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When ay, as, --- are independent random variables, each equal to +1
with probability 3, the sum 3.3 a./n is a random variable whose distribu-
tion is difficult to determine theoretically. This sum is of interest in the
study of intersymbol interference in digital communication systems. Here
the distribution of the sum is computed by numerical integration and the
results tabulated. Asymptotic expressions are given for the tails of the
distribution.

I. INTRODUCTION

The distribution of the random variable

T = Zl an/n, (1)
where a;, @, - are independent random variables equal to +1 or
—1 with probability 4, is of some interest in the study of intersymbol
interference in a digital communication system. For example, the sum
of two independent expressions of the form (1) occurs when the pulse
train 3=, a,sin (¢t — nw)/(t — nr), a, randomly equal to =+1, is
sampled at regularly spaced instants which are slightly out of step with
the zeros of sin ¢{. The theory of random variables of type (1) (in par-
ticular with a,8" in place of a,/n) has been studied by a number of
investigators. A survey of the field has been made recently by Hill and
Blanco.! Here we evaluate the distribution of & numerically and give
expressions for its behavior when x is large. Questions of continuity
and convergence are put aside.

Since the distribution is even about z = 0, only values for 2 = 0
need be considered. From the characteristic function

() = avg [exp (izu)] = T [cos (u/n)] @)
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we get an expression for the probability density p(z) of x:
1 o0
p(@) = 1 [ cos (ou) fwdu, ®)

Prob(:c>$1)=%—% , 31_11%@

f(u)du. 4
The values of p(z) and Prob (x > z1) shown in Table I were obtained
by evaluating these integrals by the trapezoidal rule*-* which works well
for (3) and (4).

The asymptotic expressions (8) and (18) for p(z) follow from a
saddle point analysis of (3). Both p(z) and Prob (x > z;) decrease
rapidly when z (or x;) > 3, the decrease being dominated by the factor
exp [—exp(z — A)] where A = 1.39 ---.

The rapid decrease of p(z) is interesting because the divergence of
S 1/n might lead one to expect that p(z) would decrease slowly as
x — . Instead, p(z) actually decreases much faster than a Gaussian
probability density. I am indebted to a referee for the observation
that the second, fourth, and sixth moments of p(z) are, respectively,
x2/6, 1174/180, and 23379/7560.

The reader may wonder why as many as six decimal places are given
in Table I. There are several reasons. One is that the cost was low.
About 3 seconds were required by a Honeywell 6000 Processor to
compute the values shown in Table I, and about 40 terms were required
in each trapezoidal sum. This illustrates the fact (apparently not well
known) that when integrals like (3) and (4) are to be evaluated
numerically, the trapezoidal rule often performs better than most of
the other conventional quadrature methods (better than Simpson’s
rule, for instance).? The six-figure accuracy is also used to gain an idea
of the values of = for which the asymptotic expansion (18) for p(x)
begins to be valid. This degree of accuracy also shows that p(0) is
equal to 0.249 994 - - - and not to %, as might be inferred from a four-
figure tabulation.

1I. TRAPEZOIDAL RULE CALCULATION

Preliminary computations showed that | f(u)| < 107! whenu > 15.
Furthermore, it was found that (3) and (4) could be evaluated to
within the desired accuracy by using a trapezoidal-rule spacing of
Ay = h = 0.4. In line with these values the trapezoidal sum was
truncated at the 40th term (15/0.4 ~~ 40).
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TABLE I—VALUES OF p(z) AND Prob (z > 21)

T Or T p(x) Prob (z > ) z or x; p(x) Prob (z > )
0.0 0.249 994 0.500 000 2.0 0.125 000 0.056 599
0.2 0.249 970 0.450 003 2.2 0.091 768 0.034 949
0.4 0.249 802 0.400 021 24 0.061 647 0.019 683
0.6 0.249 073 0.350 118 2.6 0.037 148 0.009 912
0.8 0.246 778 0.300 494 2.8 0.019 592 0.004 357
1.0 0.241 222 0.251 623 3.0 0.008 777 0.001 623
1.2 0.230 408 0.204 357 3.2 0.003 222 0.000 494
1.4 0.212 852 0.159 912 3.4 0.000 927 0.000 118
1.6 0.188 353 0.119 683 3.6 0.000 198 0.000 021
1.8 0.158 232 0.084 949 3.8 0.000 029 0.000 003
2.0 0.125 000 0.056 599 4.0 0.000 003 0.000 000

