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A communication system s studied in which two users communicate
with one receiver over a common discrete memoryless channel. The infor-
mation to be transmitted by the users may be correlated. Their information
rates are described by a point in a suitably defined three-dimensional
rale space.

A point in this rate space s called admissible if there exist coders and
decoders for the channel that permit the users to transmit information over
it at the corresponding rates with arbitrarily small error probability. The
closure of the set of all admissible rate points is called the capacity region,
G, and is the natural generalization of channel capacity to this situation.

In this paper we show that @, which depends only on the channel, is
convex and we give formulas to defermine it exactly. Several simple
channels are treated in detail and their capacity regions given explicitly.

I. INTRODUCTION

The mathematical theory of communication has been concerned, for
the most part, with the reliable transmission of information from a
single information source to a single user. An extensive literature exists
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on this problem: the basic concepts are contained in the classic papers
of Shannon.!

In this work we consider the case in which messages from a set of
information sources are communicated over a common channel to a
single receiver. We impose constraints on the encoding techniques
which can be employed.

A precise formulation of the problem is presented in a subsequent
section. Here we describe in less mathematical terms the type of
problem considered.

A particular multiple access communication channel with two inputs
and one output is shown in Fig. 1. Here the two inputs, X; and X, and
the output ¥ each take values from the set {0, 1}. The conditional
probability of the output ¥ for each of the four possible input pairs
(X,, X,) is also shown in the schema at the right in Fig. 1.

It is clear that if the transmitters can cooperate with each other
they can transmit without error one bit per channel use by transmitting
either the pair (X, = 0, X; = 0) or the pair (X; = 1, X; = 1). Such
would be the case if a common binary source were connected to both
inputs without any coding. If a message is to be transmitted by con-
necting it to only one input, say to input 1, and if the other input is
unaware of the message, then even if no informationis to be transmitted
through input 2, the information rate for input 1 must be substan-
tially less than one bit per channel use in order to achieve reliable
communication. If two independent messages are to be connected
separately to the inputs—message 1 to input 1, message 2 to input 2—
the situation is even more difficult.

A general configuration that we consider is shown in Fig. 2. Three
sources emitting statistically independent messages at rates K, Bi, and
R, are connected to a multiple access channel via two encoders. The
messages from source 1 and source 0 are inputs to encoder 1 and its
output is connected to one of the input terminals of the channel.

X;e {0,1}
MULTIPLE ACCESS
X € {0‘,} COMMUNICATION
G CHANNEL

INPUT 1

INPUT 2 =i

Fig. 1—A multiple access channel.
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Fig. 2—Multiple access channel with correlated sources.

Encoder 2 has as inputs the messages from both source 2 and source 0
and its output is connected to the other input terminal of the channel.
The channel output is connected to a decoder which estimates the three
source messages. It is convenient to represent the rates of the three
message sources by a point in a three-dimensional rate space.

For each given channel of the sort just described, there are certain
rate triplets, Ko, Ri, Rs, for which it is possible to attain arbitrarily
small probability of error in the system output by using sufficiently
clever encoding and decoding schemes. For other points in the rate space
this is not possible. We call the closure of the set of rate points for
which the error probability can be made arbitrarily small the admissible
rate region or the eapacity region for this channel. It is a natural general-
ization to the multiple access channel of the channel capacity that is
associated with the more commonly studied channel having a single
input and a single output.

The main result of this paper is a complete determination of the
capacity region €. A typical case is shown in Fig. 3. The region always
lies in the first octant and is bounded by the planes B, = 0, RB; = 0,

Fig. 3—An admissible rate region.
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R, = 0 and a convex surface. The equations that describe € will be
shown to involve various conditional and unconditional mutual infor-
mations. This is analogous to the single-user channel where the capacity
is calculated from a mutual information.

Problems resembling ours have been treated by several authors.
Shannon,? and then Van der Meulen,? consider a two-way channel with
two inputs and two outputs. The configuration of the encoders and
decoders is different than in our model, so that the problems are not the
same. One similarity, however, is that the two sources are described by
a pair of rates which are represented by a point in rate space. For
certain points, encoders and decoders exist for which the probability of
error can be made as small as desired.

The multiple access channel has been investigated by Liao,* Van der
Meulen,* and Ahlswede.® Liao* and Ahlswede® both prove a coding
theorem and a converse for the case of independent sources. Our
results reduce to theirs for the case Ry = 0. Correlation in the sources
adds a totally new dimension to the problem (and literally to the region
of admissible rates).

A problem which is the dual of the one considered here is the broad-
cast channel investigated by Cover’ and Bergmans.® There, a channel
with one input and two outputs is considered along with a single
encoder and two decoders. Again the concept of an admissible rate
region applies.

A brief outline of the paper follows. In Section II a detailed problem
formulation is presented. Section III summarizes the main results of
the paper and gives some examples. Sections IV and V and the as-
sociated appendixes give details of the derivation of a coding theorem
and a converse. A more useful description of the admissible rate region
is given in Section VI. We conclude in Section VII with some generaliza-
tions and comments.

II. PROBLEM FORMULATION

Consider the block diagram shown in Fig. 4. The three sources are
described by a three-dimensional rate vector R = (Rq, R1, R) with non-
negative components. For a fixed positive integer N, we define the
components of the vector M by

M = M(R, N) = (Mo, My, M), (1a)
M; = rBR"N"I, 1=0,1,2 (1b)

where Tz7is the smallest integer greater than or equal to z. Every N
time units the sources produce a triplet of numbers (, j, k) that are the
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Fig. 4—Notation for multiple access channel.

corresponding values of the random variables (U, Ui, U,). These
random variables are assumed to be statistically independent and
uniformly distributed over the rectangular lattice of dimensions
Mo X My X M, That is, their joint probability distribution is

PU.,UIU,(T:, j, k) = PI‘[UO = 'l:, U1 = j., Uz = k] — 1/M0M1M2,
1E(1,2 -, M) =1,
3.6(1:2? :Ml) = I,
ke 1,2 ---, M) = I,.
The channel is a probabilistic mapping which every unit of time maps
a pair of real numbers (z1, x2) to the real number y. The real numbers
1, T2, and y belong to the finite alphabets ;, %, and 9, respectively.
The mapping is governed by the conditional probability distribution
Pyix,x,(y | 21, 22) for all z; in Xy, 22 in X5, and y in Y. Here we describe
the inputs by the pair of random variables (X, X;) and the output by
the random variable ¥. Throughout this paper, it will be assumed that
Py x,x, is specified a priori and cannot be altered.
To describe how the channel processes sequences of N input pairs,
we define the N-vectors

X = (Tu, Tz, + 0, T1w), X & ()Y,
Xy = (221, Toz, - -, Ta2w), X; € ()7, (3)
y = (yll Yo, =", yN)r y € ((H)N;

(2)
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and in a similar way the corresponding random vectors X;, X, and Y.
Here (21)? is the set of all N-vectors whose components are in ;. The
sets (%)Y and (Y)Y are defined analogously. We assume the channel
is stationary and memoryless; that is,

N
Plexg(ﬂxl, xﬁ) = 3111 meix,(ye|xu, Tae) . (4)

The superscript N on the joint probability distribution indicates the
dimension of the vectors.

The encoders are deterministic mappings from the source outputs to
channel input vectors. Encoder 1 is a mapping from the source pair
(i, 7) to an N-vector x; € (X1)". The functional form for this mapping
is written

x1=1fx(i,J), i€EL, jEL x1E (X)V. ()

Similarly, encoder 2 is a mapping from the source pair (3, k) to the
N-vector x; € (X2)¥. The functional form for this mapping is written

x; = gn(i, k), 1€ L, kE I, x2 &€ (X)V. (6)

The collection of (Mo X M; + My X M;) N-vectors which result from
these mappings is called a code of block length N. Usually, we will adopt
the more suggestive notation X,;; and X instead of f5(7, 7) and gn (3, k).

To summarize the operation of the sources, encoders, and channel we
note that:

() Every N time units, the three sources produce a triplet (z, j, k).
(i) The two encoders act upon the source outputs to produce the
two N-vectors x1;; and Xa.

(i35) The components of these vectors are impressed upon the
channel, one pair of inputs each time unit. Corresponding to
each pair of inputs the channel produces an output, so that in
the N time units the channel produces an output N-vector, y.

The decoder is a deterministic mapping from the vector y to the
triplet (:*, 7*, k*) where i* € I, j* € I, k* € I,. We describe this
mapping by (i* j* k*) = hy(y). The triplet of decoder outputs is
denoted by the vector random variable (Us, U1, Us).

