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The Impulse Response of an Optical
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To the paraxial approximation there is no difference in the group delay
of the modes of a parabolic index fiber. However, the wave optics treatment
of the infinitely extended parabolic index medium predicts a slight differ-
ence tn the group delay of the various modes. This result is used in this
paper to predict the shape and width of the impulse response function of
a parabolic index fiber with finite radius.

I. INTRODUCTION

The current interest in multimode optical waveguides is related to
progress in the fabrication of luminescent diodes which have become
cheap and dependable sources of incoherent light. Since incoherent
light cannot be injected into a single-mode fiber with high efficiency,
multimode waveguides must be used. A disadvantage of using multi-
mode instead of single-mode waveguides is multimode pulse dispersion
caused by the fact that the group velocity of the guided modes is not
the same. Power injected at one end of the waveguide is shared by
many or all of the possible guided modes. As each mode reaches the
other end of the guide at a different time, the initial pulse is broadened.

It is the purpose of this paper to calculate the impulse response of a
graded-index, multimode fiber.'~? The index distribution is assumed to
be given by the expression

2
n=no(1—Ar—2) 0
a

The parameter a represents the finite radius of the fiber, A determines
the strength of the index gradient. The analysis is simplified by using
the modes of the infinitely extended square-law medium (1) instead of
the modes of the actual waveguide of radius a.
The impulse response of a graded-index fiber with parabolic index
profile is much more favorable than that of the usual clad fiber with a
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rectangular index profile. In the paraxial approximation it is a delta
function. The finite width of the impulse response function is attribut-
able to rays that move on trajectories making relatively large angles
with the waveguide axis.

1I. THE MODES OF THE SQUARE-LAW MEDIUM

The electric or magnetic field components of the modes of the
infinitely extended square-law medium are obtained from the reduced
wave equation

PV | W
) + Ey_ﬂ + (n%k? — gH¥ = 0, (2)
with
2 2
nz.—_nﬁ(l—2A1;y)- 3)

The coordinates z and y are oriented in transverse direction to the
waveguide axis which points in z direction; k = 2x/\ is the propagation
constant of light in vacuum and @ is the propagation constant of the
guided modes. The distribution of the square of the refractive index is
not simply the square of the index distribution (1). Equation (3)
follows from (1) only if we neglect the square of the A term. However,
we can turn the argument around and consider eq. (3) as correct and
(1) as the approximation. The exact solution of (2) with the function
(3) is given by*

¥ = AH, (ﬂg) H, (v’i g) exp (_ il y2) e (@)

w2

H, is the Hermite polynomial of order p. The beam half-width is

defined as
2 i a ]
v=(3) (7%) )

and the propagation constant is given by

p=nk[1-2222 1 q+1)]" ®)

nﬂ
However, egs. (4) through (6) are not an exact solution of Maxwell’s
equations since an additional term containing the gradient of n? has
been neglected in (2). Since this additional term does not make a
significant contribution in (6)—particularly at large mode numbers p
and g—we use the solution in its present form for our discussion of the
impulse response of the fiber with parabolic index profile.®
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III. GROUP DELAY
We are interested in fibers satisfying the inequality
~Na

noka

We thus approximate (6) in the form

V24 A
B=nok—-—a—(10+'1+1)—m(p‘l‘Q'f‘l)z- (8)

<1. (M)

The group delay can now be expressed as

A
-L_Ld c[1+—*(mka)2(p+q+1)2]- 9

v is the group velocity and L is the length of the waveguide. The second
term of 8 in (8) does not contribute to the group delay. In first approxi-
mation, if the third term in (8) is neglected, the group delay would be
independent of the mode number. The difference in the group delay of
the different modes is thus only slight in the square-law medium.

1V. CUTOFF CONDITION

In the infinite square-law medium there is an infinite number of
modes; p and ¢ can both assume values from 1 through infinity. The
number of guided modes of a fiber with radius @ must be finite. It seems
reasonable to assume that those modes that interact strongly with the
waveguide boundary at r = a lose power at a high rate and become
unimportant for the power transport. Low-order modes are concen-
trated near the waveguide axis while the modes spread out further
away from the axis with inereasing mode number. At a certain mode
number the modes reach into the region of the fiber boundary and thus
become very lossy.

It is known from the theory of the WKB approximation® that the
mode field has an oscillatory behavior in the range

n(rk > B (10)
and an exponentially decaying behavior in the range
n(rk < 8. (11)

It appears logical to let the cutoff point of the guided modes in the
fiber with parabolic index profile and finite radius » = a coincide with
the condition

n(a)k = 8. (12)

Using the square of (12) and eqs. (3) and (6) results in the cutoff
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condition
A
S = (0 + 9. =y 3nika. (13)
Using (5) we can also write the cutoff condition in the form
§=2 14
= (14)

The actual performance of the fiber with parabolic index distribution
can now be approximated by assuming that all modes carry equal
amounts of power up to the maximum mode number that is determined
by (13) or (14).

V. THE IMPULSE RESPONSES

The impulse response of the fiber with parabolic index profile is
obtained by counting the number of modes that arrive at the fiber out-
put simultaneously. The power carried by these modes is proportional
to their number. The waveguide losses do not influence the shape of
the impulse response function if we assume that all modes suffer equal
amounts of loss.

Equation (9) shows that modes with constant values of

u=p+q (15)
arrive simultaneously at the end of the waveguide. The number of
modes with equal group delay is obtained by inspection of Fig. 1. The
modes of the waveguide occupy the area of the triangle indicated in the
figure. Modes with equal transit time lie on the straight line labeled
u = const. The area in p, g space is equal to the number of modes con-
tained in it. The number of modes in the interval dh is thus given by
the length of the line u = const times dh. The length of the lines
u = const is 2h. We thus have for the number of modes in the in-
terval dh

M (h)dh = 2hdh. (16)

The total number of modes is
(1/v2)8
N=f M(R)dh = 3S°. (17)
0

The ratio of M(h)dh/N is equal to the ratio of the power AP, that
corresponds to the interval dh, divided by the total power P arriving
at the end of the waveguide. We thus have

1dP _4h

Pdi~ S s8)
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Fig. 1—Maode distribution in p-q space. The dotted line labeled u = const corre-
sponds to modes with equal group delay.

We define the impulse response function F(7) as the relative amount of
power arriving per unit delay time 7,
1dP 1 dP dh
FO =P =P ahar (19)
All that is left to do is the determination of the function i(r). We see
from Fig. 1 that

1 1
h=ﬁu=72(p+q). (20)
Neglecting the 1 compared to p + ¢ in (9) we have
ka [ cr i
ho ™ (__ _ 1) : 21
v2A \n.L @)

The impulse response function is now obtained by combining eqs. (13)
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and (18) through (21).

cT

0 o A
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F(s) = ﬁf@ 0<m’}‘— 1 < 3A2, (22)
C
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VI. DISCUSSION

Equation (22) shows that an impulse, shared equally by all the modes
at the beginning of the parabolic index fiber, reaches the end as a
rectangularly shaped pulse whose width is

_ nl
dr = 2¢

The pulse width is thus dr = 0.25 ns/km for n, = 1.5 and A = 0.01.
The pulse width increases rapidly with increasing values of A. For
A = 0.015 we have a pulse width of dr = 0.55 ns/km. However, the
impulse response of the parabolic index fiber is much more favorable
than the corresponding impulse response of the conventional fiber with
discontinuous index distribution whose impulse response width is
directly proportional to? ni/ne — 1 (ny = core index, n; = cladding
index).

A2, (23)
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