The infinite product (2) for f(u) was computed by using

flu) = (:fr[:Ii [cos (u/ n)]) exp L‘év In cos (u/n)] , (5)

where N is a large number such that u/N < 1 for all values of % used
in the computation (0 < u < 16). The product J[¥~! in (5) was
computed by straightforward multiplication. The sum in (5) was
computed by setting g(n) = In [cos (u/n)] in the Euler-Maclaurin
sum formula:

ngN g(n) = f: g(t)ydt + ég(N) - 1222[ g (N)

— G IOW) == G g + Re (O

Here the B’s denote Bernoulli’s numbers, B, = 1/6, By =— 1/30,
Bg = 1/42 [we stopped at Bs in our use of (6)], ¢*’(N) denotes the
value of (d/dt)*g(t) at t = N, and the remainder R, is the integral of
g#+U(f) times the Bernoulli “polynomial” of degree 2k + 1 and
period 1 (see pages 520-540 of Ref. 4).

The integral in (6) can be evaluated to within the desired accuracy
by setting u/t = y, df =— udy/y? expanding In (cos y) in powers of
y with the help of

—In (cos ) ='/;" tan vdv =f

n

3 5 7
v [v + v 2v 17v

§+E+3—15+'-']dv,
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and integrating termwise:

) u/N
f g(hdt = u [ y~21n (cos y)dy
N 0

u? u? ut 1728
= on taens T 2w Timeaon T (@

Expressions for the higher derivatives of g(N) in (6) can be obtained by
differentiating the series in (7) with respect to N.

In using (6) we stopped at k = 3 and neglected Rs.

Three separate trapezoidal-rule evaluations of p(z) and Prob (x > 1)
were made using egs. (3) to (7) with A = 0.4, N = 201; h = 0.38,
N = 201; and h = 0.36, N = 301, respectively. Here & is the spacing
used in the trapezoidal-rule evaluations of (3) and (4). The three sets
of computed values differed only in the 7th or 8th decimal places, ie.,
all agreed with the values shown in the table. The values 201 and 301
of N are so large that terms beyond k = 3 in (6) and those shown in
(7) are not needed. To check the computations, the integrals of p(z)
amd 2?p(z) from z = 0 to = = (the upper limit used was actually
x = 5) were computed by the trapezoidal rule with a spacing of
Az = 0.1. The trapezoidal values agreed with the known values,
respectively 3 and 7?/12, to within 6 significant figures or better.

III. DISCUSSION OF TABLE I

Table I shows that p(z) remains nearly equal to p(0) = 0.249994 for
0 = z < 1, passes through p(2) = 0.125000 (is it exactly §?), and then
decreases rapidly. The question as to whether p(2) is exactly § remains
unanswered, but p(0) = 0.249994 does not seem to be an erroneous
calculation of . For if pa(u) is the probability density of u = 25 a»/n,
then

p(z) = $pa(z — 1) + 3pa(z + 1).

Setting 2 equal to 0 and 2 and combining the results give a result I
owe to J. E. Mazo,

p(2) = $p(0) + 3p=(3) > 1p(0).
Furthermore, replacing $p:(3) by p(4) — 3p2(5) gives
p(2) = 3p(0) + p(4) — 3p2(5)
0.125000 = 0.124997 + 0.000003 — 3p2(5)

which is satisfied by the tabulated values when py(5) is assumed to
be negligibly small.
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1V. ASYMPTOTIC EXPRESSIONS FOR LARGE &
We shall show that the rapid decrease of p(z) for + > 3 is described
by
plax) ~ (yo/w)le—wo,

8

Yo = exp [a — 2y + In (x/4)] = exp [z — 1.39599 - .., (®)
where y denotes Euler's constant, 0.577215 - - -. Integrating (8) gives
Prob (x > 21) ~ erfe (yd) ~ p(x1)/yo, 9

where y, is computed from the second of equations (8) with a; in place
of x. Bounds for the distribution involving exponential functions of
e* have been obtained by L. A. Shepp in unpublished work.

