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If a sequence of digitally on-off modulated optical pulses s injected
into a dielectric waveguide, these pulses may begin to overlap after a
sufficient distance of propagation because of material dispersion and/or
group delay spreading. In general, the pulses will not add linearly in
power, which can complicate the problem of equalization of the square-law
(power) detected overlapping output pulses at baseband. This paper
illustrates important situations in which the guide may be treated as
“pseudo-linear’’ in power, meaning that the detected guide outpul pulses
appear to add linearly.

I. INTRODUCTION

If a single pulse of optical energy propagates along a dielectric
waveguide, pulse broadening can occur for one or more of the following
reasons: material dispersion, individual mode waveguide dispersion, or
differences in the group delays of different guide modes. In addition,
the pulse shape may become only statistically defined because of
random mode coupling and/or statistical fluctuations of the optiecal
source.

If a sequence of digitally on-off modulated pulses is injected into a
dielectric waveguide, those pulses may begin to overlap after a sufficient
distance of propagation. In general, the optical powers in the pulses
will not add in a linear manner.,t On the other hand, as will be shown
below, the guide may be pseudo-linear in power. That is, for the
purpose of processing the power received at the output end of the

t The fiber is a medium which is linear in E field propagation (from Maxwell’s
equations). It is usually excited by a power-modulated source, and its output field is
detected by a square-law (power sensitive) device. Even if the input pulses are
separate, the response of the square-law detector will in general contain cross terms
resulting from the overlap in the output pulses.
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guide—in order to make decisions as to whether or not each pulse is on
or off—we may be able to treat the individual overlapping output
pulses as if they added linearly.

If the output power pulses could be considered to add linearly, then,
after detection, the resulting current pulses could be separated with a
linear equalizer provided the shapes of the pulses are well defined and
identical from pulse to pulse. In this paper we consider a number of
interesting cases in which the guide can be treated as if it were linear
in power (output pulses add linearly) and in which the pulses at the
output assume a well-defined shape in spite of random mode coupling
and/or source fluctuations.

II. CASE 1: MULTIMODE GUIDE, MODE-LOCKED SOURCE, NO MODE
COUPLING

The easiest case to visualize in which the guide appears linear in
power with overlapping output pulses is that of a multimode guide
propagating pulses derived from a mode-locked lager operating in a
single spatial mode. It is assumed that there is no mode conversion
and that group delay differences among the modes dominate pulse
spreading.

Even though the laser puts out a well-defined spatial mode, it may
be very difficult to match this to a given fiber mode so that only one
fiber mode is excited. We assume that a number of fiber modes are
excited by the pulses from the mode-locked laser. The assumption of a
mode-locked laser implies that the optical bandwidth being used is
small so that material and waveguide dispersion can be neglected, and,
in addition, no random fluctuations are present from beating of un-
locked source modes. The sequence of nonoverlapping pulses from the
laser exciting the guide input will produce identical sequences of non-
overlapping pulses in each mode at the guide output. However, the
sequences at the output in the various modes will have relative time
delays because of the differences in the group delay per unit length
associated with the various modes (see Fig. 1). When the fiber output
falls upon a detector, the current produced (neglecting shot noise) is
proportional to the sum of the powers in all the modes. The sum of the
powers in all the modes resulting from a single input pulse is shown in
Fig. 1. Since the output pulses in a single mode do not overlap and
since the detector linearly adds the powers of the various modes, the
total detected current will be a sum of pulses modulated on and off,
each of which looks like the response to a single input pulse. Thus, the
output power produces a detected current which is a filtered version of
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Fig. 1—Multimode propagation without coupling.

the input power. That is, the sequence of nonoverlapping input pulses
produces a detected current at the output, which is a sequence of over-
lapping pulses that add linearly. For the purposes of processing this
current, the guide can therefore be considered linear in power or linear
at baseband.

