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This paper discusses a heuristic solution procedure for a combinatorial
optimization problem that originates in designing signal constellations
for modems.

The design problem s to place m signals in a two-dimensional space
to minimize the average error rate under specified noise conditions, using
a maztmum-likelthood decoding scheme. Intuitively, it amounts (roughly)
to spreading the signal points as far apart as possible, according to the
distance measurement implied by the noise function.

We show how this problem can be reduced to a discrete one: Given an
£ by n matriz P, and m < ¢, find an m-row subset M = {11, -+ , im} of
the rows of P that mazximaizes

_): max pij,
=1 icM
and then describe an efficient procedure for finding this maximizing set.
Eaxperiments indicate that the procedure is a wuseful tool, both for
analysis of existing and proposed signal constellations and for finding
new, near-optimum ones.

I. THE PHYSICAL PROBLEM

This paper discusses a heuristic procedure for solving a combinatorial
optimization problem that arises in designing signal constellations for
modems. The solution method is also applicable to the covering
problem; we will discuss this at the end of this section.

The underlying physical problem is the following: A digital signal
s is to be sent through a noisy channel. In general, s may take on only
a finite number, m, of distinct values. (In practice, m will be a power
of 2.) Since the transmission line is an analog device, any specific s
value is encoded for transmission by modulating a carrier wave for a
period of time. For instance, s might take on only the two values 0 and
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1, in which case the modulation might be to send either of two ampli-
tudes (amplitude modulation) or to send either of two frequencies
(frequency modulation).

The modulation considered here is more complex: A specific value
of s will be encoded as

g(t)[a sin wid + b cos w.t],

where w, is the carrier frequency, ¢ is an appropriate pulse shape, and
a and b are the amplitudes of the sine and cosine components.

The signal s is quantized into one of m levels; for each level, there is
a corresponding a and b, so there are m different (a, b) pairs.

The received signal, as always, is corrupted by noise, so a sample
value sent as (a, b) is received as (a’, b’). At the receiver, a decoder
processes this corrupted (a’, ') and attempts, according to some
criterion for minimizing the error rate, to reconstruct the (g, b) which
was sent originally.

The design question is: What (e, b) pairs should be chosen to
minimize the error rate for this decoding process?

In the version of the problem we solve, the main constraint is that
a® + b? is bounded for all (a, b) pairs, which implies that peak signal
power is bounded. A related but more difficult problem requires that
the average of a® + b? over the (a, b) pairs is constant; this corresponds
to a bound on average power. We discuss this problem in Section VII.

The combinatorial optimization problem is a discrete version of this
design question. Let us replace the continuum of points that could
represent (a, b) values (everything inside the circle a® 4+ b* = 1) by ¢
discrete points, spread more or less uniformly throughout the region.
We call these “allowable’” signal values. Since the noise may add to the
received amplitude, the received signal can in fact be outside this
circle. Let us define additional n — ¢ discrete points to represent the ad-
ditional possible received signals that lie outside the circle a® + b? = 1.

Now define an ¢ by n matrix P = {p;} by

pi; = probability that, if signal ¢ were sent, it would be
received as (discrete) point j

i=1,-,4 j=1--,n

Suppose for convenience that the chosen signal values are points 1 to
m (i.e., rows 1 through m of P). The decoding procedure to be used is
simply this: If jis the received signal, it is decoded as thatZin 1, - - - , m
for which p,; is maximum. If 1, - - - , m have equal a prior? probabilities,
this procedure minimizes the error probability.
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The probability that a particular signal 7 is decoded correctly is the
probability that it falls into a column j where it is the largest entry.
The probability of correct decoding using any particular set of m rows
of P is thus the sum of the column maximum elements in those m
rows (divided by m). The problem (at last) is to find those m rows that
maximize this probability; these will be the signals used. More for-
mally, find an m-row subset M = {41, - -+, im} of the rows of P that
maximizes

Va = Z max pij.
=1 icM
We call Vy; the value of the subset M.

In the physical problem, m < ¢ < n; as an abstract problem, the
latter inequality is unnecessary.

