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We give a solution to the problem of designing a fixed compromise
equalizer for use in transmission systems involving an ensemble of random
channels. The signal and noise spectra, along with the second-order
statistics of the channel ensemble, are used to find the equalizer charac-
teristic that minimaizes the mean-square distortion between the equalizer
output and a scaled version of the transmitter output. The key departure
from previous work is that the criterion better captures practical per-
formance invariance; specifically, the cost function incorporates the
insensitivity of a well-designed demodulator to any amplitude scaling or
time delay introduced by a particular channel. After demonstrating that
the optimum equalizer shape is related to the principal eigenfunction of a
normalized channel correlation function, we consider several special cases
that give further insight into the properties of the solution. We find that
the equalizer amplitude vs attenuated over those frequencies where the
signal-to-noise or signal-to-channel-variance ratios are small. The analysis
confirms the standard engineering practice of inverting the average channel
in the absence of notse and when the variance of the channel characteristics
s small.

I. INTRODUCTION

A fixed compromise equalizer is frequently employed in data trans-
mission systems to compensate for linear distortion introduced by a
channel drawn from a random ensemble.! Typically, compromise
equalizers find application in systems which, because of economic or
other considerations, do not use an adaptive equalizer. It is possible
that, even when adaptive equalization is used to compensate for a
particular channel characteristic, one might use a compromise equalizer
to provide a good initial channel and thereby reduce the receiver
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adaptation time. As its name suggests, the equalizer is a fized linear
filter that effects a compromise by compensating for an ‘‘average”
channel. We propose a procedure that uses the statistics of the channel
ensemble, the modulated signal, and the additive noise at the demodu-
lator to design a filter that minimizes a performance measure ap-
propriate for most transmission systems. The performance measure is
an adaptively scaled mean-square error. For example, it is particularly
well suited for use in a data transmission system and results in a filter
that is significantly different from that obtained by directly minimizing
the mean-square error.?

In order to avoid being restricted by nonlinear demodulation tech-
niques (e.g., those used in FSK or DPSK data systems) and to be
able to accommodate asynchronous signalling, the equalizer operates
directly on the received passband signal and is thus a channel, rather
than a synchronous, equalizer. Qur performance criterion is the con-
tinuous time mean-square error between the equalizer output and an
adaptively scaled version of the transmitter output. This scaling needs
to be done only once in the design of the filter and not each time a new
channel is dialed up. The scaling is such that the filter is invariant to
any amplitude scaling, sign inversion, or time delay encountered in
transmission over a particular channel; this type of invariance is
appropriate for a compromise equalizer used in most transmission
systems, since amplitude scaling and a fixed time delay will not be
“geen” by a well-designed demodulator.

Since the criterion is quadratic in nature, the optimum filter re-
sponse is determined by the second-order statistics of the signal, noise,
and channel ensemble. The best filter shape is shown to be the principal
eigenfunction of an integral operator whose kernel is a weighted channel
correlation function. An explicit design procedure is described in the
text, and several interesting questions are discussed as well. Some of
these questions are:

(?) How different is the compromise equalizer from the inverse of
the average channel characteristic?

(i) Suppose there is no amplitude distortion but only delay distor-
tion. What is the nature of the compensation? Is there amplitude
as well as delay compensation?

(¢47) How sensitive is the filter design to different signal spectra?

In Section IT the compromise equalization problem is formulated,
and the distortion measure is discussed in considerable detail. The
determination of the optimum filter is described in Section III, and
an example is provided in Section IV illustrating the design technique.
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Fig. 1—Transmission system with a compromise equalizer.

II. PROBLEM FORMULATION
2.1 System Configuration

We begin by specifying the framework of our discussion. To accom-
modate a system employing nonlinear demodulation, the compromise
equalizer is assumed to be placed in the passband. Since we also want
to provide a setting general enough to include asynchronous transmis-
sion, no restriction is placed on the form of the filter other than require-
ment of a finite energy impulse response. As shown in Fig. 1, s(f)
denotes the modulated signal, n(f) the received additive noise, () the
compromise equalizer output, and g(i) the equalizer impulse response
(which we ultimately seek to specify). The ensemble of channel impulse
responses, {h(t)}, as well as n(f) and s(f), are all assumed to be con-
tinuous in quadratic mean and statistically independent of each other.
Both s() and n(t) will be taken to be zero mean, to be wide-sense
stationary with finite power and to possess power spectral densities
S(w) and N(w), respectively. To make the subsequent analysis precise,
we assume h(f) has bounded absolutely integrable sample paths (with
probability one); thus, the ensemble of channel frequency charac-
teristics { H(w)} is well defined.!