III. CASE II: INCOHERENT SOURCE, MULTIMODE GUIDE, NO MODE
COUPLING

In this example, we assume that a pulse modulated incoherent
source excites one or more modes of a multimode waveguide with no
mode coupling. We show that the received output power in each mode
can be treated as a linearly filtered version of the input power, i.e., that
the sequence of nonoverlapping input pulses produces a sequence of
output pulses in each mode which add up linearly, whether they overlap
(because of material dispersion) or not. Since the detector produces a
current which is proportional to the sum of the powers in each mode,
the total current will also consist of a sequence of pulses which add
linearly, whether they overlap or not. We show that, in order for this
effective linearity in power to be valid, it is necessary that the source
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bandwidth be sufficiently large compared to the reciproeal of the input
pulse duration. How big the ratio of these two quantities must be de-
pends upon how much overlap there is in the output pulses and there-
fore upon how much equalization is required to separate the pulses at

baseband.
We can model the complex amplitude of a given spatial mode at the

guide input as follows:
em(t) = Vm(@)e(?). (1)

In the above example, (m(t))? represents the modulation and ¢(¢) is
a complex Gaussian random process which represents the incoherent
carrier. By definition of an ineoherent carrier, we have

{c(the(t + u)) = 0, {c{t)c*(t + u)) = R.(u). (2)

The Fourier transform of R.(u) is what is called the incoherent source
spectrum, shifted to baseband.

The input complex amplitude of (1) produces an output from
the guide in the corresponding mode having the following complex
amplitude

eonell) = f eV hg(t — ). (3)

In eq. (3), h,(u) is the guide bandpass impulse response for the mode
under consideration. Equation (3) follows from the fact that the guide
is linear in voltage.

The average power at the guide input in the given mode is (averaging
over the fluctuations in the incoherent carrier)

(Pin(®)) & (ein(®)em(®)) = mOR.(0) = Ro(O)[T axhp(t — kT)]. (4)

In (4), the modulation m(Z) is a sequence of nonoverlapping pulses
(modulated on or off) where %,,(f) is the pulse shape, a; assumes the
value zero or one for each &, and T is the pulse spacing. The average
power at the guide output is

(Pout(t)) = <ffesn(t’)hg(t — ) en ("Rt _‘ t”)dt’dt”) G

It is reasonable to assume that the following approximation holds:

(em(®)en(t)) = (Nm(@)e(@)Nm(E")e (")) = Nm(E)Vm(t")
Bt —t") mm(thR(Q — t"). (6)

This approximation is valid since the coherence time of a typiecal
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incoherent source such as a GaAs LED is of the order of 1073 seconds,
while modulation pulse widths of interest here exceed 10~° seconds.
Substituting (6) into (5) we obtain

(Pout()) = X arhy,, (t — ET), (7)
where

P paue (£ =[h,,i,,(t’) [[R,;(t’ — t"he(t — t)h(t — t”)dt”] dt’.

Thus, the average output power is a linearly filtered version of the
average input power. That is, the average output power consists of a
sequence of pulses which add linearly even if they overlap.

Thus far, we have considered the average output power, averaging
over the fluctuations in the incoherent source power output. We next
consider the effect of those fluctuations on the equalized-detected
current. We shall show that these source fluctuations will produce
negligible deviations in the equalized-detected current from its mean
provided that the source bandwidth is sufficiently large.

We can write the power at the guide output in the mode under
consideration as the sum of the average power of eq. (7) and a deviation
from this average b(f):

pnut(t} = (pout-(ﬂ) + b(t) (8)
If this power falls upon a detector, it produces a current which is
proportional to poui(t) (neglecting shot noise). This current will pass
through a filter which performs an equalization function and/or band-
limiting. The baseband filter output voltage will therefore be

vout(t) = 2 f Pous(tY st — £)dt’, 9)

where hy(t — ¢') is the baseband filter impulse response and z is an
arbitrary proportionality constant.
The mean baseband output voltage is given by

(voue(t)) = 2 f (Dout () Yha(t — t)dt". (10)
The mean square deviation of the baseband voltage from its mean
is given by
(W8(®) = [an(®)T = 32O 2 2 [Pone()pons ()
X bt — Hho(t — t)dt'dt” — [{vour(t))1%  (11)

Thus, to calculate the ratio of the mean voltage to the rms deviation
in order to determine whether or not the deviations are negligible, we
need the correlation function of the power pous(t).
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In order to calculate this correlation function, we must recall that
¢(t) defined in (1) is & complex Gaussian random process and satisfies
[in addition to (2)] the following

(™))" ("))
= Rt — t)R(t" — ") + Ro(t — t")R(¢" — ). (12a)

Using (1), (3), (4), and (12a) we obtain
(Pone () Pout(#)) = (P (t))(Bount)
+ \ @R = Bhlt = Wit — B)dads " (12b)

To obtain some numerical results, we assume that the input pulses
hou(f) defined in (4) are Gaussian in shape and that the guide mode
impulse response corresponds to that of a dispersive medium having a
group delay 7o at the optical source center frequency and a dispersion
+? within the optical band of the source. Further, we shall assume that
the source spectrum is Gaussian in shape. That is, we shall assume the
following:

hpin(i) = exp (_t2/2°'2);
(2.36¢ = input pulse width between 3 points) (13a)
F{ho(f)} £ H,(w)
2.2
= exp (—j ”,Tw) exp (— jrow) exp (—w?B;%/2) (13b)
1
he(l) = ——— — (@ — 7.)%/2(7v2 + B;?
R,(u) = exp (—uB3/2),
where

¥{ } = Fourier transform.

