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A telephone network with switching and trunk congestion s considered.
An oplimization problem expressed in terms of mean numbers of calls and
mean rates of flow of calls in various categories of service throughout the
network is formulated. The mazimum mean number of talking calls given
by this optimization problem is an upper bound on the mean number of
talking calls which could be carried by the network using theoretically
oplimum network management. Examples are given suggesting that the
upper bound s close to values which actually can be attained.

The optimum of the problem s achieved by controls which (i) restrict
the number of calls coming into the network from the end offices and (iz)
route appropriate fractions of the remaining calls over the various possible
routes.

I. INTRODUCTION

Telephone communication facilities are designed to adequately
handle peak traffic loads of an average day. In many instances the
system is subject to higher loads. Classic examples of situations in
which overloads occur are during holidays such as Christmas or
Mother’s Day, after disasters such as earthquakes or hurricanes, and
during facility failures. Because of the time lag necessary to install new
equipment, high overloads can also occur in normal operation in cases
in which predicted traffic growth is greatly exceeded by actual traffic
growth. An interesting observed phenomenon is that under certain
high-load situations fewer calls may be completed than during normal
load periods. Recognition of this gave rise to the subject of network
management. One objective of network management is to control the
handling of calls so that the maximum number of calls is put through
the network.

An interesting discussion of the network management problem and
early work to understand the phenomena involved in it is contained in
Ref. 1. In response to the problems mentioned in Ref. 1, a simulation
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study of the network management problem was carried out in Ref. 2.
Simulations? of a modest-sized telephone network were developed and
were used to evaluate the performance of various control techniques.

A large number of control techniques have been suggested for
managing the network under overload conditions. Some papers which
are representative of these controls are Refs. 3 through 5.

For given point-to-point calling rates, and given network manage-
ment controls, let us measure the steady-state performance of the net-
work by the expected total number of talking calls carried by the
network. Define the capacity of the network (with the given calling
rates) to be the maximum performance that could be obtained by any
network management controls. Our objective is to set up techniques
for computing the capacity of the network. The capacity of a network
can be used as a benchmark in evaluating network management
controls. That is, the performance of a given network management
control system could be computed and compared against the capacity
to tell how effective the given control system is.

The calls carried on a telephone network can be considered as a
stochastic process described by a very large number of variables. There
are techniques which apply to optimization of stochastic systems;**
however, these would not give practical methods for computation of
the optimum capacity.

For simplicity, we will consider only the steady-state situation. Our
method will be to establish inequalities and equations which must be
satisfied by the mean steady-state values of numbers of calls in various
categories of being set up and mean rates of flow to calls into and out
of these categories. From these equations and inequalities an optimiza-
tion problem will be formulated. It will not be claimed that the set of
inequalities and equations obtained is an exhaustive set. Hence the
optimum value of the criterion of the optimization problem will only
be an upper bound on the optimum value for a corresponding criterion
for the real system. Later, examples will be given to show that in these
cases the optimum value of the optimization problem can be nearly
obtained by an appropriate choice of controls incorporated in a simula~
tion of the network.

While the situations are quite different, our treatment of this problem
follows in spirit a corresponding technique in optimal control theory,
called “relaxation’” of the problem.!®!! However, the interest there is
in finding an optimal control, while we are not after an optimal control,
but merely want a good upper bound for the message carrying capacity
of the network.
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II. BACKGROUND

The factors underlying the decrease in the number of calls carried by
the telephone network as it became highly overloaded were already
well understood in the early work of Ref. 1. As a call is being set up, it
uses equipment in one switching machine until the next switching
machine on its route accepts the call and receives the destination of the
call from the previous machine. If a switching machine becomes over-
loaded, machines adjacent to it will have to wait longer to have their
calls accepted and the destinations passed on. This causes an inerease
in the service time for putting a call through these machines. This in
turn may cause the adjacent machines to become congested. A current
device to relieve this congestive phenomenon is that calls that must
wait longer than a fixed time-out time for a subsequent machine are
given a no-circuit announcement. However, even with time-outs,
switching machine congestion can back up throughout the network.

Calls being set up occupy trunks on the partial route over which
they have progressed. If a large number of calls are attempting on
routes which are blocked, a portion of the capacity of certain links
could be used by these ineffective attempts trying to set up. This would
use capacity that could be used by talking calls. These ineffective at-
tempts also use switching capacity in machines preceding the blockage.
Most blocked attempts try again. These retrials increase the congestion.