Our problem is first to select an appropriate optimization criterion
and then to choose the compromise equalizer that minimizes this
measure. To avoid the specifics of particular demodulators, we will be
concerned with preserving the fidelity between s(t) and z(¢). A natural
first choice for a distortion measure is the continuous-time mean-
square error

& = ([2(t) — s(t — )], (1)

where ( ) denotes the average with respect to the signal, noise, and
channel ensemble, and 7 is an arbitrary delay. Using this measure,
Maurer and Franks? found that the optimum filter is given by

S(w) (H (w) )*e~ier

Goo) = S HG@ ) + V@)’

2

t The process {H (w)} is assumed to have a square integrable covariance, and the
variance is assumed to be nonzero for the frequency range of interest.
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where the asterisk denotes the complex conjugate and H (w) is a member
of the channel ensemble. It is easy to see that G,(w), given by (2), is
not just the Wiener filter for the average channel, since the mean-
square channel dispersion (| H(w)|?), rather than |(H())|? modifies
the filter characteristic. We note that, even as N(w) — 0, the filter does
not generally invert the average channel. This will be the case when
the channel variance is extremely small so that (| H (w) |2 & [ (H(w))|%
this would occur, for instance, when the ensemble consists of only one
characteristic.

Care must be exercised in determining how to use the design tech-
nique that results in the filter given by (2). For example, suppose the
individual transfer characteristics are greatly varied in the degree of
attenuation they impart across the band of interest. It can follow
(depending on how probabilities are attached) that the low-loss chan-
nels determine the character of the averages in (2)—the ‘“whomper”
effect. Hence, linear distortion in the lossy channels may not be
suitably equalized. However, if linear distortion is uniformly the
dominant impairment, the noise level can be set to zero and the
‘“whomper” effect easily eliminated by preparing the data by normaliz-
ing the channels prior to averaging. For example, the normalization can
be accomplished by individually scaling the characteristics so they
have the same energy in response to some pulse or so they have the
same gain at some central frequency. Even if linear distortion is not
the uniformly dominant impairment, there may be applications where
the noise is set to zero and a normalization of the channels made prior
to computing the optimum equalizer. In such a procedure, one is trad-
ing noise immunity for immunity to linear distortion. Another case of
importance in applications is when the channels have the same ampli-
tude characteristic but different phase characteristics; here, of course,
the “whomper”’ effect is nonexistent. The considerations of this para-
graph will also apply to the design technique we shall develop in the
following sections.

While the &, criterion provides an interesting and tractable formula-
tion, it has the shortcoming that it understates the capability of most
demodulators. A striking example of this occurs if the ensemble {A(t)}
has zero mean. The zero mean is reasonable for systems subject to
occasional “phase hits,” the mathematical implication being that, if
h(t) is a possible channel, then — (%) is just as probable. Then Go(w)=0.
Yet, in practice, one would expect to do better than “pull out the plug
and go home.”

At the other extreme we could use an information theoretic type
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criterion. For example, we could choose G(w) to maximize the average
mutual information between x(f) and s(f). This criterion is mathe-
matically tractable; in fact, the solution is trivial—G(w) can be any
characteristic which is nonzero over the same frequency range as
S(w)." The shortcoming of this criterion is (as the solution suggests)
that it overestimates the demodulation capability.

As the state of the art in demodulation advances, we would antici-
pate an evolution of criteria away from the mean-square error toward
the information theoretic. Clearly, a good criterion should give the
demodulator credit for what it can realistically accomplish and at the
same time pose a tractable optimization problem for determining G(w).