In eq. (13), we have already assumed that the source bandwidth B,
is much greater than the reciprocal of the input pulse width . We also
shall assume that the guide bandwidth B, is much larger than the
source bandwidth B,. Since r, represents an absolute propagation
delay from input to output, we shall neglect it as irrelevant to the
problem at hand. Therefore, the only significant parameter in the guide
impulse response A,(t) is the dispersion v

If we insert the particular functions of (13) into (7) and (12b) using
(4), we obtain

(Dout(t)) = 22 2_ ax exp { —3(t — kT)*/[v*Bi + %]}  (14a)
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(i.e., a sequence of Gaussian-shaped on-off modulated pulses having
width Vy4B} + ¢?), where z; = an arbitrary proportionality constant
which we shall henceforth set to unity.

Pou)Pout(t)) = [Pous(®) T [1 + exp { - [%E—t%ﬂ + (14b)
+1

a2

Thus, Ay, (t) of (8) is in this case the Gaussian-shaped pulse in (14a).
Looking at egs. (13a) and (14a), we see that y*B2/¢? << 1 implies that
little pulse broadening has occurred in propagation; y4B2/c2>> 1
implies that considerable pulse broadening has occurred in propagation.
Now using (14) in (11), we obtain

[(Uou;(t)):lz _ (f(pout(t’))hb(t —_ t’)dt")
O Do) ot — kot — ¢)emwo—rmas

avdy”,  (15)

where
ut = 2BY7'BY/o* + 117,

Recall that (vou:(?)) is the average baseband (detected and equalized)
voltage produced by the power output in the mode under consideration,
and that it consists of a sum of on-off modulated pulses given in (14a).
In addition, ¢%(¢) is the mean squared deviation of this baseband
voltage from its mean. Thus, (15) is effectively a signal-to-noise ratio.
For a typical broadband source and an equalizer having a bandwidth
comparable to 1/(pulse spacing-T), we can treat the Gaussian term of
the integrand in the denominator of (15) as a delta function having
area V2x/u. Then (15) becomes

: Pous)hot — |
Lo O)F _ |/ |

2] [ a2y — 010

We can evaluate (16) for particular equalizers, hs(t), and particular
output power pulse widths (v*B% 4+ ¢2). We recognize from (16) in
general that the equivalent noise b(f) of (8) which must be added to
the average output power is a signal-dependent noise with correlation
function

(b®)b(t)) = % [(poue(8)) 178t — ¢), (17)
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where
u? = 2B3/[v'Bi/o* + 1]

If the power output pulses h,,,(f) overlap significantly, then this
signal-dependent noise will become stationary when all the pulses are
on, which should simplify the calculation of (16). At the other extreme,
if the output pulses hy,,(¢) do not overlap (i.e., ¥*B} + ¢* < T?) and if
the baseband equalizer ks(f) is taken to be a matched filter (matched
in shape to the output pulses), then the signal-to-noise ratio is given by

2
LoD — \2oB, (18)
[f 723> v'B} + o2 k() = hp,u(D) ].

In general, for a given desired equalized pulse shape, the equivalent
noise will be negligible if the product of the optical source bandwidth
B, and the input pulse width ¢ is sufficiently large. For practical cases
of interest, this product is on the order of 10 to 10% For reasonable
amounts of equalization consistent with other noise considerations
(shot noise, thermal noise, etc.), we can treat the guide as being linear
in power even if the pulses overlap, i.e., we can neglect the equivalent
noise b(z).

When more than one mode is present, we simply add the individual
mode output powers, since the detector current is proportional to the
sum of the powers in all the modes. If the optical source is spatially
incoherent, the equivalent noises b(f} in each mode may be uncorre-
lated.t In that case, the requirements upon the product of the source
bandwidth and the input pulse width are less stringent. This is par-
ticularly true if the pulse spreading resulting from dispersion dominates
the spreading resulting from the differences in group delay among the
various modes.