The model which will be set up will incorporate the features men-
tioned above. Based on these observations, the model must take into
account both trunking congestion and switching machine congestion.
Since the route a call may take can be controlled and calls which are
given busy signals free the entire partial route they occupied, the model
should keep track of the partial routes over which calls have progressed.

Throughout the entire paper we will be interested only in the ex-
pected values of the various variables in the steady state. We will
assume throughout that the processes are ergodic.

III. SWITCHING MACHINE MODEL

A block diagram of the operations of the switching machine which
will be modeled is given in Fig. 1. This is a simplified model of the
Bell System No. 4A-ETS switching machine. In the model a call
coming into a switching machine enters a queue to wait for a vacant
sender. When a call gets a sender it inpulses its destination information
to the sender and releases the sender it had in the previous machine.

The call then gets into a queue for a decoder-marker combination.
This decoder-marker decides on the machine the call should be routed
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Fig. 1—Switching machine block diagram.

to next, tests for a vacant trunk, and sets up the connection, if possible.
If there are no vacant trunks to appropriate subsequent machines, a
no-circuit announcement is given. After a no-circuit announcement,
the trunks on all the links that the call had progressed through become
vacant again. If it is routed to a subsequent machine, it enters a queue
for a sender in that machine.

The sender in the current machine is occupied by the call from the
time it begins processing the call until the call has transmitted its
destination information to the sender which processes the call in the
subsequent machine. If a call waits longer than a fixed time to get a
sender in the subsequent office, it is timed out. If it is timed out, the
call is sent back to the marker-decoder which then connects it to a
no-circuit announcement.

The process of a call being connected for service to a sender is
accomplished by a sender link controller and a sender link connector.
These devices test for an idle sender and an idle path to the sender.
Then a path through the switch from the incoming trunk to the sender
is selected and the connection established by closing appropriate
switches.

The process of connecting a call for service to a marker is carried out
in a similar fashion by a marker connector.
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IV. COMPLETE AND PARTIAL ROUTES

A telephone network can be thought of as a collection of call switch-
ing machines connected by communication links. In the operation of
the network, a talking call which hangs up frees a trunk on all the links
of the route it occupied. A call which is in some state of being set up
will occupy a partial route. If it is given a no-circuit announcement, it
will free trunks on all the links of the partial route it occupied.

To model routes and partial routes, we will make the following
definitions. Assume there are k switching machines of the network

labeled by the integers 1, .- - , k. We will use the letter R to denote a
complete route. A complete route
R= (i - ,in)

is a succession of switching machines. A call occupying a complete
route is always considered to be a talking call and it is understood that
the call is occupying trunks on the links connecting switching machines
in adjacent positions in the expression R.

A partial route describes the route occupied by a call in the process
of being set up and the destination of the call. Let r designate a partial
route. If

r = (i1 Ta_y, in),

it is understood that the call has passed through machines i;- - -7,_,,
is waiting to get into 7,—; or is in 7,_, being processed, and its destina-
tion is machine 7,. It occupies trunks on links connecting adjacent
machines from 7, to 7,_1.. When a partial route r is of the above form,
we shall say the partial route “terminates’ at machine 7,_;.

The symbol r*+ will be used to designate a route subsequent to r.
If r = (41 - %a_1, a), r* may be the complete route

R = (i1 Ta1, 2a)

in the case in which there is a link between machine 7,_; and the
destination i,; or it may be a route of the type

rt o= (1:11 Ty in—lw iim iﬂ)r

that is, a partial route in which the call has passed to one further
machine 7, on its way to its destination ¢, than the call on partial
route r had.

V. MODEL DESCRIPTION

In a given switching machine, calls can be distinguished by the
partial route they occupy and the stage of processing they are in.
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Completed talking calls can be distinguished by the complete route
which they occupy. To describe the operation of the switching
machines, we define the variables:

W, = mean number of calls on partial route r waiting for a sender
S, = mean number of calls on partial route r which are inpulsing
into a sender
V, = mean number of calls on partial route » waiting for service by
a decoder-marker
M. = mean number of calls on partial route r being serviced by a
decoder-marker
N = mean number of talking calls on complete route £
z, = mean rate of flow of calls on partial route r into the sender
queue
2, = mean rate of flow of calls on partial route r into the sender
v, = mean rate of flow of calls on partial route r from the sender
into the decoder-marker queue
u, = mean rate of flow of calls on partial route r into decoder-
marker
{, = mean rate at which calls in sender queue on partial route 7 are
timed out
b, = mean rate at which calls on partial route r are blocked
zr = mean rate at which calls are being completed through the
network on complete route R.