The deterministic mappings (fv, gv, hy) will be called a coding. A
coding with rate vector R = (Ro, R1, Rz) and block length N will be
denoted by Cx(R). For a given coding, we can in principle calculate
the probability of the error event 8, where §° (the complement of &)
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is defined as
& =event {Uy=U, and Uj=U;, and Us= Us}. (7)

For the coding Cx(R), we denote the probability of the error event
(hereafter called the probability of error) by P.(Cx(R)).

A rate vector R will be said to be admissible if, for every e > 0, there
exists a positive integer N and a coding Cx(R) such that P,(Cx(R)) < e.
The closure of the set of admissible rate vectors is called the admissible
region or capacity region, and is denoted by @. Our purpose is to specify
C for an arbitrary, discrete, memoryless, multiple access channel.

III. SUMMARY OF RESULTS AND EXAMPLES
The main results of this paper are two alternative descriptions of the
admissible rate region € for any discrete memoryless channel. The
proofs that these yield the correct region are contained in the remaining
sections of the paper. Here we discuss only the simplest of the results.
We shall have much need of conditional mutual information expres-
sions in the sequel. We remind the reader of the definition

I(A;B|C) = ¥ X % Panc(i, j, k) log pA.iﬁﬁ)ﬁf’Jﬂ:&k)' ®

Here

PABC(i, jrk) = Pr [Aa = ia: Bﬂ = jﬂ! CT = k'ﬂ
a=1,2--,L;=1,2 - Myy=12 -, N]
is the joint distribution function of the discrete random variables
Al, Az, ey, AL, B]_, Bz, e, BM', C], Cg, ey, CN. The GOﬂditiOﬂﬂ.l
distributions Pasic(i, j|k), etc., are defined in the usual way.

Let us return now to consider a discrete memoryless channel with
input alphabets &; and &, output alphabet <, and transition prob-
abilities Pyix,x,(y |21, 22), 21 € X1, 22 € X3, ¥y € Y. Let Z be a random
variable which takes on values in the set

a={1r21"'JM}' (9)

From any set of three distributions Px, z(z1|z2), Px,z(x:|2z), and Pz(2),
Ty € Xy, v2 € X9, z & 3, form the joint distribution

PZX;X]Y(‘Z: Ty, Tz, y)
= Pz(2) Px,12(x1]2) Pxyz(22|2) Pyix,x,(y | 1, 22) . (10)

Now denote by ®(Pzx,x,v) the set of vectors R = (R, Rs, R.) such that
0 =R = I(Xy; Y‘Xz, Z), (11a)
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0= R+ R = I(Xy, Xs;Y|2), (11c)
0<Ry+ B+ R: = I(Xy, X5 Y), (11d)

where the mutual informations are computed according to (8) using the
joint distribution (10). This region is a polyhedron such as is shown in
Fig. 7, Appendix I. Then the admissible rate region € is given by

@ = closure of the convex hull U ®R(Pzx,x,v), (12)

where the union is taken over all possible choices of Px,z, Px,z and
P, and all values of M, the size of the 3 alphabet.’

To obtain the intersection of the admissible rate region € with the
plane R, = 0, the size of the alphabet & can be set equal to 1. The
random variable Z no longer appears in the equations. For By = 0, we
then define ®(Px,, Px,) as the set of vector R = (0, Ry, R3) such that

0< R =IXuY|Xy), (13a)
0 < R, = I(Xy; Y[ Xy), (13b)
0ERi+ R, = I(Xy, X3 7). (13¢)

Then
@ | zy—o = closure of the convex hull of U ®(Px,, Px,), (14)

where the union is taken over all possible choices for the unconditional
distributions Px, and Px, This is the solution found by Liao* for
uncorrelated sources.

Other equations for specifying the region € are given in Section VI.
They involve the calculation of mutual informations among long
sequences of random variables and thus do not appear to be useful for
computation.

Quite generally, @ is convex. It is always bounded by portions of the
three coordinate planes and a surface which encloses a finite volume
in the first quadrant of rate space. If R = (Ro, E1, Rs) is in €, then for
any & = (8, 81, 8) satisfying 0 = 8; £ R, 7 = 0, 1, 2, the rate vector
% is also in €.

In the remainder of this section, some simple examples are presented
for which the admissible rate region has an explicit characterization.

T We suspect that it suffices to consider only values of M = FeRoT, but have not
been able to prove this conjecture.
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Example 1 (Multiplier Channel)

Both the inputs, X, and X,, and the output, ¥, for this channel
take values 0 and 1. The output is the product of the two inputs. For-
mally, €; = €. =Y = {0, 1} and mele(OJO, 0) = melxz(OIO, 1)
=Pyix,x,(01,0) = Pyix,x,(1|1,1) = 1, and all other conditional
probabilities are zero. Note that the channel is deterministic.

The pyramid described by the planes

RBy=0, BRy=0, R,=0,
Rl}+R1+R2=IOg2

must contain the admissible rate region €, as is seen from (11d) since
0=Ro+ R+ R: £ I(X,, X5; Y) = log 2. But the rate vectors

Ry = (log2, 0, 0), R, = (0, log 2, 0), and R; = (0, 0, log 2) are all
admissible by the following strategies:

R;: Choose N =1, My =2, My = M, =1 and use code words
111 = 0, T121 = 1, Lo = 0, Loyl = 1

R,: Choose N =1, My=1, My, =2, M,
T = 0, X112 = 1, o1 = 1.

R;: Choose N =1, Mo=1, My =1, M; = 2 and use code words

T = 1, o1y = 0, X910 = 1.

(15)

1 and use code words

The probability of error for these codes is zero. Since the convex hull
of these three rate points and the origin is the set bounded by the
planes (15), the capacity region € is as shown in Fig. 5.

By similar arguments, we find that Fig. 5 gives the region of admis-
sible rates for many other binary-input, binary-output deterministic

Fig. 5—Admissible rate region for the multiplier channel.
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TABLE I—Py x,x,(¥| 21, %2)

Yy
:n.'rx 0 1 2 3

00 1—1p p/3 p/3 p/3
01 p/3 1—p p/3 p/3
10 p/3 p/3 1-p p/3
11 p/3 p/3 p/3 1—p

channels (ones with all transition probabilities equal to zero or one).
Degenerate cases exist, however, in which the region € reduces to a
portion of a plane. For example, if Pyix,x,(0(0, 0) = Prux,x,(0]0, 1)
= Pyix,x,(1]1, 0) = Pyix,x,(1]1, 1) = 1 and all other probabilities
are zero, it is easy to verify that @ = {R = (R, Ry, R2): 0 = By + Ry
< log?2, R: = 0, Ry, R, = 0}.

Ezample 2 (Symmetric Noisy Channel)

Let % = Xz = {0, 1}, Y = {0, 1, 2, 3} and let Pyix,x,(y|z1, 22) be
given as shown in Table I. Let M be as in (9). Define Pz(z:) =73,

Px,12(0]2)) = ai, Pxuiz(0|2:) = Bi, 2 =1, 2, ---, M. Straightforward
calculations then yield
M
I(Xy; Y[ Xe, Z) = ;"/e(fl(an ») — K(p)), (16)
M
I(Xy;Y|Xy, Z) = El’h‘(fl(ﬁir p) — K(p)), (17)
M
I(Xh XZ; le) = gl 'Yi(ffi(al'; ﬁi;?’) - K(p)); (18)
where

N8, p) = gp logg + ((1 — p)é + % (1 — 5))

x log 1 +(§a+(l—px1—®)
)

p
A=-po+350-23

X log 1 , (19)

Pot+a-p0 -9

K@) = (1 = p)log g s + plog (20)
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and

ol 6,8) = | (1 = p)o + 2 (1 — o) | 1og !

(1= pas + £ (1 — ap)

D
(W =pel =5 + B0~ atap))
1

X log
(1= plal = 6) + 5 (1 —a+af)

(A -p80 -0 +20—5+a8)
1

X log
(1= p)B(l ) + £ — 6+ ap)

+(a-n0 -0 -p+5ats—am)
X log ! - (2D
1=pA-a)1—p) +E@+6—ap)

It is easy to show that fi(3, p) = f1(}, p), fela, B, D) = fou3, 3, D)
= log 4. Therefore, the three mutual informations in (16), (17), and

(18) are simultaneously maximized by setting a; = 8; = 4, i = 1,
2, -+, M. Furthermore,

I(Xy, X205 Y) = H(Y) — H(Y|X:1X5) = H(Y) — K(p) < log4 — K(p)

with equality when a; = g8; =%, i=1, 2, ---, M. Thus all four
mutual informations, [(X1; Y| X5, Z), I(X»; Y| X,, Z), I(X,, Xs; Y| 2),
and I(X,, X»; ¥), are maximized for the same choice of the parameters
@;, B, and v;, and the maximum values are independent of M. The
capacity region for this channel then is given by

0 = R, = /1(3,p) — K(p), (22)
0=R: = /13, p) — K(p), (23)
0= R+ R+ R; < log4 — K(p). (24)

This region is shown in Fig. 6.