A simple interpretation which may prove useful follows. It was
easy to obtain (7), which showed that the guide was linear in power
if we averaged out the source fluctuations. Since the source is very
broadband, we can think of it as a sum of independently fluctuating
sources separated by a frequency spacing equal to the bandwidth of
the modulation pulses at the input. Thus, the output power is the sum
of the fluctuating powers associated with each equivalent indepen-
dently fluctuating optical source. The average output powers associated
with these equivalent sources add systematically, while the indepen-

t That is, if the optical source is close to the fiber, each fiber mode effectively sees

an independent carrier, and therefore we obtain averaging of the fluctuations in
these carriers when the mode powers at the output of the guide are added.
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dent fluctuations about the average add at random. Thus, for a
sufficiently large number of equivalent sources—corresponding to a
large product of optical source bandwidth and input pulse width—the
total fluctuations become small compared to the average power. In
effect, one has a frequency diversity system.

IV. CASE III: MODE-LOCKED COHERENT SOURCE, MULTIMODE GUIDE,
MODE COUPLING

In this example, we consider a spatially coherent mode-locked laser
source and a multimode guide. Unlike example I, we assume con-
siderable mode coupling. Once again, the rationale of using a multimode
guide with a single mode source may be the inability to stably match
the source to a single-mode guide. Before proceeding, we must model
the transmission properties of a multimode guide with random coupling,

Very little is known about the complete statistical properties of the
guide under consideration here. Any particular guide, which is linear in
voltage (field), can be characterized as having a set of modes associated
with an ideal guide having no geometry perturbations (which are the
source of coupling). The input and output complex envelopes of the
corresponding input and output optical fields can be expanded using
the orthogonal guided modes, which together with the continuum of
radiating modes form a complete orthonormal series. We can relate the
complex amplitudes in each input and output mode by a matrix im-
pulse response. That is, calling the complex amplitude in mode % at
the input e, (¢), and the complex amplitude in mode j at the output
€...(), we have

) = 3 [enn@hinte = ), (19)

where h;(t — t') is the bandpass impulse response from input mode &
to output mode j.

In order to proceed in the analysis to follow, we need at least the
fourth-order joint statistics of the random processes h;:(f). (The reader
is cautioned that the term random process refers to the fact that the
actual hj:(t) for each j and k will be different for different guides be-
cause of the random mode coupling. For any particular guide which
does not change its physical parameters in time, k;;(¢) is a fixed but
a priori unpredictable function of time. All averaging and references to
statistical properties refer to ensembles of guides whose gross physical
properties are alike.)

As mentioned above, little is known about the statistics of the
hi(f). Rowe and Young,! Personick,? and Marcuse® have shown in
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various analyses that, for a particular j and k, the Fourier transform
of hjr(t), H;:(w) can be considered a stationary random process under
various restricted conditions which include the assumption that the
optical bandwidth being used is not too large. That is, one may argue
under restricted conditions that

(ij(w)Hjt(w + 0’)) = S;‘k(a') (20)

(where the averaging is over an ensemble of guides having identical
gross properties).

In another analysis, Marcuse* has shown that, for a particular j and
k and for a sufficiently long guide (so that enough mode coupling has
taken place), one has

(| Hi(w) %) =2 2([ Hji(w) | ).

This last result is consistent with (but certainly  not a sufficient
condition for) the possibility that H ;x(w) is a complex Gaussian random
process.

Based on this admittedly scanty evidence which should certainly be
explored in more depth, we shall assume that the Fourier transforms
Hji(w) of the h;(t) satisfly the following conditions which would be
satisfied if the H;(w) were joint complex Gaussian random processes

(Hi(@)Hin(w + o)) =0,  (Hu(w)Hin(w + a)) = Sjitn(o)
(ij(w)HTm(w + o) Haolw + U’)H;a(“’ + ")) (21)
= Silklm(o-)sﬂﬂﬂﬂ(o-” - 0") + Sjkpq(a'”)snalm(a' - 0")-
It is hoped that the results which we shall next derive will be qualita-

tively valid for actual multimode guides with random mode coupling,.
The guide input optical field complex amplitude is given by

ein(l) = ex(0)er(t), (22)

where €,(p) represents the spatial variation of the field over the guide
input plane and e,(f) represents the time variation of the field and
includes the modulation. We shall assume that the modulation con-
sists of a sum of nonoverlapping on-off modulated pulses with spacing T

Er(t) = Z Gkhin(t bl LT),

a, =0 or 1 foreachk. (23)
We can expand the input field in the guide modes as follows:
ex(0) = ¥ edr(p) + unguided remainder, (24)

where ¢ (p) is guided mode k.
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From (20) and (24), we obtain the complex amplitude in mode j at
the guide output in terms of the input complex envelope and an im-
pulse response

) = T f ever ()t — )dt!