With this motivation, we propose a mean-square-error criterion
which reflects the fact that the performance of a well-designed demodu-
lator is insensitive to scaling of the input (the automatic gain control
feature), an input sign change (the information is generally differ-
entially encoded), and, of course, a time delay. Under such a criterion,
the compromise equalizer will no longer be implicitly constrained by
attempting to faithfully reproduce the modulated signal.

2.2 An Adaptively Scaled Mean-Square Error

Based upon the above discussion, we consider the following adapt-
ively scaled mean-square error

§ = Tig ([x(t) — As(t — B)]*)a.n, (3)

where A and B are real numbers and the averaging is over the signal
and noise statistics with both the channel and equalizer held fixed.
The criterion is meaningful under the assumption that the signal-to-
noise ratio at the receiver does not change appreciably from channel
to channel. We stress that the considerations mentioned in the third
paragraph of Section 2.1 apply here, as well. The optimum equalizer
is obtained by averaging & over the channel ensemble and then
minimizing the result with respect to the equalizer transfer function
((w), subject to a power constraint on the demodulator input. The
quantities A and B, which are channel-dependent, provide an adap-
tively scaled reference signal As(t — B). The reference is adaptive in
that, for each realization of the channel, A and B are chosen to mini-
mize &. Notice, for example, that, if a particular channel introduces a
sign inversion, then 4 = —1 will remove this effect. When a channel

T This comes about because no information is lost when the signal is subject to a
reversible operation (such as a channel).
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has a more complicated phase and/or gain characteristic, it is no
longer apparent what the optimal value of A should be; however, we
shall shortly see that the minimizing value of A can be determined
analytically. We shall also consider the determination of B. Thus, the
filter will not expend any of its degrees of freedom by attempting to
compensate for a sign inversion, amplitude scaling, or time delay
introduced during transmission. It should be clear that, since A and
B depend on the channel characteristics, they are random variables.
Simply put, the criterion given by (3) forces the equalizer to minimize
only the portion of the output signal that does not look like a scaled or
delayed version of the transmitted signal.

We now consider the properties of the adaptively scaled mean-
square error. We begin by letting

. I = {[x(t) — As(t — B)]*)s.n (4)
ie.,
& = migl 1.

Carrying out the indicated average gives
T= ["S@OIFE)|? = 24e97F () + AT+ |66 V@) 52, ©)

where S(w) is the power spectral density of s(f) and F(w) is the product
of G(w) and H(w). (Notice I does not change when F(w) is replaced by
Re{F(w)}.) To find the minimum of I with respect to 4 and B, we set
to zero the partial derivatives of I with respect to these variables and
find that

al = - dw b dw
O =—2 [ S@errF() 2 + 24 [[8@5E=0 @)

Eaé —_9 _Z joS(@)eiBF (@) 52

From (6a) we have A,y given by the correlation ratio

= 0. (6b)

“ o 4
LS W 5 (st~ Biae), @)
[ s e

The interpretation of B,y is facilitated by letting

Aopt =

w0 = [ joF @S 22, ®)

—o0
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Fig. 2—Interpretation of optimum delay (Bop) and amplitude (Aop) scaling.
Bopy 18 one of the instants when y(t) is zero.

which is recognized as the response of a linear filter with transfer
function jwF(w) [i.e., F(w) followed by a differentiator] to the input
E(t), where R(f) is the (inverse) Fourier transform of S(w) and is the
signal correlation function. Comparing (6b) and (8), we see that Boy,
is one of the instants when y(t) is zero. We illustrate this interpretation
of Bop in Fig. 2, where we also indicate how A,y may be obtained in
a similar manner. Determining B, is a very difficult problem, since
it is tantamount to asking for the zero crossing of a signal from knowl-
edge of its Fourier transform. In order to proceed further, we will
approximate B,y by the delay at midband, which we conveniently take
to be zero for each channel.

Using the value of Aoy given by (7) and setting B = 0, we have

é =f_i | G(w) |2[S(w) | H(w) |2 + N(w)]g_:

~ [ s@owrw 2, ©
where
«= _: S(w) ‘2‘{-

The optimum filter is obtained by first averaging (9) with respect to
the ensemble of channels and then minimizing this average with
respect to G(w).! Before doing this, we give geometric interpretations
to both the criterion and the optimum filter.