To obtain (8) we rewrite the integral (3) for p(x) as

p@) =5 [ e fu)du. (10)

As is often the case for such integrals, the asymptotic value of p(x) is
given by the contribution of a saddle point, us = 7y, lying far out on
the positive imaginary u-axis (the path of integration being deformed
so as to pass through the saddle point). For u = 4y the integrand in
(10) becomes

exp[~ay+ ¢W)], o) = T In[eosh (u/m)]. (1)
When y is large we can show that

o) =ylny—y+ Ay+ 3In2 + r(y),
A =2y —In(r/4) = 1.39599 - - -,

where r(y) has roughly the same magnitude as exp (—2y).

We first outline the derivation of the expression (12) for e(y), and
then apply (12) to obtain the asymptotic expression (8) for p(x).

The derivation of (12) is based upon the Euler-Maclaurin sum
formula (6) with N = 1 and ¢(t) = In [cosh (y/t)]. The integral in the
sum formula is

flw In [cosh (y/t)]dt

(12)

=1y fy'u—E In (cosh v)dv
0

=—In (cosh y) + y(In y) tanh y — y j;u (In v) sech? vdv

]

m2—y+yMy—yﬂme%mW®+0@r“mM,(B)
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where we have integrated by parts twice. The last integral in (13) has
the value

f: (In v) sech?vdv = — v + In (x/4) (14)

which ean be obtained by () replacing In v in (14) by v*~?, (%) differ-
entiating the known value (formula 3.527-3, page 352 of Ref. 5) of the
resulting integral with respect to p, and (#7) setting p = 1. The
derivative of g(f) with respect to {, g/(f), in the sum formula (6) is

g0 () =— yt~* tanh (y/1)
= — yi=2(1 — e/t 4 2e~tvlt —. . 0),

where the exponential terms become negligible when y becomes large
and ¢ = 1. In general, for [ =0, 1, 2, ---, g@®*1(1) is equal to
— (21 + 1) !y plus negligible terms. Therefore, the right side of the sum
formula (6) is the integral plus

B ’
%(y—1n2)+%’y+z—‘y+---+ym (15)

plus terms which are negligible when y is large. The sum of the co-
efficients of y in (15) is known to be equal to v (page 529 of Ref. 4).
Hence (15) is equal to yy — 4 In 2. Addition of (13) and (15) and use
of (14) gives the expression (12) for ¢(y).

Next we use the expression for ¢(y), with the small term r(y)
neglected, to obtain the asymptotic form of p(z). The saddle point of
interest occurs at uo = 1o Where yo is the zero of the derivative of the
exponent in (11). The exponent is —ay + o(y), and ¥, is the zero of

—z4+ o) =—2xz+hy+A.

Thus yo = exp (z — A). This yo is the same as the yo appearing in the
asymptotic expression for p(z) stated in (8). The exponent itself has
the value —axyo + o(¥0) =— yo + $In2 at y,. By making use of
¢”(y) = 1/y and the higher derivatives of ¢(y), the exponent can be
expanded in a Taylor series about yo. From this expansion it follows
that near uo the integrand in the integral (10) for p(z) can be written as

. = _(iz/y0)*

exp[ y0+21n2+yﬂk§1 (k— 1)k], (16)
where z = u — uo. Setting (16) in (10), changing the variable of
integration from w to r = z/yo = (4 — o)/ Yy, and assuming that p(x)
is given asymptotically (as z and yo tend to =) by the contribution of
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the saddle point at u, give

—194y o (if)"
p(x) ~ (2m)"2iyeev | exp JnZ &=k | 9 17)
k=2
Here the nominal path of integration is the real r-axis. The classical
saddle point asymptotic expansion obtained from (17) is

1 2
p(a) ~ (yo/m)levo I:l + 55 24y0 1153@/2 + } 4

The coefficients of the powers of 1/y, in the series can be determined by
a general procedure described in Appendix D, page 1999, of Ref. 6.

The asymptotic expression stated in (8) is the leading term in (18).
An idea of the accuracy of the asymptotic expressions can be obtained
by considering the case + = 3. For = 3, y,is 4.973 and Table I gives
the “exact” value p(3) = 0.008777. The asymptotic value of p(3)
obtained from (8) is 0.008710, the first two terms in (18) give 0.008783,
and the first three terms give 0.008776. Table I gives the “exact”
value Prob (z > 3) = 0.001623 and eq. (9), namely Prob (z > 3)
~erfe (y§) = erfe (2.230), gives 0.001612.
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