IV. EXISTENCE OF CODINGS WITH SMALL P,

In this section we outline a proof of the existence of codings which
have vanishingly small probability of error for certain values of the
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£, (1/2,p) — K {p) —~ — _ N

~

~—LOG 4 — K (p)

Fig. 6—Admissible rate region for the symmetric noisy binary channel.

rate vector R and sufficiently large block length N. Tedious details are
relegated to the appendixes. A random coding argument is used. We
calculate the average probability of error for an ensemble of codings,
then argue that there must exist at least one member of the ensemble
having error probability as small as this average. Actually, we can only
compute an upper bound for this average error probability, but this
bound is sufficiently small for our purposes.

For every coding, we shall use the same form of decoder mapping.
Assume for the moment that the block length N, the rate vector R, and
the encoder functions fy (7, j) = X1;; and gn (7, k) = Xau are fixed. For
each y € ()%, the decoder computes the My X My X M, numbers

Pkx.(¥ | X165, Xaix), (RS I i€ I ke I,.

Then h(y) = (¢4, jo, ko) if and only if (z,, j,, ko) is the smallest triplet
(in lexicographic order) such that

PNV | Xuigior Xaigho) = PHkx (¥ | X1is, Xaik) (25)

for all (4, j, k). Such a decoder mapping achieves a maximum likelihood
decision among the possible source outputs.

We now describe the class of codings for which we obtain an upper
bound to the average probability of error. It is specified by two positive
integers, K and N = KL, where L is a positive integer, by a rate vector
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R, and by a particular probability distribution for the random variables
X,, X,, and Z. The vectors X, and X, are K-dimensional and take on
values in (X1)% and (X2)* respectively, the spaces of channel input
K-vectors. The random variable Z takes values from an alphabet 3 of
size M as in (9). The joint distribution of these quantities is restricted
to have the form

PiXx.(z, X1, X2) = P§12(1|2) P¥i)2(X2|2) P2(2) (26)

and we denote this collection of distributions by ®x. A class of codings
is thus specified by K, N = KL, R, and a P&x, € Pk.

Nowlet K, N = KL, R, and P{®x, € ®x be given. A set of N-dimen-
sional code vectors Xy, - - -, Xi1ary, Xo11, * * + , Xo1a, i0) the corresponding
ensemble of codings is obtained as follows. Choose a sample, say z,
from the distribution Pz(-). Next independently choose M; K-vectors
from Pg{;(-|2) and then M, K-vectors from Pg),(-|2). These are
respectively the first K components of the N-vectors X111, - -+, X11a1,,
Xon, ~ -, Xo1m,-

To obtain the next K components of the code words, independently
choose a new sample z from Pz(-) and repeat the process. After a total
of L drawings from Pz(-) the specification of the N-vectors x111, -+ -,

X1y, Xo11, * ** , Xa1ar, 18 complete. The entire process is then repeated
to obtain the remaining code words—those with second subscript
equal to 2, 3, - -+, M.

We now seek an upper bound to the average probability of error for
the codings in this ensemble, an average in which the probability of
error for each particular coding is weighted in accordance with its
probability of oceurrence in the ensemble. We denote this average prob-
ability of error by P.(N, P{&'x,) and we denote by P ; (N, P&x.)
the average probability of error given that the source triplet (i, j, k)
was presented for transmission. A useful result is
Theorem 1: The average probability of error conditioned on the source
triplet (v, j, k) has an upper bound

Pﬂ"'-.f-k(Nr P(ZI{)LX':) = ; eXp =_-£V[Ea(pa| Pé?lx:) - pﬂRu:”’ (27)

whereOépaél,a=1;2,3,4s

Rl, a=1
R,, a=2

Ru R1 + R‘z, a=3 (28)
Ro4+ Ri+ Ry, o =4,
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and
Fi(ps, PRx) == ¢ 0 £ T T P02 P2
X (Z PETe(xs|2) (PYixy [2)) 10420147, (290)

E(ps, PRx) = — 5 fn T T T PP
X (5 PHa(x: ) Py 33, )05 ) 4o, (290)

Ei(ps, PRx) = — & 0 = X P(2)
X (% ?1 Pﬁ?z(xﬂz)Pﬁ’,‘?z(x”z)
X (P‘(;r)&xxa(y|xlx2))”“+"”)1+‘”’, (290)

Eipy, PRR) = — 0 % (T T PH(x, x)
% (P‘y&lx,(y\xl, Xz)) 1/ (+p0) 1tos — ‘lj’%_%_ (29d)

A proof of this theorem is given in Appendix A. It follows closely the
proof given in Gallager® for the single-input, single-output channel.

Since the bound proved in the theorem is independent of the triplet
(¢, 4, k), we see that this same bound applies to the unconditioned
average probability of error P.(N, P$¥x,). Finally, for fixed N = KL,
and P$Px, there must be at least one coding in the ensemble with
probability of error no greater than the average probability of error.
Thus we have

Theorem 2: For every positive integer K, for every positive integer N that is
an integral multiple of K, for every joint distribution Pi¥x, of form(26),
and for every rate vector R, there exists a coding Cn(R) such that

PUC(R) S ¥ exp |~ N[Ealp, PH) = puRel) (30

for all pay 0 S pa S 1,a = 1,2, 3, 4. The E, and R, are given by (28)
and (29).

For a given P#x, and for certain values of the rate vector R, the
upper bound decreases exponentially in N. For these values of R, by
making N sufficiently large, we can insure a small probability of error.
We now determine for what rate vectors this is the case.
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Define ®R(P¥x.v) as the set of rate vectors R for which

0< R < I%I(Xl;Y\Xz, 7) (31a)
0% Ry < 2 I(Xs; Y|X,, 2) (31b)
05 Ri+ Ry < 3 I(Xy, X3 ¥ 2) (31¢)
0<Ro+ Ri+ Rs < %I(Xl, Xs; Y), (31d)

where the mutual informations are evaluated under the distribution

P%X,Y(Z, Xy, Xg, Y) = P%xl(zr Xy, XE)P§.I|(£IXI(YIXIJ xE)J (32)

where P{¥x, is given by (26) and P{kx, by (4).
In Appendix B we prove

Theorem 3: For every ¢ > 0 and every rate vector R C ®R(P¥x.v), there
exists an Lo and a sequence of codings, Cx(R), such that

P(Cny(R)) S e forevery N =KL, L2 L. (33)

This theorem holds for all P&k, of the form given in (26), that is,
for all Px, € ®k. Now define

®e= U &PRxvy), (34)
P‘g’{’,x,eﬁ’x
and finally define
® = U @, (35)
K
where K = 1, 2, ---. We then have the following main result:

Theorem 4: For every ¢ > 0 and for every rate vector R C ®, there exist
values of K and Lq and a sequence of codings Cx(R) such that

P.(Bn(R)) = ¢ for every N =KL, L = L. (36)

Note that if we use the statement of Theorem 1 instead of Theorem 2,
Theorem 4 becomes

Corollary 1: For every e > 0, for every message triplet (7, j, k), and for
every rate vector R C @®, there exist values of K and L, and a sequence of
codings C'x(R) such that

P.ii(Cn(R)) < € for every N =KL, L =z L. (37)
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V. CONVERSE THEOREM

In this section, we present a series of lemmas and theorems which
yield a converse to the Coding Theorem 4. Let & denote the closure of
the region ® given by (35) and let & be the complement of & with
respect to the first octant. We shall ultimately show that every coding
Cx(R) with R € @&° transmits with a probability of error not less than
a constant 8 > 0 which is independent of K.

Our notation is as before except that K, instead of N, will be used
for the block length of a code. Let K, R, and the channel be given. The
associated vector M with components

M, =TekRal,  a=0,1,2, (38)

is then determined. We shall no longer be concerned with ensembles of
codes, but rather fix our attention on some given encoding functions
X1i; = f(i, j), Xoik = g(’&, k), where 1 E Iu, j E Il, and k e Iz. These
vectors need not be distinct. Then with the source statistics given by
(2), the given encoding defines a joint probability distribution

PgﬁhU:Xlx:Y(iJ j: k} Xy, X3, Y) = P(Yl&lx:(Y|xlr x2)
X le?Uon(xlus j)QiﬂUoU:(IZHr k)PUnUlU!(!:’ j? k) (39)

for the random variables in question. Here
Q&IL?UnU:(XIM: J) = ’sll.ln';‘! (403)
Q&I:?ng,(xgi?:, k) = Bxyxpipr (40b)

where the right-hand terms are Kronecker deltas. Entropies and
mutual informations can then be calculated from (39) by the usual
formulas.