= [ &)t — t)dt!,  where h;() & % echi(t).  (25)

Since h;(t) is a weighted sum of individual responses h;:(f), it follows
from (21) and the linearity properties of the Fourier transform that the
transform H;(w) of h;({) must also satisfy

(Hi(Hj(w + o)) = 8;(c), (Hi(wHiw+0)) =0
(Hi(wHj(w + o)Hj(w + o')Hi(w + o)) (26)
= 8;(0)8;(e"” — ¢’) + 8i(e")Si(c — o).

We next show that the guide may be considered under restricted
circumstances to be linear in power with a well-defined output pulse
shape even though the output pulses overlap and even though there is
unpredictable mode coupling.

First, we can write down the power at the guide input and at the
guide output in mode j:

pn®) = | [ 1) |82 £ anlhnlt = ) (21)
(since hin(t)hiy(t — kT) = O for k # 0, and ax = 0 or 1).
Pia() = [ e(t) (") hs(t — ¢)R5(t — t")dt'de”.

Next, we can ensemble average p,,.(f) over the ensemble of similar
guides to find the average power response.
In Reference 2, it is shown that (26) implies that

(hi(t — )5t — 1)) = st — V)8 (' — t), (28)

where s;(f) = 51{S;(w)} (inverse Fourier transform).
Using (28) and (27) we obtain

Piou)) = Z arhy,, (t — kT),
where

hias® = [ [hia(®) 25506 = ©)ar. (29)

We thus see that the input power consists of a sum of on-off modu-
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lated overlapping pulses, and the average output power (averaged over
an ensemble of guides with identical gross physical properties) consists
of a similar sum of on-off modulated pulses which in general may
overlap. Thus, in this ensemble-averaged sense, the guide is linear in
power with impulse response s;(f). We must next investigate how an
individual guide in the ensemble can deviate from this average and
under what conditions these deviations can be neglected for com-
munications purposes.

In order to study these deviations we must consider them in the
context of a detector followed by an equalizing (or simply band-
limiting) filter. Since the detector produces a current which is pro-
portional to the linear sum of the powers in each guide mode at the
output (neglecting shot noise), we consider the response to one mode
only for the moment. The voltage at the equalizer output is related to
the output power in mode j as follows:

mﬂ%w[mmMMAmammw, (30)

where hge..sin.(f) is the detector-filter impulse response and z is an
arbitrary constant.

The average (over an ensemble of guides) voltage produced is a sum
of on-off modulated pulses, since we have already shown that the
average output power in mode j is a sum of on-off modulated pulses

(o)) = Z arhu,u(t — £T), (31)
where

Paos® = [PV hat s (¢ = ¥)d'

The mean squared deviation from this average voltage is given as
follows:

3(t) £ (Ru(®) = Wous®))?

= & [ [ Piaa@)PratDhss - (¢ = )
Xhaet.-tin. (¢ — ¢7)dt'dt” — (vour(t))?.  (32)

To calculate the mean squared deviation, we need the correlation
function of the output power in mode j. From (27) we obtain

(Pio(@)Pion(8)) = f f f f e () et e (") ex(t""") ]
X (hj(a — t') j(a — t”)hj(ﬁ _ tr.rr) :(,B _ t””)>dt’di”dt”’dt"”. (33)
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In order to obtain numerical results, we must make some assump-
tions to facilitate the products and convolutions of (33). We assume
that the guide power impulse response s;(t) for mode j is Gaussian in
shape. It has been shown!'? that this should be the case under re-
stricted conditions for long guides. We assume that the input pulses,
hin(?), are Gaussian in shape with a width less than 4 the pulse spacing,
T, so that the previous assumption that they do not overlap is not
violated for practical purposes. That is, we assume

hin(t) = e~#'12, 3¢ < T = pulse spacing
8i(t) = e v > 3a.

