(0) = i)

and hence by (31) and (32) we get

§ (Jnio- £ (1)
= Yir(s).

Thus, 8:-(s) can be written in the following form

1 — (s + 7u) i\1 — ¢(s + ru) _
Birls) = — + ru [(f) 1 — ¢(s + ru) +¥als)

+ irafs) — (r i 1 ) MG(S)]-

Y(0) = i}»

If we take relation (35) into consideration, then this formula can be
simplified to

1 — (s +1u)  Yurls) (z) 1 [1_$(s+m)]_
(s +ru) (s+ 7w r]) (s + ru) #(s + i)

This completes the proof of the theorem.

Bir(s) =
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