Several more definitions are needed. We shall make use of the rate
number vector R’ = (R,, Ri, Rs) given by

R;=%logM¢§Ra «=01,2 (41)

and the elementary entropy function

hz) =— zlogz — (1 — ) log (1 — ). (42)
Finally, we define

P.(Cx(R)) = Pr[U; # Ui] (43)

P.(Cx(R)) = Pr[U; # Us] (44)

Pu(Ck(R)) = Pr[UT # U, or Uz # Usl. (45)
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Then, for the probability of error using the coding Cx(R) we have

P(Cx(R)) = Pr[U; # Usor Ui # Uy or Us # U,]
2 max [Pa(Ck), Pu(Ck), P.s(Ck)]. (46)

We now proceed to the first of the lemmas which is a generalization
of Fano's inequality (Ref. 9, Theorem 4.3.1). The proof is given in
Appendix C.

Lemma 1: For every K and R and for every Cx(R):
H(U\|Y, Uy, Us) £ Pu(Cx) log M1 + h(Pa(Ck)); (47a)
H(U,|Y, Uy, Uy) £ Pou(Ck) log My + h(P.(Cx)); (47b)
H(Uy, Us|Y, Uo) £ Pua(Ck) log (M1M2) + h(Ps(Ck)); (47c)
H(Uy, Uy, U:|Y) £ P.(Ck) log (MoM1M3) + h(P.(Cx)). (47d)

The next lemma, proved in Appendix D, is a generalization of the
data processing theorem (Ref. 9, Theorem 4.3.3).

Lemma 2: For every K and R and every coding Cg(R):

(a), I(UyY|Usy, Ug) = I(Xy; Y| X, Uy); (48a)
(b), I(Ux;Y|Uy Us) = I(Xs; Y| Xy, Uo); (48b)
(©), I(U, UnY|Uy) = I[(Xy, Xa; Y| Uo); (48c)
(d), I(Uo, Uy, Us;Y) = I(Xy, X3 Y). (48d)

Lemma 3: For every K and R and every coding Cx(R) with rate-number
vector R':

(a), KR;— I(X1;Y[Xy, Uo) £ Pu(Cx)KR, + h(Pa(Cx));  (49a)
(b), KR; — I(Xs;Y|Xy, Us) € Puo(Cx)KR; + h(P(Ck));  (49b)
(¢), K(Ri+ R;) — I(X,, Xs; Y| U)
< P.4(Cx)K(R; + R;) + h(P.(Ck));  (49c)
(d), K(Ry+ Ri+ R;) — I(X,, X5;Y)
S P(Cx)K(Ry 4+ R) + Ry)+ h(P.(Cg)). (49d)

The proof is given in Appendix E.

With these lemmas in hand, we return to the matter of establishing
a converse to Theorem 4. For a given K, R, and encoding Cx(R), there
is established a joint probability distribution between the random
variables Y, X;, X, and U, given by

Q%ﬁlxﬂ(i: Xy, X, Y) = P%’f}x,x,(y | X1XQ)Q§I;IRU,(X1 | i)Qg:?Uu(xﬂ | i)QUa(%’)) (50)
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where Pk, is given by (4),

Quili) = 37+ (512)
) 1 M
ngfm(xlh) = E jz=:1 5:1:1;‘,‘: (51b)
1M
ngl)b’n(xi l 7’) = ﬂ—l_z }?_a:l 61312-'&) (510)

1 € I, x; € (X)), X2 € (X)E.

Here Cx(R) is defined by the code words X1:; and Xsu, 1 € Io, J € Iy,
k € I,. We denote by @x the set of all distributions Q%x, derived from
code books, that is, all distributions of the form obtained by summing
(50) over all y € (Y)¥.

With K, R, and an encoding Cx(R) now fixed, we define $°(Q¥%k x.v)
to be the set of all vectors S = (So, S1, S») with non-negative com-
ponents such that at least one of the following inequalities is satisfied,

S > %I(Xl; Y| Us, Xo), (528)
S > Il—( I(X,; Yl U, Xy), (52b)
S+ S > %I(Xl, Xa; Y| U0), (52¢)
So+ 81+ S > %I(Xl, X2 Y). (52d)

Next define
§& = N $(Qf%xy) (53)

Qg&lx,EQﬂ

and finally

8¢ = Q 8. (54)

Here ¢ denotes complement with respect to the first octant So = 0,
8120, S: = 0. Thus, for example, 8(Qffkx.y) is a closed convex
polyhedron bounded by seven planes.

Note the similarity between (50) and (32) and between (31) which
defines ®(P%xy) and (52) which defines 8°(Q{%x.y). For every dis-
tribution in 9k, there is a distribution in ®x that will give equality
between the corresponding right-hand members of (31) and (52) when
Z and U, are properly identified. We make this identification by
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choosing M = M, and by taking Z to be uniformly distributed over
its M possible values. With a member of ®x identified with each Q¥ x.
in this way, we see that for this particular Px, one has

‘S(QEJI&J:Y) = &(ngx,y).

Here the caret, *, denotes closure. Comparison of (34) and (53) then
shows that $x C ®g. Thus 8 C & or

Re C s-. (55)
In Appendix F we establish

Theorem 5: If R is an interior point of 8¢, then for every K and every
encoding Cg(R),
P,(Cx(R)) =2 6 > 0,

where § = 6(R) is independent of the encoding and of K.

VI. SPECIFICATION OF THE CAPACITY REGION

At the end of Section II, the capacity region was defined as the
closure of the set of admissible rate points. Theorems 4 and 5 along
with (55) show that @ = @ where ® is defined by (31), (34), and (35).
This characterization of € is of little computational value. It entails
the calculation of the mutual informations appearing on the right of
(31) for all distributions of form (32). A further infinite union over all
values of K is then required. In this section we shall show how a much
simpler description of € can be obtained, one that is independent of K
and hence much more suitable for numerical calculations.

Central to the development of this simpler characterization of € is

Theorem 6: The region © of admissible rates is convez.

This theorem is proved by a time-sharing argument in Appendix G.
By deleting words from a code, one obtains an additional obvious
feature of the region @ which we state as

Theorem 7: Let R € €. Then if 0 S R < R, a = 0, 1, 2, the rate
vector R" is also contained in €.

We return to our simpler characterization of . Let ®, denote the
region specified by (31), (32), and (34) for K = 1. Since @ is the closure
of ® as given by (35), ¢ € €. From Theorem 6 it follows that also

®' = convex hull &, C e. (56)

(The convex hull of a set @ consists of all points in @ and all points
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on all line segments joining points of @.) We shall soon show that
indeed ®' = €.
As a step in this direction, in Appendix H we establish

Lemma 4: For every distribution P¥8x.y(z, X1, Xs, y) as in (32),

I(X; Y|Z, Xs) < ‘é [(X1s Y| Z, X2, (57a)
I(Xy;Y|Z, X)) = él I(Xa; Y| Z, X12), (57b)
1%, X0 Y12) 5 % 1(Xoy Xuii V4l 2), (57¢)

I(Xy, X0 Y) 3 [(Xuy X V). (57d)

t=1
Combined with (31) the lemma shows that
®R*(PEx.y) 2 R(PEx.¥), (58)
where ®*(P%x.y) is the set of rate vectors R for which

K
0< R < %; I(Xu; Vel Z, Xa), (59a)
1 K
05 Re < £ 3 1(Xai Vil Z, Xu), (59b)
1 K
0=ZR;,+R:= K;I(Xn, Xsi; Y| Z), (59¢)
1 K
O0ZRy+Ri+ R, = K ; I( X1 Xos V), (59d)

where the right sides of (59) are evaluated under P%¥x.y. Note that
®*(Px.y), unlike R(P$x.v), is a closed set by definition.