Note that the algorithm we will present is essentially insensitive to
the characteristics of the matrix P. In practice, this means, for example,
that any noise characteristics can be treated effectively. This includes
not only the classical additive white noise, but also phase and ampli-
tude jitter components.

As an example of a matrix with quite different characteristics,
suppose P has entries which are either 0 or 1. A covering problem is
“Find a minimum set of rows of P such that these rows together con-
tain a 1 in each column of P.”” We can use our heuristic procedure to
find approximate solutions for the covering problem as follows: Find
a maximum value solution of the original problem, using m rows. If
the value is less than the number of columns of P, increase m; if it
equals the number of columns, decrease m. Find a new solution with
the new m. The smallest value of m for which the value equals the
number of columns is a minimum cover of P.

II, A HEURISTIC PROCEDURE

The process is based on iterative improvement of random initial
solutions. A random set of m rows is chosen from the ¢ possible rows.
(In practice, of course, we can also let the procedure try to improve
on a specific initial set.) We augment the m initial rows by one row
chosen from the £ — m unused rows, giving us m + 1 rows. We then
compute which of these m 4 1 rows contributes the least to the value
of the set and remove it. (The row removed might well be the row
added.) We then move to the next row in the unused ones and add it
to the current m rows. The process terminates when all the { — m
currently unused rows have been examined without finding a profitable
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replacement. This defines a local optimum solution. We then iterate
the entire procedure from a new random start.

The resulting solutions are ‘“‘1-opt’’ in the sense of Reference 1—that
is, no exchange of a single pair of rows can improve the solution.
Although 1-opt procedures are among the weaker heuristics, the
results are quite acceptable, as we shall see in the next section.

The process is very fast which counteracts the lower effectiveness
of 1-opting: a 100 by 100 problem takes about one second on the
Honeywell 6070 (in FORTRAN A). The run time for dense matrices
is essentially proportional to fn and independent of m. For sparse
matrices (the situation that occurs in practice), the run time varies
only with the number of non-zero elements, which for real problems
is proportional to ¢n.

The process is fast, partly because care is taken to do no extra work.
In detail, a basic step of the algorithm is as follows (the next section
contains a numerical example, which can be followed in parallel):

Initialization. Suppose without loss of generality that the initial rows
are 1, --- , m. Call this set M. Let (¢), 7 = 1, - - - , m, be the decrease
in value if row ¢ is removed from . We will compute ». This is done
only once per local optimum solution,

We begin by setting v(-) = 0. Each column j (1 £ j < n) con-
tributes an increment to exactly one component of v, as follows. Find
z; and y;, the largest and second-largest elements among the first m
elements of column j. Record these, and also the rows in which they
were found, 7, and 7, (1 = 7, 7, = m). Now, since z; is the largest
element in column j, it determines the contribution that column makes
to the value of M. But if row 7, were removed from M, the contribution
of column j would be determined by y;, the second largest element.
Thus, the decrease in value that would result if row 7, were removed
from M is x; — yj, so we add ; — y; to v(¢;). This process is done for
each column.

Phase 1—Evaluation of a Replacement Row. When the initialization is
finished, we evaluate replacement rows. Supposerowr(m +1 = r = {)
is the next proposed replacement. We will compute which of the m + 1
rows in M, = {1, ---,m,r} decreases the value of M, least when
removed. We will do this without examining any of the matrix P
except for row r itself,

Let A(7) be the change in v(z) that results if row 7 is removed from
M,. By computing A, we do not need to change v unless we are actually
going to exchange two rows. Initially, let A(¢) = 0,72=1, --- , m, r.
(Let v(r) = 0 as well.) The value A(z) will be =0 for 7 in M while
A(r) = 0.
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For each column 7, let z = p,;, ¢ = z;, and y = y;; we will do one
of (2), (4%), or (7i7):

(i) If z <y, the new element is smaller than second best; no
action is necessary.

(i) If y < z < x, z is a new second-best element. The A value for
the row containing z, A(i,), must be decreased by z — y, since
the contribution to v(i;) from column j is now 2z — z instead
of z — y.