From (33), (26), and (34) we obtain

(Pionl(e)) = 2 X ar exp — {(a — kT)Z/QI:.a_; £ .yz]}

(Prun(@)Pivn(8)) = [z= EEY a1s noitrin (35)

xep— {Hgo o midn )
+ (Pion(@) ) (D)o (B))-

The approximations of (35) become equalities when the width of the
average power impulse response y becomes large compared to the input
pulse width, o, i.e., when there is a lot of pulse spreading in propagation.
We shall soon see that this will be the case of interest in this example.
Before attempting to use (35) in (32) to evaluate the magnitude of the
deviations of a particular guides power from the ensemble average, we
can make some simplifications and comments upon (35). Using the
assumptions v 3 ¢, we have

(Piow(@)) = 22 arexp {— (e — kT)?/2v?} (36)
Bo(e, B) = (0ien(@)Ps0u(8)) — (Piu(@) ){Psou(8))
= 22 TS Qi m@1Qy mel— (kT2 g [—(B—IT)3 257
kml

X e—(a—ﬁ—mT)’ 1'20"

(34)

(>3

If we assume that ¢ is small compared to the pulse spacing T and if
we assume that the detector-equalizer combination passes frequencies
only up to the inverse of the pulse spacing T, then we can make the
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further approximation
Ry(a, B) = 2° ZEZ ApQg—mQiQi+m
m
X Letomt vt oD (o — § — mT)VEro®.  (37)

What we have shown so far is that the power in mode j at the guide
output can be considered to be of the form

Pieu(® = {(Diou(t)) + (D), (38)
where

(b(@)b(8)) = Rala, B),

where b(t) represents the deviations of the power in a particular guide
in mode j from the ensemble average.

Combining (36) and (38) with (32), we obtain the ratio of the
(average voltage)? at the detector filter output to the mean square
deviation from this average voltage

_kg é (vnut(t))z
N a3(l)

2
[[Z are=CRT2 Ry e (8 — t')dt’]

(\/ﬁ;a) IZZZ QRO m€ (T 27 g (= (¢ —IT) [297]
X 8(t' — ¢ — mT)haes.-si1e.(t — ) haot.-rine, (¢ — ¢'7)dt'dt"”.  (39)

It is clear that, whatever the equalizing filter is, this ratio increases
with decreasing ¢. Thus, as the input power pulses to the guide become
narrow, two things happen: the average output pulse widths become
independent of the input pulse width and the deviations of the output
power in mode j from the ensemble average become negligible. Exactly
how small ¢ has to be depends upon how much the average output
power pulses overlap and how much equalization we are therefore
using. In the extreme case of no output pulse overlap, assuming that
the equalizer response haet.-tin.(t) is matched to the average pulse
power, we obtain

T > 3v (no pulse overlap at output)
13@ for ¢ < v (output pulse width 3> input pulse width)  (40)

Raet.-tite.() = hjou(—1%) (matched filter equalizer).

S_
5=

Obviously, the guide acts linearly in power if the output pulses
don’t overlap, but (40) shows that the output pulses take on a well-
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defined shape (i.e., the deviations from the ensemble average are
negligible) in spite of the random mode coupling. For cases where the
output pulses overlap, the conditions for the deviations from the
ensemble average to be negligible are more stringent, i.e., the signal-to-
noise ratio (39) is less than the special case (40).

Summarizing, we started with a mode-locked laser putting out
pulses which were much narrower than the spacing between them and
on-off modulated. This optical field excited a guide with random mode
coupling. We modeled the transfer function relating the input field
complex envelope to the complex amplitude of a particular mode at the
output as having specific properties (26) associated with a complex
Gaussian random process. This model was justified only in the sense
that it was consistent with available but scanty analytical results on
guides with random coupling. We showed that the ensemble average
output power in the mode under consideration looked like a linearly
filtered version of the input power. That is, the average output power
was a linear sum of pulses which could in general overlap. Thus, on the
average, the guide looked linear in power for digital communication
applications. We showed that the deviations in a particular guide from
this ensemble average linearity behavior would be negligible provided
the input pulses were very narrow compared to the width of the guide
average power impulse response. How narrow the input pulses had to
be depended upon how much equalization was required to separate the
output pulses.t

It is clear that, since the detector adds the powers in each output
mode, the total power will be a linear sum of pulses if the individual
mode powers are. In addition, we may suspect that the deviations from
the ensemble average in each mode may add randomly while the
average powers add systematically. Thus, some improvement in the
signal to “noise’’ ratio may accrue from this spatial diversity.