Now, a typical term on the right of (59) depends only on the marginal
distribution Pzx, xsv.(z, T1, T2, ¥¢). By summing (32) over the ap-
propriate indexes and taking account of (26), it is seen that this
marginal can be written

PZX:.(X!:Y;(Z: T1e, Loty Ye)
= PZ(Z)PXulZ(:EU|Z)PX2:IZ(I2¢|z)PY:|XuX:¢(y!|$1h Izg)

which is a distribution of the form P#x.y for K = 1. Thus the right-
hand sides of (59), which are the parameters defining the box-like
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region ®R*(P$Rx.v), are averages of parameters that define the box-like
region ®R(PH,x.v), t = 1,2, -+, K. In Appendix I this fact and the
convexity of the box-like regions are used to show that

K
convex hull U @(P(Zl.{'u.’(!l}’t) 2 m*(P(Z?anY) (60)
t=1

from which it also follows that

convex hull U R(PHexry) 2 U A*(Px.y). (61)
PYx, €M P %, EPx

We now have

®’ = convex hull ®; = convex hull closure |  ®(P%.x.r

Pél :.Xxe(p‘
D convex hull U RPHxy) 2 U ®*PRxy)
Pk x, 01 PR X, E0x
2 U ®&PRzy). (62)
P{Rx,E0x

Here the last inclusion follows from (58) and the next to last inclusion
is (61). Using (34) and (62), we now see that ®’' O ®x for every
K. From (35) then ® 2 ®, and since ®’ is closed by definition,
®' 2 @ = €. Combined with (56), this shows that ®’ = €, and the
formulation (10)—(12) is thereby established.

It is to be noted that while this reduction permits calculation of @
by evaluating mutual informations involving no more than four random
variables, the size of the Z alphabet is unrestricted. In this connection,
see the footnote in Section III.

That we can indeed take the size of the Z alphabet to be 1 when
computing the intersection of € with the plane R, = 0, as claimed in
Section III, is seen as follows. When R, = 0, (11d) is weaker than
(11¢), since always (X1, X»; ¥) = I(X,,X,; Y| Z). Thus we need only
conmder (11a), (11b), and (11c) in defining regions ®R(Pzx,x,v) in the

— R, plane. But the right members of these equations are of the
form

(XY |Xs,Z) = X Pr(2)[(X1; Y| X, Z = 20)

Zi)

I(Xy;Y|X,Z) = Z Pz(z)I(Xs; Y| X, Z
I(X], Xg; YIZ) = Z Pz(z,')I(Xh Xg; YlZ = Zi).

An argument just like that of Appendix I now shows that ® C convex
hull U: ®: where ®; is given by 0 = Ry < I(Xy; Y|X,, Z = zJ),
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0 g R2 = I(Xz; Y|X1, Z = Z(), 0 = R1 + Rz § I(X1, Xg; YIZ = Z;‘).
Each box-like region ®; can be thought of as obtained from a distribu-
tion in which Z takes a single value with probability one. The formula-
tion of Section III follows at once.

VII. COMMENTARY
7.1 Generalizations

7.1.1 N Input Users

The foregoing can be generalized to the case of a memoryless
channel with N input users and a single output. The channel then
is specified by alphabets Y, &1, %s, - - - , Xx and transition probabilities
pyl|zs, 22y -+, an) foryEY, 2 € Xy i=1,2, -+, N. Again we
allow the information supplied to the input users to be correlated in a
special way.

We first write out the equations for N = 3 in full, and then indicate
the general result. There are now seven independent sources, S1, Ss,
83, S12, Sis, Saa, Si2s producing information at rates Ri, B, Rs, R,
Ris, Raa, Runs respectively. There are three encoders. Encoder 1 sees
the outputs of only Si, Siz, S5, Sis; encoder 2 sees the outputs of
only Ss, Ss, Sas, Siz3; encoder 3 sees the outputs of only Ss, Sis, Sz,
S123. The decoder at the channel output attempts to reproduce sepa-
rately the messages from the seven sources. Using block codes, for
certain values of the rate vector R = (Bi, Rz, Rs, Ri2, R13, Ras, Ri2s),
the error probability of the system can be made arbitrarily small. The
closure of the set of all such vector rates is called the capacity region €.

@ can be found as follows. Let

D123(2123), P12(212), P13(21s), P2a(22s)
p1($1| 2123, 212, 213), pz(SCz izms, 212, Zza), Pa(xslzma, 213, 323) (63)

be given probability distributions. Here z; € %i, ¢ = 1, 2, 3. The
Z1a, Zs, ete., have finite alphabets of unspecified size. We denote by
P the distribution

P = puza(2128) P12(212) P13(213) Pas(228) p1(21 | 2123, 212, 213)
X p2($2|2123, 212, Z23)Pa(s |2123, 213, Zza)P(y‘xl, T, z3). (64)

Now let ®(P) be the set of R such that
0 € Ry £ I(X1; Y| Z2s, Zray Z1sy Zasy X, X3)

0 = R; £ I(Xa; Y| Z12s, Z1ay Zrs, Znsy, X1, Xy)
0= R; = I(Xs; Y| Z123, Z12, Z1s, Z23, X1, Xs)



MULTIPLE ACCESS CHANNELS 1059

Ri+ Ry = I(X,, Xo; Y| Z123y Z12y Z13, Zaa, X)

0=
02 R+ Rs £ I(Xy, X33 Y| Z193, Z1o, Z1s, Zos, X)
0=

Ry + Ry £ I(Xs, X33 Y| Z10y, Z1a, Z1s, Zos, X))

0= Ri+ Re+ Rs+ Ru = I(Xy, Xo, X33 Y| Z123, Z13, Z23)

O=Ri+ R+ Ry + Rus = I(Xy, X9, X3 Y| Z 12w, Z12, Z23)
O=Ri+ R+ Rs+ Ros = I(Xy, Xo, X3; Y| Z123, Z10, Z13)

Rl + R2 + Ra + Rlz + R13 = I(X1, Xz, Xa; YIZua, ng)

=
0=
O=Ri+ R+ Rs+ Rz + Roy £ I(Xy, Xo, X335 Y| Z 123, Z15)
O=Ri+ R+ Rs+ Ris+ Ros = I(Xy, Xy, X35 Y| Z 123, Z10)
0=
0=

O0=Ri+ B+ By £ I(Xy, Xo, X33 Y| Z 123, Z 12, Z13, Z23)

Bi+ Ry + Rs+ B2 + Ris + Ras = I(X1, Xo, X33 Y| Z123)

B+ Ry 4+ Ry + Ris + Ry + Ras + Russ
= I(Xy, X0, X33 Y), (65)

where all the mutual informations here are computed with the distribu-
tion (64). Let ® =|J ®&(P) where the union is over all distributions of
form (64) as the factors listed in (63) are varied. Then € is the closure
of the convex hull of ®.

The generalization to N users is simple in concept but awkward to
describe. We do not dwell long on it here. There are now 2¥ — 1
sources and € is a region in a (2¥ — 1)-dimensional rate space. The list
(63) is increased to contain 2¥ — N — 1 separate distributions for as
many independent Z variables—Z1s, Zys, -+, Zos, -+, Z123- .. y—
and N distributions of form pi(z1|212, 213, -+, 212...x), ete., where
each z subscript contains the x subscript. Equations (64) and (65) are
generalized in an obvious way. There are now {1 (2@{) - 1) equations

i=
(65). € is given as the closure of the convex hull of the union of the re-
gions defined by these equations.

These results for N users were obtained by cursory examination of
the rigorous proofs given in this paper for two users. As we have not
had the courage to write out all the details, however, the assertions
made for the N-user case must still be regarded as conjectures, or
educated guesses.

7.1.2 Continuous Amplitudes

It would appear that our results can be extended in a natural way to
channels with more general alphabet structures. For example, the
channel might be specified by a conditional probability density
P(y|xy, x2) where x;, 25, and y take all real values. Equation (11)
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would remain the same, but the mutual informations are now given by
integrals. Densities Pz(z), Px,iz(x1]2), Px,z(z2|2) must be specified
and the joint density of Z, X1, X,, and Y is the product (10) as before.
Constraints, such as EX} = ¢}, EX3 = o must be imposed on these
densities in taking the union indicated in (12).

Again, we have not verified in detail the validity of the determination
of @ just given for continuous amplitudes. Caveat emptor.

7.2 Some Problems

Many research problems related to the subject of this paper remain
to be examined. A brief description of some of these follows:

(i) The footnote in Section ITI suggests that the size of the alphabet
Z can be bounded in searching for the capacity of a particular channel.
Is this conjecture true?

(i) The explicit construction of good codes for use on specific
multiple access channels is an untapped field that leads to new problems
not found on single-input, single-output channels. For example, even
for noiseless channels (all channel probabilities zero or one) a coding
problem exists since users compete with each other for the use of the
channel.

(#77) The region of rates for which error-free transmission with finite
length codes is possible is not known. This region is analogous to the
zero-error capacity of the single-input, single-output channel.