2.3 A Geometric Interpretation of the Problem

Finding a geometric framework in which to view the optimization
problem will be quite helpful in understanding the nature of the
solution. To put the problem at hand in such a setting, we introduce

T The minimization is done subject to a constraint on the average output power.



1084 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1973
1

GH,

GH,

GH,

Fig. 3—Geometric interpretation of eriterion. The adaptively scaled mean-square
error may be interpreted as the average squared distance from the point GH (which
rllalprents an equalized channel) to the ray 1 (which represents a distortionless
channel).

the signal-weighted inner product

@) = " U VSW 5, (10)
where the vectors U and V represent the functions U(w) and V(w)
respectively, and the vector 1 will correspond to the real function of
unit amplitude. Suppose that the noise is set to zero; then, in terms of
the above notation, we can write

& = | GHI — © (GH, 1%, ()

where the vector GH corresponds to the function G(w)H(w). For
convenience we set the signal power equal to unity, ie., « = 1, and
apply the Schwarz inequality, which gives

§ = ||GH|* — (GH, 1)* = ||GH|* — |GH|*-[1]|* = 0, (12)

where the lower bound is achieved when GH is proportional to 1.}
From (11) we have

6 = (GH, GH) — (GH, 1)? = (GH, GH)[l - (“é%H_GUTI)]

= ||GH||?[1 — cos* 6] = [||GH]| sin 6, (13)

t The norm of the vector U, denoted by || U], is given by (U, )% ) )
_ 1 Thus, if we have only one channel characteristic and no noise, the equalizer will
invert the channel.
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where 8 is the angle between GH and 1. Equation (13) provides a very
useful interpretation of the error . As shown in Fig. 3, || GH/| sin 6 is
the distance from the vector GH to the ray colinear with the vector 1.
Hence, the average of & with respect to the channel ensemble, which we
denote by (&)g, is the average squared distance from GH to the ray 1.
Thus, for a given channel-equalizer constellation, { GH,}, the equalizer
is chosen to minimize the dispersion about the ray 1.

In order to get a feeling for the capability of the equalizer to modify
the channel constellation {H.}, we associate with G(w) a linear operator
G that maps a particular channel H, into GH,; we write this operation
symbolically as

g: H; — GH,. (14)

The equalizer operator, G, is called diagonal since it modifies H(w) in
a pointwise fashion to produce G(w)H (w). Suppose, for the purpose of
illustration, we relax our hypothesis and assume that the channel
ensemble has energy only at two values of w, w; and w,. In this case, the
operator G is particularly simple since the point H = (h,, k;) is mapped
into the point GH = (gih1, g2hs), where h; = H(w:) and ¢; = G(w;).
The locus of points (11, g2hs), subject to the average power constraint
on the demodulator input 2(¢)

gy + g3k = 1 (ki & E{|H(w)|%S(wi)}), (15)

describes the manner in which the equalizer redistributes the channel
ensemble so as to minimize the average squared distance to the ray 1.
By noting that the point (gih1, g2h) satisfies the relation

(glkl) ky (Q2h2) 2k,
(h1)* (h2)?

we see that the locus of the points (g1h1, g2he) subject to (15) is an ellipse
centered around the origin whose major and minor axes are parallel to
the x—y axes and are of length |hy/k}| and |h./k}|. Thus, the effect
of the equalizer on the channel array, as shown in Fig. 4, is to allow
each equalized channel, GH: = {gh{", gh{"}, to move on an elliptical
surface. The nature of the compromise by which the optimum filter
shape is chosen should now be clear. Each channel wants to move as
close to the unit ray as possible—this will usually lead to conflicting
requirements, i.e., as one channel is brought closer to the unit ray,
other channels will move further away from this ray. For a multiplicity
of channels there will be an “elliptical flow” along the respective
ellipses which terminates when the best filter shape has been found.

+

=1, (16)
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GH,

Fig. 4—Geometric interpretation of the effect of the compromise equalizer on the
channel ensemble. A channel, rerreseuted by the point Hj, is modified by the equalizer
to give the equalized channel GH;.

The above interpretation would of course be valid in a Hilbert space
of dimension large enough to accurately represent the function H (w).