(i17) If z > x, we have a new largest element in the column. Add
z — z to A(r) (z is now second largest) and subtract z — y from
A(Z.), since row ¢, no longer contains the largest element in
this column.

Phase 2—Determination of Which Row to Remove. We have now
determined A(7), the change in value that would result if row ¢ were
removed from M,. Find the minimum among »(1) + A(1), ---,
v(m) + A(m), v(r) + A(r).

If the minimum occurs at row k s r, let us say, then we must
exchange rows r and k, update »(-), and update the records of largest
and second-largest elements for each column. Go to Phase 3.

If this minimum occurs at r, there is no profit in replacing one of
1, -+, m by . If £ — m rows have been consecutively examined
without profit, we have finished; the set M is the local optimum solu-
tion. Otherwise, we must set r to » + 1 (wrapping around from £ to
m 4+ 1 if necessary) and go back to the Phase 1 calculation.

Phase 3—Updating After Exchange of Two Rows. As in Phase 1, we
must perform one of (i), (i), or (i7i) below for each column. The
element z is the largest in M, y is the second largest, and z is the new
element from row r. Row k is the row being ejected (1 = k = m).

Case (7): 2 < y. If k # i, and k # 7, then we are not replacing
either of the two largest elements in this column, so no updating is
necessary. Go to the next column.

If k = 7., we are replacing the largest element with something no
better than third largest. We replace by y (and 7, by 7,) and find a
new number two element in M,—ecall it w. Since y is now largest, we
subtract w — y from »(7,) and then let 7, = 1.

If k = 1,, we are replacing the number two element with something
no better than third largest. Again we search for w, the new number
two, update v(i,) by subtracting w — ¥, and update 2,.

Case (i1):y < z < . If k = 4., we are replacing the largest element
with a new and smaller largest element. The element z replaces x as
the largest element, and A(r) is increased by z — y.
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If k # 7., z becomes the new number two element, and z — y is
subtracted from »(7.) to reflect the smaller difference between first and
second elements.

Case (97): x < 2. If k = 7,, we are replacing the largest element
with a new largest element. The value A(r) is augmented by x — y (it
already contains z — x from Phase 1). The element 2z replaces z.

If k& # 1., we push = down into second place, since z is now the
largest element, and subtract & — y from »(i.), since z no longer
contributes.

After this update has been done for each column, we copy A(r) into
v(k) and interchange rows r and k. (In the actual implementation, of
course, row movement is just pointer manipulation.) Now go back to
Phase 1.

This is the end of the algorithm description. The critical part of this
algorithm is evaluating the contribution of a row without doing any
of the updating necessary to exchange it, and particularly without
scanning the matrix to find any column maxima. This latter operation
need be performed only after we have decided upon an exchange;
furthermore, it is performed only upon a small set of columns—those
for which the element of the row being replaced was first or second
largest and for which the replacement element is smaller than both
[case (7) in Phase 3, above . In practice, this condition holds for about
10 percent of the columns when we actually do a replacement. Since
typically we replace relatively few rows in proportion to the number
examined, the time saving is large.

III. AN EXAMPLE

This description may be clarified by one step of an example. Suppose
m = 3, the cost matrix is

P =

b Rl
O W
= Q0 00
Ll 1l = ]
CO 00 DD =
SO

and the first three rows are the current set. (This is obviously not a
probability matrix—small integers are better for exposition.) Then the
best entries are (2, 5, 8, 7, 4, 6), a value of 32.

Initialization. We find that v; is 5 (from column 6), v; is 7 (from
columns 1, 3, and 4), and v, is 4 (from columns 2 and 5). Thus
v = (5, 7, 4). Suppose we want to evaluate row 4 as a replacement for
one of these rows.
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Phase 1. Considering column 1, 4 > 2 so we are doing case (772). The
value A; is augmented by 2; at the same time, A, is decreased by 1,
because the element in row 2 is no longer largest in column 1.

There is no change in column 2 [case (i) ]. In column 3, row 4
represents a new second-largest element, so A; is decreased by 1. There
is no change in column 4. In column 5, add 4 to A4, and subtract 2 from
As. In column 6, decrease A, by 1. Thus, A = (—1, —2, —2, 6).