(i) For a particular multiple access channel it has been found that
the region of admissible rates can be enlarged by allowing the encoders
to observe the output via a feedback channel. This is in contrast to the
situation for the single-input, single-output channel where feedback
does not alter the capacity. In the multi-user case, however, a feedback
channel increases the cooperation possible between the users and in
general increases the forward capacity. How to calculate the region of
admissible rates for multiple access channels with feedback is not
known.

(v) A special form has been assumed here for the correlation between
the messages encoded by the two users. How does one handle more
general correlations? Is the presently assumed form general in some
asymptotic sense?

(vi) Can one calculate the capacity region for some class of multiple
access channels with memory?

(vi) What is the rate distortion theory for these channels?
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APPENDIX A
Proof of Theorem 1
Let Pai,j,x(C) be the probability of error when the source triplet

(4, J, k) is sent over the channel using coding C. Let Pr (C) be the prob-
ability of the particular coding C. Then

Paiik(N, P®x,) =  Pr (C)P.ai,;x(0), (66)
where the sum is over all possible codings, that is, over all ways of
choosing the code words X1, * -, Xuagar,, Xo11, *+ , Xaamgu, But the

right side of (66) can be interpreted as the probability of error in the
joint experiment of drawing a code from the ensemble and transmitting
(¢, J, k) over the channel. With this interpretation in mind, we have

PuisalN, PRx) = L P (67)
where
P, =Pr[Us =1, Ui # j, Us = k|®] (68a)
P, =Pr[Us =1 Ul =j U #kl®&] (68b)
Py =Pr[Us =14, U # j, Us # k|®] (68c)
Py =Pr[U; = i|®], (68d)

where ® is the event {Uy = 7, Uy = j, U; = k}. We will find upper
bounds for these four probabilities.

We first compute an upper bound for P;, Fix values for the N-vectors
¥, X1ij, X2ix. Let z; denote the L-vector whose components z:1, 22, + - -,
zir, were used in the choice of x1;; and X». Later we shall average over
these quantities.

Define @; as the event that

Pixx,(v | Xuijr, X2ik) 2 Pk, (Y| X145, Xoix) - (69)
Note that the only random variable in this expression is X;:7. Define

PR (x(2) = TT PHR(xal20), (70)
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where x is the N-vector obtained by concatenating the I K-dimensional
vectors X,, and z is an L-vector whose components are z, a = 1,
2, -+, L. Then the probability of the event @; is

Pra;] = X' PEP (xuiy|zi),

X1ij’
where the sum is over all values of Xy, satisfying
P, (¥ | X167, Xoix) = PYRx.(Y [X1ij, Xeir). (71)
Following Gallager,® an upper bound to this expression is
P?ﬂ::xg(waHy, xzik) )Bl’ (72)
Pékix.(¥ | X135, X2i)

for any s; = 0. The summation is over all values of the N-vector Xy

For the same fixed values of y, X1:j, X2ix, and z;, let @ be the event
that (69) holds for some value of j' not equal to j. Then from Gallager®
(page 136)

Pr@;] = Y PP (xuy|zi) (

X1ij*

M p1
Prials (z Pr[a,--J) , (73)

)

for any p; in the range 0 < p; = 1. Combining (72) and (73) we have

Priels (M — D T PP Gz)

(Rexgims ) | @0

where the summation is over all N-vectors in (%1)".
The probability of interest, P, has an upper bound

P X !; IE Z Pk x.(¥ | X1ij, Xoix) PEIE (X145 24)
X PP (xai|2:)PY (z:)) Pr[ @], (75)

where the inequality results from the fact that the occurrence of the
event @ does not necessarily imply the event {Ug = 4, Ut # j, Uz = k}
but that the converse is true. Combining (74) and (75) and choosing
s1 = 1/(1 + p1), we obtain

P, (M, — 1Y ¥ ¥ PEiP (x:|z) PH(2)

y x2 z

X [X (PR (x| 2) PRy |0, x2)) 00 ], (76)
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where the summations for y, Xy, X», and z are taken over all elements in
the spaces (Y)Y, (1), (X2)¥, and (3)~ respectively.

We note from (1b) that (M, — 1) < eV, Now use the product
form of (70) and write the right-hand side of (76) as an exponential of
a logarithm. We find the desired result

P, = exp { —N[Ei(p1, P&x,) — p1R1]}, (77)

where E, is given by (29a). The sums there are over all x;, X, ¥, and z
contained respectively in (X1)%, (X2)%, (Y)%, and 3. Reversing the role
of U, and U; one immediately obtains

P2 é exp {_N(Eﬂ(f-’ﬂl Pg?lxz) - pﬂRﬂ)]; (78)

where E, is given by (29b).

The procedure for obtaining the upper bound for P; is very similar
to that used for Pi. An outline of the proof follows. Fix y, X1ij, X2:x, and
z;. Define ® as the event

P%B(xx:(YIlej‘, Xoi) = P{’ﬁrﬁ.x,(ﬂxw, Xoik)
for some ;' # jand some k' # k. (79)

It can then be shown that for any s; =2 0and 0 < p3 = 1

Pr®] = (M, — 1)»(M, — 1)"3[2 2 PYE (x1]z:)

x x2

; Pi;&xX:(le1, Xg) 537] o3
X PP Xle')(PiiTklx,(ylxw, xm)) ] . (80)

Averaging over y, Xiij, X2ik, and z;, and then setting s; = 1/(1 + p3),
we obtain

Py = (M, — 1)p3(M, — 1)#3 Z Z P{(z)
X [Z X PKi% (xnIz)Pﬁ,[z’(xz!zJ(Pr”klxi(y\xi, xp)) /o0 Jiees, - (81)

X1 x2

Replace (M1 — 1)#*(M, — 1)# by the upper bound e¥r3{f1+E2) yge (70)
repeatedly, and write terms as exponentials of logarithms. One finds

Py = exp | —N[Es(ps, P¥x,) — ps(R1 + R2)]}, (82)

where F; is given by (29c).

One minor change is made in the procedure to compute the upper
bound for P;. We fix only the values of y, X1:;, and X.:x (but not of z;).
Define D as the event

P“I“fifffh(}f‘xli‘j', o) = {f'\\rxﬁ (¥ | X145, Xai) (83)
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for some i’ # 7 and any j' and k. Then for any 84 2 0,0 = ps = 1,
Pr[D] = (Mo — 1)#4(My)r+(M2)*
P 8 4
X [ £ & PR oo ) i B X 477 (s

o X P'(IIT lx.(ylxw, 12:':;)

where
PO (x1, x2) = X PRz, x4, X1). (85)

Averaging over y, Xuj, Xz and setting ss = 1/(1 + ps), we obtain

Py < (Mo — 1)#4(My)*4(Mo)o
X ; [T T PO (x4, x2) (PH%x.(¥ | X1, Xp) V/OFe0 e, (86)

x1 x32

From (1b) we see that (M, — 1) < e¥®. An upper bound for M,
follows from (1b) as

My < eVBi4 1 =eVBi(l + e NE)
—N R1\ ]|
exp {N[Rﬁbg#}_e;)”

< exp {N [R1 + e_;-Rl ]} (87)

Using a similar upper bound for M,, we have that

(s~ D@L S exp {N [ Rot Rt Bat e

From (88) and (70) we then obtain

P.; é exp [—N[E4(p4) Piff%:) - P4(Rﬂ + Rl + Rﬂ)]}) (89)
where E. is given by (29d). Summing (77), (78), (82), and (89) results
in (27) which was to be proved.

APPENDIX B
Proof of Theorem 3
It can be easily verified that

En(Pcr P%’:Xz) l pa=0 = 0 for a=1,2,3, 4. (90)
It can also be shown by a straightforward but tedious calculation that

;—(I(Xl;YIXz, 7), a=1

1
oE. _ XK I(X,; leh z), @ =2 (91)
0pa | pa=0 %I(Xl, X,; YIZ)J a=3

1 o—N (Ri+R2)

21X K ¥) ————, a=4
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where the I's are mutual informations among K-vectors as computed
under the joint distribution (32). Furthermore, from (29) it is seen that
E, is analytic in p, in the neighborhood of p. = 0 and so can be ex-
panded in a Taylor series about this point, « = 1, 2, 3, 4:

Eo(pa) Pixix.)