I1II. DETERMINING THE OPTIMUM EQUALIZER CHARACTERISTIC
3.1 Analytic Solution

Having developed a geometric representation as an aid to under-
standing the equalizer design problem, we are now in a position to
explicitly determine the best filter shape. Returning to (9) and averag-
ing with respect to the channel ensemble, we have

(&) = [ 166 TS Hiue) + N5

00

L [ SW@SEG @GOHE WHE) 52 52, (D)
where
Hims(w) = V(| H(w) \2> (18)
If we let
Q(w) = VS(w)Hims(w) + N(w)G(w) (19)f
and introduce the weighted channel covariance kernel
K(w, V) - _l_ S("-’)So’)(H (N)H(V)) (20)

@ VS (w) Homs(@) + N (@) J80) Home?) + NG)]'’

t Note that |Q(w)|* is the power spectral density of the equalizer output for the
“rms channel.”
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then our cost function can be rewritten in the convenient form

@ = [T @@ g2 - [ [T K@ wew 2 &

Introducing the Hermitian integral operator &, whose kernel is K (w, »),
permits us to write the criterion as the quadratic form

(&n =(Q,Q — (XQ, Q), (22)

where the inner product does not include the signal-spectrum weighting
introduced in (10)." We now wish to minimize (22) with respect to Q,
subject to an appropriate constraint. Referring to Fig. 1, we see that
the average power present at the demodulator input is

P = [ S Ham) + N@1I6w)|* go-

Thus, a natural constraint is to require that the power be constant.
In terms of @(w), this constraint takes the form

(Q,Q) =P, (23)

and the optimization problem consists of minimizing the positive
definite form (22) subject to (23). The solution, which we denote by
Qopt, 18 easily obtained? by using a Lagrange multiplier and is recog-
nized as the principal eigenfunction of the operator X. The best filter
shape, (opt(w), is obtained from Qops(w) by using (19), and can be re-
garded as the first term in a Karhunen-Loéve representation® of the
random process
S(w)
VS(w) Hoe(w) + N(w)

The residual value of the criterion, evaluated when Q = Qqp:, is
given by

H(w). (24)

(g>upt = (Qopt: Qnm)l:l - 7\] =(1—- MNP, (25)

where A is the maximum eigenvalue and is a measure of how effectively
the compromise equalizer performs for various channel ensembles and
various signal and noise spectra. The degree to which the random
process given by (24) is described by the first term in a Karhunen-
Loéve expansion will, of course, determine the equalizer performance.

tIn the seguel, the inner product between the vector U and V will be taken to be
(U£ V) = S U () V7 (@) (dw/27). . . . .
That is, the eigenfunction corresponding to the maximum eigenvalue (it is well
known that the eigenvalues of a Hermitian operator are real).



1088 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1973

In order to get more insight into the nature of Gope(w) we will, in the
next paragraph, consider the form of the optimum filter under some
special circumstances. This discussion, along with the examples treated
in the next section, will reveal some properties of the optimum filter
shape.

3.2 Special Cases
3.2.1 One Channel

Suppose the channel ensemble consists of only one member,’ H(w).
The principal eigenfunction of X is easily determined to be

S(w)

opt = H* w)- 26
Vo) = ESTH@ T N (26)
Thus, the best filter shape is

Gome() = () (27)

S@[Hw)[*+ N

The filter given by (27) is just the well-known Wiener filter for estimat-
ing a random signal that has been passed through a nonrandom
channel and then corrupted by additive noise. The amplitude charac-
teristic of the filter, which is given by

S() [Hw)|
5@ [H@)|* + N@)’ (28)

provides noise rejection at those frequencies where S(w) is small relative
to N(w). Thus, as the spectrum of the modulating signal is changed,
the noise-rejecting regions of the filter will be altered. It is worth
noting that, if the channel has only phase distortion, amplitude as well
as phase compensation is required.’ It should also be noted that the
amplitude response of the filter will be greatly attenuated at those
frequencies where |H(w)|? dominates N(w)/S(w); this phenomenon,
which we call channel-variance rejection, is observed in practice for an
arbitrary channel ensemble at the frequencies where the variance of
H(w), defined by

Var[H(w)] = (|H(w)|?) — [(H()[? (29)
becomes large. Since the phase of Gopi(w), for the simple case of one

channel, is just the negative of the channel phase, we have, under the
further specialization of vanishingly small noise power, the not-

t This assumption gives good insight when there is small dispersion about the
average channel, i.e., the channels all look pretty much alike.