Phase 2. The minimum of »; + A; is 2, at ¢ = 3, implying that row
3 should be ejected. We now commence the updating operation.

Phase 3. For column 1, the largest value is 4 (coincidentally in row
4) and the second largest is 2 (in row 2). Decrease v, by 1, since row 2
no longer contributes in this column [case (i) ]. In column 2, we are
replacing the largest element by a very small one [case (z)]; the old
number two element becomes the new largest, and we have to search
for the new second largest. Add 1 to vy, since the largest value is a 3
and the second largest a 2. In column 3, ps s represents a new and
bigger second element; decrease v; by 1. No change takes place in
column 4. In column 5, we are replacing the largest element by a new
largest element. The value of vs is increased by 2(pss — ps.2). In
column 6, we gain a new second element, so v, is decreased by 1.

En route, we compute the new value of the solution as 36.

When we have finished, » = (5, 5, 8) for rows 1, 2, and 4, and the
process continues by our considering row 5. Notice that out of six
columns we only had to search for a second-largest element once; the
rest of the time, it was immediately at hand.

IV. EXPERIMENTAL RESULTS

We have tried the procedure on several different types of data:
matrix entries random on {0, .-, n}, random 0 — 1 matrices, and
various probability matrices based on the physical problem.

For problems formed by generating random entries in the matrix,
the fraction of random starts producing the optimum dimi.ishes as
m/¢ increases (except for the trivial cases of very small or very large
m), and also as n increases. Although there is significant individual
variation, the frequency of obtaining the optimum is close to 100
percent for small problems and still about 20 percent for problems
with m = 10, £ = 60, n = 80, the largest ranaom problems tried. (It
should be noted that “optimum’ usually means ‘“best solution seen
in a large number of trials”; we have strong statistical grounds for
believing them optimal, but no proof.)
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TaBLE I—TyYPICAL STATISTICS FOR SMALL RANDOM PROBLEMS
(ENTRIES UNIFORM ON [0, n]])

No. of No. of
optimums/ Distinct
Time Total Trials Solutions
m £ n (ms) (range) (range)
5 10 20 21 20/20 1
5 40 40 120 32-39/50 6-9
5 40 80 230 6-47/50 4-19
10 20 20 42 20/20 1
10 40 40 140 25-41/50 3-5
10 40 80 300 ) 11-16/50 5-10
20 60 60 340 1841/50 2-5
20 60 80 450 12-42/50 7-13

Run time is directly proportional to fn; in absolute terms, the run
time is about 100 ¢n microseconds per random start.

The procedure almost always makes less than two passes through
the £ — m unused elements; the number of row replacements is roughly
equal to m. As we mentioned above, it is only on these occasions that
it is necessary to actually update the records of first- and second-best
elements, and only for about 10 percent of the columns among the
replacements is it necessary actually to scan through the m rows to
locate a new second largest. (After initialization, it is never necessary
to scan to find the largest.) Table I shows some typical results for these
smaller tests.

Limited tests on 0—1 matrices produced similar results, although the
run time appears to be slightly lower per case. It is possible in the
0-1 case to make several simplifications that would further decrease
run time, and storage requirements could be drastically reduced by

.@.@.@.

Fig. 1—Optimum solution.
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using bit storage. However, we have not experimented extensively on
0-1 matrices. This will be reported in a separate paper.

Several experiments have been performed on various models of the
real problem. Since the modems involved have very low error rates,
the error transition probability p.;, ¢ # j, is small. This means that the
matrix P has large diagonal elements, a few small elements, and a
large number of zeros. For our purposes, the existence of large values
is irrelevant; however, many zeros means that a storage organization
that does not store zeros is attractive. We will discuss this shortly.

One problem to be faced is how to represent the continuous (a, b)
space as a set of discrete points. One crude model we studied uses a
““honeycomb’ or hexagonal scheme (shown in Fig. 1), since this is a
reasonable approximation to circular symmetry. The inner 61 points
represent allowable signal locations; the outer 30 are the extra points
to take care of the set of received signals that violate the peak power
constraint.