\O + apu + Ow(P«i): a = 1: 2: 3
(92)

e‘-N(R1+R2)
[O‘f‘[ Ia'—T]P4+04(9i): a =4,

Here I, is the appropriate expression from (91) and O is the
usual Bachmann-Landau order-of-magnitude symbol. Furthermore, if
R C ®(P%x,v), we have from (31) that

1

KI.,—R,,ESQ>0, a=1,2 34. (93)

Combining (92) and (93) with (30), we see that

PCx) S % exp [~ Npaloa + 0.(3)/pe])

e—N (R1+ R2)

+ exp { — Ny [a., B 04(pi)/m]}- (94)

Now choose the integer L so large that

e—LE (Ry+ R2)

bo=bi— —p

is positive. Next, choose sufficiently small positive values of p1, p2, ps, p
so that 8, 4+ 0a.(p2)/pa > 0, @ = 1, 2, 3, and &5 + 04(p3)/p: > 0. The
coefficient of N in each exponential of (94) 1s now negative, and we
can increase N in multiples of K starting at N = KL until each term
of (94) is less than /4. Call this value of N, Ny = KL,. Then (33)
follows. Q.E.D.

APPENDIX C
Proof of Lemma 1
By definition of P, (Ck) and H(U,|Y, U,, U.),

Pu(Ck) = Z X 2 2 Piwx(i, g, k), (95)

i JE*(y)
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and
H(UL|Y, Uy, Us) = ; 2 g Zk', P{ox(i, J, &, ¥)

X log P (96)

Lﬁvw:‘l(ﬂ"' k, Y)
By separating out the terms for which 7 = 7*(y) in (96), one finds the
identity
T = H(U,|Y, Uy, Us) — Pu(Cx) log (My — 1) — h(Pa(Ck))

= Z X X X PHuox(, 5,k y)

i JFE*(y) &k
al(CK)
X108 ) P o G 15, T ¥)

+ Z Z Z P&yvx(t, 7%(¥), k, ¥)

(1 — Pu(Cx))
X log g T TFm i Ey) O

Now use the fact that log x = x — 1 to obtain

Pﬂ' P( ol2 l} kl LI
rsyy 3 x| PeEnY Pyt ik |
¥y o1 jFE*E) k (Ml - 1)
+Z 2 % [ — Pa)Puawx(5*|3, k, ¥)
y ¢
- PUuUlvaY(i: J*(Y): k: y)]

=Pya+ (1 —Pay)—1=0. (98)
Replacing M; by M, + 1 yields (47a). Equations (47b), (47¢), and
(47d) are proved in a similar way starting from the definitions

PBE(CK) = % Z: Z} k#;(y) Pgn{blb’d'('ix j: k: Y)a (99&)
Pu(Cx) = Z 2 2 Pfbwx(, 4,k y),  (99b)

i (k) A (y) K (¥))

and
P(Cx) =YL 2. P{vx(i, 3, %, ¥). (99c)
Y (5.3.k) (%, 3% k%)
APPENDIX D
Proof of Lemma 2

For part (a), we write a complicated conditional mutual information
in two different ways:

I(Xy, Up; Y| Uy, X, Uy)

= I(Xy; Y| U,, X, Uu) + I(UI;YMXIJ Us, X,, UO)
= I(U; Y| Uy X,, Uo) + I(Xy; Y|Uy, Uy, Xo, Up).  (100)
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Now
I(X1; YI Uu, Ug, Xg)

- E{log

Péfyovvxx.(Y| U, Uy, Us, X, Xg)}
P¥vwx (Y| Uy, Us, Xo)

Pixx.(Y|X), Xo)

P (Y| U, Xa)

where the equalities result from the special form of the joint distribu-
tions as given by (39) and (40). For the next mutual information in
(100), we have

I(Uﬁ Y| Uu, Uz, Xl, x?)

= E {log P{'I\QUnUsle:x:(Yl U(), U]_, Uz, Xl, x2) }
Pﬁ)unmxlx,(Y | UD, Ug, XI, xz)

B P{ex, (Y | X, Xy)
= {lc’g PPen(Y | Xa, Xo)

The third mutual information in (100) can be written
I(U1; YI Uu, Uz, Xg)

=F jl() PQII()UnUlex:(Y[ UU? Uh U2; Xg)}
L% P (Y| Us, Us, Xo)
P¥|QU0U1U=(Y' Uﬂl UI; U2)
Py (Y| Us, Us)

=K {log } = I(X; Y| Uy, Xs), (101)

} =0. (102)

=K {log

Finally,

} = (U Y|Us, Us). (103)

I(Xl; Y! Uo, Ul, Uz, Xg) g 0, (104)

since all mutual informations are non-negative. Combining (100)-
(104), we obtain (48a) which completes the proof of part (a).
The proofs for parts (b), (¢), and (d) follow in a similar manner.

The equations corresponding to (100) are:
Part (b),

I(U:, Xo; Y| Uy, Uy, Xy)
=I1Xy; Y |Uo, Uy, Xu) + I{U Y| Uy, Uy, X4, Xo)
=I(Uy; Y| Uy Uy Xo) + IXe; Y| Uy, Uy, U, X1);  (105)
Part (c),

I(U[, Ug, XI, XQ;Y‘UO)
= I(X], XQ;Yl (/'u) + I(U:[, UQ,YI Un, X:[, X2)
= I(U1, Uz;YIUo) + I(Xl, xz;YIUu, Uy, Uz);  (106)
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Part (d),

I(Us, Uy, Usy Xy, X3 Y)

= I(Xy, Xo; Y) + I(Uo, Uy, Us; Y| Xy, Xo)

= (U, Uy, Us; Y) + I(Xy, Xo; Y|Uy, Uy, Us). (107)
Q.E.D.

APPENDIX E
Proof of Lemma 3

We use the identities:
(), I(UsyY|Us, Us) = HUL|Us, Us) — H(U1|Uy, Uy, Y);  (108a)
(), I(Us; Y| Us, Uy) = H(U:| Uy, Ur) — H(U:|Us, Uy, Y);  (108b)
(@), I(Uy UynY|Us) = H(Uy, Us|Us) — H(Uy, Us| Uy, Y); (108c)
@), I(Uo, Uy UnY) = H(Us, Uy, Us) — H(Us, Uy, Uz|Y). (108d)

From the joint distributions of the random variables Ue, Uy, and U,
given in (2), we have:

(@), H(U,|U, Uy) = H(Uy) = KRi; (109a)
(b), H(U:|Us, Uy) = H(Us) = KRy; (109b)
(c), H(Uy, Uz(Uo) = H(Uy, Us)
= H(Uy)) + H(Us) = K(R; + Rs); (109¢)
(d), H(Uo, Uy Us) = H(Uy) + H(U,)
+ H(Us) = K(Ry + Ri{ + R;). (109d)

Combining the appropriate equations in (108), (109), (41), (47), and
(48), we have (49) which was to be proved.

APPENDIX F

Proof of Theorem &

If R is an interior point of $¢, then there is a sphere, o, of radius
2(R) > 0, centered on R such that every point in ¢ is also in 8°. Thus
every point in 8(Q{%x,y) must be distant more than n(R) away from
R, and this is true for every K, and every Qf%.x, in 2x. This in turn



MULTIPLE ACCESS CHANNELS 1069

implies that one of the inequalities

Ry — ;_{ I(X5; Y| Uy, Xs) > n(R)

Ry — 1 I Y| Us, X) > n(R)
1 (110)
Bi+ By — 5 I(Xy, Xo3 Y[Uo) > n(R)

R+ Ri+ Ry — 2 1%, X5 Y) > 1(R)

must hold for every encoding Ck(R) of the sort under consideration,
whenever R is interior to §°.
Now from (41), R, = Ra, @ = 0, 1, 2, so that one of (110) holds also

when the R’s are replaced by R”s. From Lemma 3 we then find that

, 1
R.P..(Ck(R)) + I_(h(Pea(CK(R))) > n(R)
for at least one o, o =1, 2, 3,4, (111)

where we define
P.(Ck(R)) = P.(Ck(R)) (112)

and for any rate vector R we define an associated 4-vector R by
(le R2; Ra, R4) = (er R2J Rl + R2, R(! + RI + Rz) . (113)
But from (87) and (88) we see that

a

Ra

., e K
R, = R.+ e

< (Ra + e ), (114)
so that

' h(P.o(Cx(R))
RuPsa(CK(R)) + 4“K—‘

< (Ro 4 e R)P(Ck(R)) + h(P..(Ck(R))). (115)
Combining (111) and (115) we find that

(Ra + ¢ R=)P.o(Cx(R)) + h(P.o(Cx(R)) = 5(R)

for at least one e, o =1, 2,3,4. (116)
Now

h(z) < 2V, 0z =1, (117
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as can be seen by the following simple argument. From
0 <31+ Q- 2]

it follows that 2Z < 1 + Z + Z2/2 < e%,for Z = 0. Butfor Z < 0 we
also clearly have 2Z < e? so that 2Z < e? for all Z. Substitute

= log V(1 — ¢)/t to obtain

1—¢ ~N1—1t 1
lo < —F——< = 0<i<l1
% Vi vt
or
flog dt<f e<axz <1,

Perform the integration and take the limit as ¢ — 0. Equation (117)
results.