+This, along with the preceding sentence, provides a partial answer to the second
and third questions posedp in the introduction.
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surprising result that the equalizer should invert the channel. On the
other hand, as the noise becomes dominant, the solution is observed to
approach a filter matched to the corresponding average channel
characteristic and signal spectrum.

3.2.2 Deterministic Amplitude Distortion, Random Delay Distortion,
and No Noise

Suppose the members of the channel ensemble can be written as
H(w) = a(w)e?(w), (30)

where the amplitude response a(w) does not vary from channel to
channel, and the phase response 6(w) is randomly selected.

We consider first the kernel K(, ) when there is only delay distortion
(i.e., a(w) = 1) and no noise. Since H,ms(w) is unity, we have

—
K(m’ v) = EE(%'S_(L) (e;’e(m—fﬂm), (31)

and the filter is given by
Gomrav(w) = “zs_((w_‘“)) (32)

If we no longer restrict a(w) to be unity, the kernel is still given by
(31) while the filter is seen to be

G(w) = a(l_w) Gperay(w). (33)

The above indicates that, in the presence of deterministic amplitude
distortion and random phase distortion, the compensation is decoupled
in the sense that the filter shape is a cascade of the compensation for
the component distortions., While this sort of decoupling is generally
not the case, we have found in the example deseribed in the next
section that the phase characteristic of the equalizer is rather insensitive
to changes in amplitude distortion and noise level.

3.2.3 Small Variation in the Amplitude and Phase Characteristics

We now wish to give a suggestive description of the optimum filter
when the channel characteristics have small variation about the
average characteristic. To this end, let us denote a typical charac-
teristic by

H(w) = a(w)e
ti(w)b(w)eﬂs(””“(””, (34)
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Fig. 5—(a) amplitude and (b) delay characteristics for average channel. The
worst case amplitude and phase variation are indicated by the isolated circles.

where @(w) and 8(w) are the average channel amplitude and phase,
respectively, and b(w) and ¢(w) represent small (random) perturbations
about these quantities. We first write H(w) as

H(m) = d(w)gﬁ(w)eznb(w)‘l'ﬁ(“} (343)
= H(w)er, (34b)
where we have let
H(w) = d(w)e® @ (35)
9(w) = fnb(w) + jo(w), (36)

and we note that A (w) is composed of the average amplitude and phase
of the ensemble. Since |b(w)| =21 and |¢(w)| ~20, we see that
|g(w) | &2 0; thus, retaining only the leading term in the series expansion
of e?(«) gives

e?@ g1 4 q(w). (37)
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Fig. 6—Raised cosine power spectral density (rolloff = 1).

We are now in a position to evaluate the kernel K(w, ») under the
above assumptions. Using (37) we have

(H*(w)H()) = f?*(w)f__?(y)(eq’lw)eq(v»
A H*(w)H ()1 + ¢*(w) + q()), (38)

where we have kept only first-order terms in the expansion of e?*(@ee(),
If we assume that the perturbations nb(w) and ¢(w) have zero average
value, then (38) separates, reducing to

(H*w)H()) = A*(w)H (). (39)

By a similar argument, the denominator of the kernel is found to be

VS() [ H(w)[* + N(w) X VSO [A()[* + NG, (40)
and combining (39) and (40) gives the separable kernel
S{a)SE)H*(w)H(v)

K(w,v) = = = . (41)
V8(w) [H(w)[* + N(@)VS() [A) |2 + N()
The equalizer shape is then given by
Gol) = o— S 42)

S(w) | Hw)|* + N(w)’
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Fig. 7—Equalizer amplitude characteristics for various noise levels.

which is of the same form as the one-channel result [see (27)], as well
as the filter obtained by Maurer and Franks (see Ref. 2). Clearly,
for those frequencies where the noise is negligible (compared to the
signal) the equalizer characteristic is [1/d(w)]e ¢, ie., the best
filter is one which 7nverts the average channel. Recalling the first
question posed in the introduction, we can see that, apart from noise
rejection (which occurs in the frequency range of small signal spec-
trum), the filter will invert the average channel when the variance of
the ensemble is not appreciable. This is a useful rule-of-thumb for
rapid (and approximate) compromise equalizer design.