For this test, P is defined as

pi; = e ifj is a neighbor of 7 (e < 1)
= 1 — (e X number of neighbors) if 7 = j
0 otherwise.

This set of probabilities ignores phase jitter, which adds a radially
increasing tangential component to the error transitions.

Tigure 1 shows an optimum solution (it is easy to prove it optimum);
Fig. 2 shows a local optimum differing by e. In both cases, 12 signals
are placed symmetrically on the boundary, and the remaining four are
placed as well as possible in the interior. For this problem, all solutions
were within 9¢ of optimum and the median within 3¢ (the mean ran-
dom start is about 35¢ away), run times averaged 370 ms per case, and

.®'.®..®..
Qe s =Q e
® - N ORIRNOR

s D @ B s

Fig. 2—Suboptimal by one unit.
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the frequency of optimum solutions was about 10 percent. This problem
appears to be slightly harder than random problems of this size, but
run times are smaller.

V. LARGER PROBLEMS

To properly handle larger problems (e.g., to increase the resolution
available when discretizing) a version of the program using a sparse
matrix representation has been implemented. This involves substantial
overhead in accessing elements of the matrix, but it is balanced by the
fact that, when most matrix elements are zero, much less processing is
required. For example, in the 16/61/91 (i.e., m/¢{/n) problem above,
average run time increased from 370 to 390 ms, which is not significant.
The run time is determined predominantly by the number of non-zero
points, which is usually proportional to ¢n.

. . . s s e . I Y
. . . . ]
. - s . s @ e e e s . . . . .
. . « 5 e s (I | I )
. . R T I . . .
DRI [ T R R S S T T S T R S S T s s s
T s s s 8 8 8 8 8 % & = 8 & » & & = » . .
. . I I T ) D e I | .
. T T T I S Y . . .
. D S T D T R R . . . .
. . . 8 = s s « e s+ » = % s s P .
® « . ® ¢+ v . . . I L
DR . DR s e+ s s s s s s = = s . .
L L ) . . 9 . O |
. . I Y . . . . .
. . R T T} . T LRI
. s e . LI TR} . . . .
s = . . s s 0w . s s s s 8 & = . s s
. ® - s e e @ . P . .
. « = s L - s @ v s . . [ ] .
. P s s & & = = u « s e P .
. . . L T R Y R T . = .
. . . . . . . . . s s . .
. . = s a2 s s s u . - s s s « s .
T ® - - . - @
. .

Fig. 3—5-11" solution in pure Gaussian noise; 8 = 0.0; error rate = 1.07 X 1077,
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TaBLE II—SoME REsuLTs oN DESIGN PROBLEMS
(m = 16, Ny = 0.002)

Phase
Run Jitter Character
Non-zero Time B of Best,
{ n Entries (s) (degrees) Solution Figure
1. 293 421 8,500 6.5 1.5 1-5-10 -
2. 421 577 17,000 14.5 1.5 1-6-9 -
3. 421 577 17,000 14.5 1.5 1-5-10 -
4, 489 665 22,000 19.3 1] 5-11 3
5. 489 665 22,500 184 1.5 1-5-10 4
6. 489 665 27,000 20.5 3.0 Sl —67:;}-' 5
™ P eCl
7.| 489 665 27,000 21.0 3.0 P desigii 6
8.| 577 749 31,000 24.9 1.5 1-5-10 -

VI. RESULTS ON REAL PROBLEMS

In this section we discuss some of the experimental results obtained
from real problems, using formulas for the transition probabilities
taken from Reference 2. The probability for the transition from
X = (1, 22) to Y = (y1, y2) has the general form

p(X: Y) = f(X, Y;IB; NO) exp EQ(X, Y:ﬂ: -‘Vﬂ):'s

where N, is the noise power of the channel and g is the rms phase jitter
in the received signal. The details of f and ¢ do not concern us here; it
is sufficient to say that p(X, ¥) drops to zero rapidly as Y gets further
from X. For example, in the pure Gaussian noise case (8 = 0), we have

orp [ - LLZ XL,

p(X, Y) - 2JVO
Thus, the probability matrix is quite sparse when the transition
probabilities have been scaled and converted to integers.

