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Impulse Response of Fibers With
Ring-Shaped Parabolic Index Distribution

By D. GLOGE and E. A. J. MARCATILI
(Manuseript received March 6, 1973)

The index distribution in the cross section of a multimode fiber has an
important influence on the modal group velocities and, hence, on the fiber
impulse response. In this paper we derive a method for the evaluation of
arbitrary circular symmetric index profiles. In particular, we compute the
impulse response of a fiber with a ring-shaped parabolic index profile
which exhibits useful equalizing properties. The pulse spread is found to
be nearly one order of magnitude smaller than that of a fiber with an equal,
but abrupt, index decline from core to cladding.

I. INTRODUCTION

Multimode operation of optical fibers relaxes the fabrication toler-
ances, allows the use of incoherent sources, and can alleviate handling
and splicing problems. Modal (group) delay differences are nearly
equalized!? if the core index decreases as the square of the fiber radius
from a maximum at the axis (Fig. 1). A distribution of this kind is
realized in the Selfoc* fiber, which was indeed reported to have very
low values of differential mode delay.®*

Since then, the question has been raised whether there are other
index profiles which have similar equalizing effects, but are otherwise
perhaps more amenable to certain fabrication techniques or have
advantages with respect to splicing or bending. Although the latter
part of this question is difficult to answer at this time, it is certainly
possible to identify at least one profile that has quite effective equaliz-
ing properties. Imagine a slab with a square-law index distribution in
transverse direction. The group velocities of all its modes are known to
be nearly equal.! It is then plausible to expect that these properties
are approximately preserved if the slab is warped in a way which
results in a tube with the cross-sectional index distribution shown in
c * RLe&iStemd trademark of Nippon Electric Co., Ltd. and Nippon Sheet Glass

o., Ltd.
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Fig. 1—Concentric parabolic index profile.

Fig. 2. Assume that a cladding material of lower refractive index fills
the bore and surrounds the tube to the outside, so that a fiber is formed
which guides modes within a tube-like structure with parabolic index
distribution.

The purpose of this paper is to identify the modes of this structure,
calculate their group velocities, and predict the impulse response to
be expected when all modes propagate uncoupled and with equal
power. To do this, we employ the WKB description® in a form which
ignores the anomalies of dielectric waveguide modes near eutoff, as-
suming that few of all the propagating modes are close to this condition.
For the sake of simplicity, we also restrict the following computations
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_ Fig. 2—Cross section through a ring-shaped parabolic index profile. Maximum
index no along a circle of radius Ro. Cladding index no(1 — A).
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to small index variations, so that all propagation directions can be
assumed paraxial to the waveguide axis and the corresponding ap-
proximations apply.

II. A CHARACTERISTIC EQUATION FOR CIRCULAR SYMMETRIC INDEX
DISTRIBUTIONS

Let us adopt a cylindrical coordinate system (r, ¢, z) and assume
that the refractive index n is a function of » only. We define a local
wave number

k() = 2mn(r)/\, (1)

where \ is the wavelength in free space. Because of the circular sym-
metry, we can separate the general wave equation and solve for ¢ and
z. In doing so, we define an axial propagation constant g8 and describe
the azimuthal periodicity by an azimuthal mode number ». The re-
maining partial differential equation for the radial field dependence
F(r) has then the form

)L‘ i :
A l % + (162(?') =F M ;}—) L =0. )

Following the usual WIKB approach,® we substitute
E(r) = ex, &

ignore the second derivative d%u/dr?, and, by solving for du/dr, we
obtain the solution

%’f:H-_iz\/h(;)—ﬁ——( +i)/‘r2. (4)

Given 8 and », we can find two radii, 12, and ., at which the root in
(4) vanishes (Fig. 3). These radii define a ring-shaped region within
which eq. (4) has an imaginary part causing the field £ to be a periodic
funetion. Outside of the region, E decreases or increases aperiodically.

As in the 2-dimensional ease,® decreasing (or evaneseent) field charac-
teristies outside are obtained if the total phase inside the region is

Ra
[R VX (r) — B2 — (»* + 3)/r%dr = (u + D, (5)
1

where g is an integer called the meridional mode number. It determines
the number of half periods of ¥ in radial direction. The accuracy of
(5) improves for large g, but is in most cases surprisingly good even for
small values of u. Equation (5) permits an evaluation of the propaga-



1164 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1973

ki - 8?2

|
|
|
|
|
|
!
|
|

l
APEHIOD!C'——# — ———PERIODIC— — — — 4)|<—-'APERPODIC
R
2

Ry
RADIUS r

Fig. 3—sketch defining regions of periodie and aperiodic field characteristies of a
mode of azimuthal order ».

tion constant 8 for given mode numbers x and ». This will now be done
for the parabolic ring structure sketched in Fig. 2.
III. GROUP DELAY AND IMPULSE RESPONSE