An interpretation of what is happening to make the deviations
negligible is the following: Since the guide average power impulse
response for output mode j, s,(¢), is the Fourier transform of the two-
frequency correlation function S;(w) defined in (26), we can interpret
the reciprocal of the width of s;(f) as the bandwidth difference over
which the guide transfer function between the input field and the
output mode j becomes uncorrelated. When we use narrow input
pulses compared to the width of the average power impulse response,
we use a lot of bandwidth compared to this correlation bandwidth and

' Remember that the output pulse shape becomes independent of the input pulse
shape as the input pulses get narrow.
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thus obtain frequency diversity. As the input pulses become very
narrow, the output pulses become fixed in shape equal to s;(t), but the
diversity keeps increasing, resulting in averaging out of the deviations
from one guide to the next.

V. CASE IV: INCOHERENT SOURCE, MULTIMODE FIBER WITH MODE
COUPLING

In this example, we consider an incoherent intensity-modulated
source exciting a multimode fiber with random mode coupling. We
assume that material dispersion is negligible. (Since we shall be con-
sidering a wideband source, we may question the physical reality of
neglecting material dispersion. On the other hand, the qualitative
results to follow may provide insight into more general cases.) To
simplify what will prove to be a somewhat complicated analysis, we
shall consider the response in a particular guide mode, j, at the output,
to the field in a particular mode, k, at the guide input. Extension to
consideration of the total input field and the total response should be
straightforward, using the techniques outlined below.

The input field complex amplitude in mode & is of the form

eru(t) = vm(t)e(d), (41)
where m(t) is the modulation and c(¢) is the optical incoherent carrier
which satisfies

(c(®)c*(u)) = R(t — w) (42a)
(e(t)c*(ue(t)c*(w'))
=Rt — wR.({t' —v) + R(t — w)R.(t' — u). (42b)
The complex amplitude in mode j at the output due to the input
field in mode k is given by

Gunl®) = [ era®)hintt = ), (43)

where the impulse response coupling mode % to j is assumed to satisfy
the same statistics as were outlined in the first paragraphs of Section
IV, ie,,
(@) Hjp(w) = F{hu(t)}
(1) (Hp(w)Hu(w + 0)) = Sjs(o)
(i13) (Hjp(w)Hp(w + o)Hj(w + o) Hix(w + 7)) (44)
= Si(a)Sj(e" — ') + Sjulc")Ssu(e — o)
(1) (hixOha(t)) = su(t)8( — 1),
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where
8ik(f) = FH8u(w)}.

The average input power (averaging over the source fluctuations) is
(Pru(®)) = m(OR(0) = [ arhin(t — kT)JE(0), (45)

i.e., a sequence of on-off modulated pulses wherea, = Oor1, T = pulse
spacing,.
The output power is given by

Dianlt) = f Nm (" )Nm (") e@)e* (" hu(t — t)hp(t — ¢7)dt'dt”. (46)

If we average over the source fluctuations and the guide statistics
we obtain, using (44) and (6)

(Pios(®)) = f m(E)Re(t' — ") (ha(t — O)h5(t — ¢7))dt"dt’

= [mOROsu(t — )t = £ byt — kT),  (@7)

where

hiaul®) = R(0) [ hia®)st — #)a.

Thus, on the average, the output power looks like a linearly filtered
version of the input power with impulse response s;(t).

This average output power will produce an average detected-
equalized voltage which is also a linearly filtered version of the input
power. We next show that, if the optical bandwidth of the incoherent
source is sufficiently large, then the deviations of the detected equalized
voltage from its average, because of fluctuations in the source and
deviations of the impulse response of a particular guide from the
ensemble average, can be neglected.