Use (117) in (116) to find that (R. + e #=)P.o + 2VP.. = n(R)
for at least one a, @ = 1, 2, 3, 4. This implies that

V1 + n(R)[Ro + e Re] —
Ry + e fa

Since P.(Cx(R)) = maxa [P.o(Cx(R))], we find finally that
P.(Ck(R)) = 6(R) > 0, (118)

P..(Cx(R)) 2 [ ! ]2 = 5.(R) > 0.

where 8(R) = min, §,(R) is independent of K and the encoding
Cx(R). Q.E.D.

APPENDIX G
Proof of Theorem 6

We first show that for every positive integer n and every integer r
such that 0 = r = n,

Since @ is the closure of ®, and since the rationals are dense in the
reals, (119) implies that if R; € € and R, € €, then for every A,
0=A=1R;=2\R,; + (1 — NR: € €, which shows € to be convex.

To establish (119), we use the notion of time sharing to generate
new codings from old ones. Suppose we have two codings Cx(R:) and
Cx(Ra) both of block length N and with numbers of words M, and M.
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respectively, where as usual

M. = (Mo, M1a, Myg) = (TeVRoaT| FgNRia TN Rsaly

a=1,2. (120

Denote by P. and P,, the respective error probabilities achievable
with Cx(Ry) and Cy(R;). Now consider the possible channel input
vectors that can be obtained by using Cy(R;) r times followed by
(n — 7) uses of Cx(R,). The totality of these input vectors, each of
nN components, can be thought of as the words of a new code of block
length nN. Denoting its word size parameter by M, we have

M; = (M) (Mu)™, i=0,1,2. (121)

If we use the decoders for Cy(Ry) and Cx(R;) to decode the appropriate
blocks of length N in this new larger code, the error probability for
the new code, P,, will satisfy

1-P.=(1—-Py)(1=Po)" 721 —1rPy)[1— (n— P ]
21—-1rPy— (n—r1r)P,
so that
P, =rP,+ (n — r)P,,. (122)

Here we have used the fact that the channel is memoryless.

We now use this time-sharing notion to establish (119). Suppose that
integers n and r are given with n > 0,0 = r < n and that R; and R,
are rate points in ®. Suppose further that ¢ > 0 is given. Then, from
Theorem 4, there exist positive integers K; and L; and a sequence of
COdiDgS CNI(RI), A‘r] = KlLl, KI(Ll + ].), Kl(Ll + 2), -« such that
for each coding of the sequence P,(Cy,(R1)) > ¢/n. Similarly there
exist integers K, and L; and a second sequence of codings Cy,(R.),
N2 = KaLs, Ko(L: + 1), K2(Ls + 2), - - - such that for each coding in
the sequence P.(Cw,(R:)) < ¢/n. We now choose one coding out of
each of these sequences of codings in such a way that they are of the
same block length N. A suitable choice for N is the least common
multiple of K,L; and K,L,. Call the two codings Cy(R;) and Cx(Ry).
Their error probabilities are P,; < ¢/n and P,; < ¢/n. Time sharing
them as discussed earlier yields a new coding C, of block length
N3 = nN, code book size M given by (121) and (120), and error
probability

= €

P,£rPa+ (n — r)P, =r;i+ (n — )

€
n
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from (122). Now from the fact that Tz Wy = Fay’, (121) and (120)
give
M, = TN Ri1 I gNRiz In—r > [N [rRi+ (n—r) Ri2]"]

= MeNakisT]) 1=0,1,2,
where R is as in (119). Thus by deleting some words from the code C

we can obtain a coding with rate R;, and block length N, that has
error probability P. < e. Q.E.D.

APPENDIX H
Proof of Lemma 4
Consider (57a). We write
I(X1;Y|Z, Xs)
Py x,(Y|Z, Xy, Xs)

=FEl
% T Pfx(Y[Z, Xy)
K
H PYIXIXE(Yllet; Xai)
= Elog & t=1
LIfIl nglg(fZXan---YIA(Y”Z; X, Yl: T Yl—l)
K
= IZ I:H(Y’-IZJ X‘g, Yﬂr T Yl*l) - H(Ythlh X:‘“):l- (123)
=1
Here, fort = 1, the conditioning on ¥y, - -+, ¥ —1is to be omitted. But
H(Y,|Z,Xs, Yy, Y1) < H(Y.|Z, Xu), (124)

since removing conditioning random variables cannot decrease an
entropy. Combining (123) and (124) we have

K
IXyY|Z, Xy) < ?:i [(H(Y,|Z, X)) — H(Y,| X1, X20)], (125)
or

K
I(X1;Y|Z, xz) = Zl I(Xu; Y:[Z, th)- (126)
=

The proofs for (57b), (57c), and (57d) are similar.

APPENDIX 1

Let numbers 4., B;, C, and D, be given that satisfy the inequalities
04,50, (127a)
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0=B=0C, (127b)
0=C,=A,4+ B, (127¢)
0=¢C, =D, t=12 --- K. (127d)

Let ®, denote the set of points (z, y, 2) in three-space such that

0<z < 4, (128a)
0=y=8B, (128Db)
O=sx+y = C,, (128¢)
0O=s2+y+2z=D, (128d)
fort =1,2, .-+, K. A sketch of ®,is shown in Fig. 7, corresponding

to the case in which all the inequalities in (127) are strict. We further
define

®R=U Q. (129)

Now consider the region ®, consisting of all points (z, ¥, 2) such that

0sxs A= Z Ay (130a)

Fig. 7—The convex region ®,.
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K
0<y<Bi=+3 B, (130b)

K<

1 X
0§$+?J§COEREC:. (130c)

£=1

1 K
0sz4+y+2=Di=3 2 D (130d)

Ko

Our first goal in this appendix is to show that

®o € convex hull ®@. (131)

By summing the inequalities (127) and using the definitions of Ao,
B,, €y, and D given in (130), we see that (127) also holds for ¢ = 0.
®o, too, then has the form shown in Fig. 7. As is seen, each region
®,t=0,1, -, K, is convex and has ten extreme points, the com-
ponents of which are listed below:

ro. = (0,0, 0)

ri: = (4, 0,0)

1y, = (4, C.— 4, 0)

ry = (C: — B, B, 0)

r.. = (0, B, 0)

ry. = (A, 0, D, — A)

ree = (A, € — Ay, Dy — C))
r = (C, — B, B,, D, — C))
ry. = (0, B, D, — By)

rye = (0,0, D).

(132)

[Some of these points may coincide if there are equalities in (127)
instead of strict inequalities.] For the extreme point of ®, we also have

1 K .
== 3 ry 1=0,1,---

=g 3 .9 (133)

which follows directly from (132) and the definitions on the right of
(130). We recall that a convex body is characterized by its extreme
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points: r € @&, if and only if

9
I = E Ailiy, (134)
=0
where
9
Nz0, i=0,1,---,9 and XN =1 t=0,1,---,9. (135)
0

Equation (131) is now easy to establish. It is clear that the convex
hull of @ is the set of all points that can be written in the form

9
r = Z Z UiT iy, (136)
i=0 =1
where
v K
up 20, 2=0,1,---,9, t=1,--- K, ¥ 3 uy=1. (137)
i=0 t=1

Now let r be any element in ®g. Then r can be written in the form
(134)-(135) with ¢ = 0. Substituting from (133) yields

K M
r=3 3% Y. (138)
i=0i=1 K
But defining
. Ai .
uﬂ=E1 1'=0!”'19) t=1125“':K! (139)
we see that u; = 0 and
9 K ,
Y S u,=1. (140)

Comparison with (136) now shows that r is in the convex hull of ®.
Equation (131) then follows.
The application of the foregoing to (60) is immediate. Let
Ao = 1(X1; Y| Xay, 2)
B, = I(X,; Y| X1, Z)
Co=I1(Xy, Xons Y, | Z)
D, = I(Xu, X Y:)

t =1, ---,9. Equations (127) are satisfied. We then identify ®, of
this appendix with ®(Pzx, x,,r,) of (60),t = 1,2, --- , K, and ®, with
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®*(Px.y) of (59) which is consistent with (130). Then (129) and
(131) yield (60). Q.E.D.
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