The discrete space consists of points on a square lattice, as shown in
Fig. 3. The number of rows in P is determined by the number of lattice
points within the circle of radius 1. To these are added exterior points
approximating all possible additional received points. Since the radial
probabilities drop off rapidly, this exterior layer need only be one or
two units thick. This extra layer is indicated by the band of omitted
points on Fig. 3.

The run time and the storage requirements both grow with the
number of lattice points; this limits the resolution we can use. The
largest problem tried had 665 rows, 861 columns, and about 40,000

27N,
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Fig. 4—"1-5-10" solution for 1.5-degree jitter (error rate = 2.97 X 10-7).

non-zero matrix entries. It should be noted that the matrix has a
fourfold symmetry, so, at the price of an increase in computing time
(in practice, about 50 percent), only 10,000 entires need be stored.

Two types of experiments were performed. First, several constella-
tions of intrinsic interest were used as initial solutions; the heuristic
procedure attempted to improve upon them. Second, the procedure
was used to produce good solutions from a large number of random
initial configurations. For all solutions, approximate error rates were
computed and the constellations displayed.

Table II lists some typical parameters for several experiments at
various sizes; Figs. 3 to 5 show the best solutions found for particular
parameter settings.

Each signal point is surrounded by a set of points which, when
received, will decode into that signal point. This set of points is the
“decision region”’ for that signal point. Because we have quantized a
continuous space into small squares, the decision regions surrounding
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Fig. 5—"'1-6-9"" solution for 3-degree jitter (error rate = 3.26 X 10~°).

each signal point have ‘“ragged edges” and are of necessity somewhat
arbitrary. As the resolution is made finer, this effect is less serious, and
in fact the procedure can make more subtle choices of points and of
boundaries, so the apparent error rate decreases with increasing
resolution. For this reason, error rate comparisons between different
resolutions are not appropriate. However, the rates are internally
consistent in that, for any given resolution, the solution character and
error rates vary with noise as would be expected.

As predicted by analytic techniques,? solutions like “1-5-10" and
“1-6-9" are better for high jitter (8 > 1.5°), while “5-11"" solutions
are better in low jitter cases. (The notation will be evident after
examining the figures.) These trends are clearly indicated in Figs. 3
through 5, which show, respectively, the best solution (a 5-11) for zero
phase-jitter (pure Gaussian noise) with an error rate of 1 X 1077, the
best solution (1-5-10) for 1.5 degrees of phase jitter (error rate
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Fig. 6—Competing design, for 3-degree jitter (error rate = 3.47 X 107®).

3 X 1077), and the best solution (1-6-9) for 3 degrees of jitter (error
rate 3 X 1079),

For comparison, we experimented with the competing design shown
in Fig. 6, at various levels of jitter. This design is intended to be robust
over a wide range of jitter. This configuration does degrade less than
the others as jitter increases, but its overall performance is very much
inferior. Figure 6 shows that, at 3 degrees, its error rate is 3.5 X 10~%, a
factor of 10 worse than the 1-6-9 configuration. These results agree
closely with predictions of independent theoretical studies.?

VII. CONCLUSIONS

As a solution to a combinatorial optimization problem, the heuristic
procedure presented here is quite good for small-to-medium problems,
say up to about 100 rows, even for dense matrices. It remains useful,
but not strong, for large sparse problems.
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As for the original design problem, the number of rows and columns
in the matrix both rise with the resolution; thus, highly accurate
representations are computationally expensive, so the procedure is
generally not appropriate for generating precise answers to specific
design questions. Rather, it is most useful in providing quick approxi-
mate and comparative optimizations or evaluations, either to furnish
insight or to supplement results obtained by analytic techniques.

The extension of this technique to problems with an average power
constraint, rather than peak power, appears to be straightforward,
although we have not implemented it. [The average power constraint
requires that > (a® + b?%) < 1.]

As the simplest solution, start with a random feasible set of m rows.
Then, before each possible replace row is selected, test to see if it would
violate feasibility; if so, it cannot be used. A more powerful algorithm
would permit temporary violations of feasibility in a controlled way.
Either of these approaches should serve reasonably well.
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