As before, the detected-equalized voltage is given by

Vour(t) = 2fpuut(i') Raet.-sine. (f — ') dt’, (48)

where z is an arbitrary constant.
The mean detected-equalized current and the mean square deviation
from the mean are given by

(Uout(t)) = Z akhouk(t - kT):



1192 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1973

where
hogu(t) = fh:'m(t')hdec.-fm.(t — t)dt

720 = Gu®) = G = [ Birs®IPiaa(®)
X het.-tite.(E = ) hdet.-rine. (E — ¢)AVAL" — (vour(f))? (49)

To caleulate the mean square deviation we need the correlation fune-
tion of p,,.(t). Using (6), (42b), and (44) we obtain the following com-
plicated expression:

PiosIPscnl”)) = (P} (Psen(t)) [ 1+ Iﬁ%_)t)l]

+ f [m(7) Jsp(t — Dsp(t” — )dr [ | Ru(u) | du

+ [In@TTm@ — ¢ = D Flsn = 7)|dr
X [ |Ruw) |%du. (50

In order to obtain numerical results we must make some assumptions
as to the shapes of s;(f), h.(f), and E.(f). We shall assume the
following:

h.() = exp —t2/2¢2  (Gaussian-shaped input pulses)
F{R.(f)} = exp —w?/2B? (Gaussian-shaped source spectrum)
six(t) = exp —t2/2y?  (Gaussian-shaped power impulse re-
sponse—appropriate for long guides).

(51)

Using (51) in (50) we obtain the expressions

_ vB,
(Pina®)) = T aset-u-rrniziorem V2t
" o' T
(p.?‘oul(t’)pjuul(t”))
= (Do) )(Piou ")) (1 + exp [— (¢ — ¢')?BF]}
B,y )
_— S pl—(t"'—t")2]4y2] p—[(k—J) T]2/ 402
Tl o = et e
X el—=11a2 2] (" +[(¢/'—t") 21— (k+7) (T/2))2 -+ e~ [(k=H)T+(t''—t')]2/ 402

3 el—1/oty2 ¢+ [(¢ /=) (2=t (TID)2} - (52)

Equation (52) is still fairly complicated, but we can make some
general observations. The mean output power is proportional to the
source bandwidth B,, and therefore the mean output power squared
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will be proportional to Bf. Looking at the mean squared output power,
we see that the portions involving the double sum are proportional to
B,. Those terms will become negligible compared to the mean output
power squared as B, gets large. The term exp — (#' — ¢')2B% can be
approximated by an impulse of area Y2x/B,. Thus, this term is also
proportional to B! and will be negligible for large B,. Thus, for large
B, we can approximate the mean square power by the mean power
squared. Equivalently, o%(¢) will become negligible compared to (vou:(t))
as the source bandwidth becomes very large. Just how large the source
bandwidth has to be depends upon how much overlap there is to
average output pulses and therefore upon how much equalization has
to be done. In the simple case where the output pulses do not overlap
and where the equalizer is matched in shape to the output pulses, we
obtain

S = O 25 53)
NTA0 ST Wite . WEs

Vit o oV2y2 +o? V207 + 42

for

T > 3Ve® + v* = 1.5 X output pulse width
haot.-1i1e.(8) = hy (—%) (matched filter).

From (53) we see that, in this special case, the ratio of the mean
detected equalized (filtered) voltage squared to the mean squared
deviation, because of source fluctuations and guide random coupling,
will be greater than 1000 if the optical source bandwidth is more than
1000 times the reciprocals of both the input pulse duration and the
average power impulse response duration.

Typically, the source bandwidth is more than 10'® radians per
seconds. Thus, the deviations are negligible for input and output pulse
widths larger than 10-!° seconds. Of course, more bandwidth is re-
quired to make the deviations negligible when there is considerable
pulse overlap.

An interpretation is similar to previous cases. The requirement that
the source bandwidth be large compared to the reciprocal of the
duration of the input pulses allows averaging out of the fluctuations in
the source. The requirement that the source bandwidth be large com-
pared to the reciprocal of the guide average power impulse response
duration gives the frequency diversity that averages out the deviations
between guides resulting from random mode coupling.
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VI. CONCLUSIONS

We conclude that there are a number of interesting circumstances in
which a fiber system, normally linear in voltage, can be considered
linear in power for digital communication purposes. The input power
consisting of a sum of on-off modulated pulses produces an output
power (and thus a detected current) which is also a sequence of on-off
modulated pulses, possibly overlapping. The output pulse shape is
well-defined under the conditions deseribed above, which usually
amount to using enough optical bandwidth to have sufficient fre-
quency diversity to average out source fluctuations and/or random
mode coupling differences between guides. This power linearity allows
baseband equalization (with the usual noise penalties) to allow use of
the guide at higher bit rates than would be associated with the criterion
that the output pulses must not overlap. Many assumptions made
above may not be completely applicable to particular guides, but it is
hoped that, qualitatively, some insight as to when power linearity may
occur will be derived from these results.
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