IV. EXAMPLES USING THE 1964 CUSTOMER LOOP SURVEY

In this section we consider the design of a compromise equalizer for
use over an ensemble of data customer loops. Some knowledge of the
characteristics of this ensemble can be obtained from the 1964 Loop
Survey.® This survey collected information about transmission param-
eters and channel makeup (e.g., gauges and lengths of sections which
compromise the loop, locations of load coils and bridged taps, etc.) for
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Fig. 8—Average channel delay (inverted) and equalizer delay (SNR = 30 dB).

a random selection of loops. For our purposes we extracted an ensemble
of business loops (as opposed to residential loops) described in the
survey. An existing computer program was used to obtain the fre-
quency responses of the channels (with load coils and bridged taps
removed) from the descriptions of the physical makeup of the channels.
A recent study® shows that, at voiceband frequencies, the functions
{e=Yiwa} -, provide a good approximation of the loop transfer charac-
teristics. The parameter e is a random variable (whose distribution
can be approximated by the survey information), specifically o = RC{?,
where R is the average series resistance per mile, C is the capacitance
per mile, and £ is the loop length in miles. The average channel is
depicted in Figs. 5a and 5b in terms of gain and delay.” These loop
characteristics display appreciable amplitude wvariation (as well as
delay variation) and the extent of these variations is indicated by the
isolated circles.

To illustrate the design technique on these loop networks, we deter-
mined a compromise equalizer characteristic to be employed in a
maxentropic 4.8-kb/s stream of randomly signed pulses. The basic

t The channel delays each include an estimate of Bop:.
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Fig. 9—Reduction of residual error as a result of equalization.

pulse was assumed to have a raised cosine spectrum, and the resulting
power spectral density is shown in Fig. 6. It was assumed that only
the “worst” 70 of the 143 customer loops required equalization. Figure
7 shows the resulting equalizer amplitudes for various noise levels. In
this example, the channels were normalized to avoid the “whomper”
effect mentioned in Section II. So when the signal-to-noise ratio is not
infinite, the noise levels should be interpreted as if the lowest signal-
to-noise ratio for the entire ensemble was assumed for all channels.
Observe that, in the absence of noise, the equalizer tends to invert the av-
erage channel amplitude characteristic, and as the noise level is increased
the equalizer tends to attenuate the high end of the spectrum where the
signal power is lowest. Also note that, as the signal-to-noise ratio de-
creases, the solution tends to a filter matched to the raised cosine
characteristic times a characteristic approximating the average
channel. We observed that, for each of the noise levels, the compromise
equalizer delay is close to the inverse delay of the average channel.
The specific delay curve for the case of 30-dB SNR is provided in Fig. 8,
which also shows the average channel delay (inverted). Finally, a
direct computation shows that, for typical signal-to-noise ratios, the
equalizer reduces the residual error by 4.8 dB, and Fig. 9 displays this
improvement in mean-square error as a function of signal-to-noise
ratio. The improvement is greatest at high SNR since the equalizer is
combating only linear distortion rather than a combination of linear
distortion and noise.
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VI. CONCLUSIONS

Using the second-order statistics of the channel ensemble, as well as

the signal and noise spectra, the equalizer characteristics were easily
computed by solving a matrix eigenvalue problem. Several interesting
conclusions can be drawn concerning the properties of the equalizer:

(i) The equalizer amplitude is attenuated in those frequency
regions where the signal-to-noise ratio or signal-to-channel-
variance ratio is small.

(7) When the channel ensemble has only delay distortion, ampli-
tude as well as phase compensation is required.

(#7¢) The delay characteristics of the equalizer are rather insensitive
to changes in noise level or (non-random) amplitude distortion.

(7v) When the channel ensemble has small variation about the
average characteristic, a situation that commonly arises in
practice, then the equalizer will invert the average channel.
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