Figure 2 shows a cross-sectional view of the circular symmetric index
distribution. The index has a maximum value ngatr = R, decreases as

n(r) = n[1 — A(r — Ry)*/a?] for R—a<r<R-+a, (6
and has a constant value
n(r) = no(l — A) (7)

everywhere else. We assume A to be small compared to unity, introduce
the abbreviations

kn = Bmau/)\ (8)
and

p=r— Rﬂ, (9)
and obtain, with the help of (1) and (6),

k2(r) /2 k2(1 — 24p%/a?). (10)
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In order to solve eq. (5) analytically, we assume in addition that
R, > a, which permits us to replace r by R, in (5). As a result,

R
(u+ D =[ "I =BT — (2 T 1)/R} — 2Akpat dr, (11)
Ry
which has the solution

B = [k — (* + /RS — 2424 + Dko/alt. (12)

The phase constant 8 of a propagating mode must furthermore
fulfill the condition

B < ko1 — A) (13)

for the cladding field to have evanescent characteristics. This permits
us to calculate the total number of propagating modes. Keeping »
fixed, we first determine the number of modes m in a group with the
same v. We do this by solving (12) for p with 8 = ko(1 — A). Since
AK1

= _ _a(*+1/4) 3
m = pmax(v) + 1 = VA/2ak; hoRING + T (14)

This number decreases as v increases. The largest possible » is obtained
for m = 1. Thus with (14)

2 i
Ve = (2k§R§A s ""f" \fA/2) -3 (15)

For the following approximations, we ignore the terms . In this case,
the sum over all m from » = 0 t0 vuax yields

M = %akiR.A, (16)

which is the total number of propagating modes. Using the same
approximations, we can express m with the help of (15) in the form

m = VA/2ako(l — v?/v24y), (17)

an expression which will be used later on.

To calculate the mode delay, we first convince ourselves with the
help of (14) and (15) that the p- and y-terms in (12) are small (of the
order A) compared to k. We therefore approximate 8 by

B =ko— (* + 1)/2kuR} — V2A( + 1)/a. (18)
The differentiation of B with respect to the radial frequency
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Fig. 4—Impulse response of the thin parabolic tube structure; (a) individual mode
groups, (b) power distribution for large mode numbers (Ro > a).

w= cko/n, yields the group delay

= ‘Crinl, [1 + (pz 5 é) /%gzzg] , (19)

where L is the fiber length and ¢ the velocity of light in free space.
Since ¢ depends only on » but not on y, mode groups with the same »
have the same delay. Consequently, if all modes are excited by equal
pulses of unit energy at the fiber input, the output consists of pulses
of energy m(v) delayed by ¢(v). If we ignore the delay Ln/c common to
all modes and then insert (15) into (19), again neglecting the terms %,
we can write the delay in the form

. - 2
) =it — 20 < Tl B2 (20)

Figure 4 illustrates the output distribution for the case in which the
pulses are so narrow that individual groups are resolved. All pulses
have the same (very small) width, and their heights correspond to the
total energy m in each group.

More meaningful than this plot is a plot of the energy per unit time

p(r) = mdv/dr (21)

which coincides with the power distribution in the case of very large
mode numbers. We find dr/dv by differentiating (20) and, if the term
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Fig. 5—Impulse response of the parabolic tube structure for various radius-to-
thickness ratios.

1in (14) is again ignored, we have

_caRokj [ ( ALno\? cr \!
p(r) = v2Ln [( cr ) B (ALn.u) ] (22)

This function is also plotted in Fig. 4. We find half the total output
concentrated in the time interval

T = 0.12An0L/c. (23)

The remaining power is drawn out in a tail of length An,L/c. This tail
is caused by modes of high azimuthal order », modes which are not
present in the 2-dimensional structure and are essentially equalized in
the case of the concentric parabolic profile (Fig. 1). In this respect, the
parabolic ring structure is inferior to the corresponding concentric
profile, yet an effective width of 0.12 AnyL/c may be a useful improve-
ment in comparison to a guiding structure with uniform index ny which
theoretically produces a width An.L/c.

The condition R, >> a was necessary for an analytic solution of the
integral (11). Exact numerical results for arbitrary ratios R,/a are
shown in Fig. 5. The corrections with respect to (22) are largest for
high azimuthal orders. An exact analytical solution can only be found
for the maximum delay 7(vm.x) Which becomes

2
T (rmax) = A’Z"L [1 — % (\/%’ +8— %‘)2]. (24)
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As an example, consider a parabolic ring whose half width, q, is
equal to the central radius R, Let n, = 1.5 and assume A = 1 percent.
The total width of the impulse response after 1 km of this fiber would
be 7(vmax) = 25 ns according to (22), but half the power is concentrated
within the first 6 ns. Since high-order modes are usually lossier than
the low orders, it is likely that much of the pulse tail does not reach
the fiber end.

1V. CONCLUSIONS

The WKB approximation yields a simple characteristic equation for
the propagating modes in fibers with arbitrary circular symmetric index
distribution. We use this method to compute the impulse response of a
fiber with a ring-shaped parabolic index distribution. We find that this
structure has equalizing properties similar to the concentric parabolic
index distribution, except for certain azimuthal mode orders, which
lag behind, forming a rather long pulse tail. The rest of the power is
concentrated in a time interval which, for a 1-km length and a relative
index difference of 1 percent, is only 6 ns.
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