We shall show that the following statements must be satisfied by
these mean rates and mean numbers.

1. The mean rate at which calls flow into senders in a given machine
is less than or equal to a constant times the mean number of
senders which are not currently processing calls.

2. The mean rate at which calls arrive at the marker queue from the
senders is equal to a constant times the mean number of senders
which are processing calls which have not yet entered a marker
queue.

3. The mean rate at which calls flow into the marker-decoder is less
than or equal to a constant times the mean number of markers
not currently processing calls.

4., The mean rate at which calls leave the markers is equal to a
constant times the mean number of markers which are processing
calls.
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Consider statement 1. Let us define a call to be in the process of
connecting to a sender from the time an idle sender is found until the
connection has been completed to that sender. Defining the process
this way, no time-outs occur during it. While a call is undergoing this
connection process, we will say it is in the connector. We use this
definition:

number of calls connecting to some sender
= number of free senders.

The above inequality also must hold for the mean values of both
quantities.

Now the number connecting to some sender is the number in a
queuing system (the connector) whose service time is the time required
to make a connection. Applying Little’s Theorem!21? gives:

E {number of calls connecting to some sender}
= (mean rate at which calls are flowing into the connector)
X (mean time to make a connection).

Since we are considering a steady-state situation, the mean rate at
which calls are flowing into the connector equals the mean rate at
which calls are connected to some sender. Hence we obtain statement
1. The constant in statement 1 is the reciprocal of the mean work time
required to connect a call to a sender.

Consider statement 2. Calls attach to a sender, impulse their destina-
tion information, and then enter a marker queue. Applying Little’s
law to the number of calls inpulsing into a sender gives,

mean number of calls inpulsing into a sender
= (mean rate at which calls arrive at senders)
X (mean inpulsing time).

Since the system is in steady state, the mean rate at which calls arrive
at senders equals the mean rate at which calls arrive at the marker
queue. The mean number of calls inpulsing into a sender is the mean
number of calls in the sender which have not yet entered the marker
queue. Hence statement 2 is established.

Statements 3 and 4 are statements concerning markers similar to
statements 1 and 2 concerning senders. They can be established by
using Little’s law in a similar manner to statements 1 and 2.

Next, statements 1 through 4 will be expressed more formally as
equations and inequalities in the variables defined previously. For a
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given switching machine, let

I; = all partial routes terminating in machine ¢
0; = all partial routes immediately subsequent to a partial route
terminating in machine z
$; = total number of senders in machine 2
9; = total number of decoder-markers in machine 7.

The total rate at which calls are entering senders in machine 7 is the
sum over all the partial routes which terminate at machine 7 of the
rates at which calls on those partial routes are entering senders. In
symbols this is

>z

r&l;

The mean number of calls occupying senders in machine 7 is

XS+ V. AM)+ T W
r&l; r+E0;

Hence, the mean number of free senders is
= | G+ M) 4 E Wl
r&r rt&0;
Hence, statement 1 may be written as the inequality
LasOfs- g @ +v.+u) -z wel @
rel; | re&li r+ &0y

A similar interpretation of statement 3 yields

Tus c,{mz.- -z M,}. 3)

Statements 2 and 4 are expressed by
v, = CL8,, (2
u, = C4M,. (4)

The number of calls on a given link either talking or being processed
in some switching machine must be less than or equal to the number of
trunks in that link. Hence, the expected number of calls of these types
must be less than or equal to the number of trunks on the link. The
inequalities expressing this are given by

> Ne+ X [W,+8+V,.+M,]=Cy 6))

RDi,j =R
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In this notation there is one inequality for each link connecting a
machine 7 and a machine j, C;;is the number of trunks on this link, and
the notations B D 4,7 and r D ¢, indicate that the sums are respec-
tively over all complete routes or all partial routes which pass through
link , 7.

In the steady state the expected rate at which calls flow into any
category of processing in a switching machine must equal the rate at
which they flow out. Thus the following flow-in equal flow-out equa-
tions must hold.

xr = Zr + tr (6)
2y = Uy (7)
v+ 2 it =u, (8)
rteo;
Uy = Z z.* + br- (9)
FE0

Let Ag denote the probability that a call that completes through the
network on route R will be answered by the customer. The rate at
which calls are completing to talking calls on route R is Agzg. If the
mean length of a talking call is 1/», calls will be hanging up at rate v.
To be in steady state, the equation

A}zz,q = VNR (10)
must hold.

Let X;; denote the mean rate at which calls wish to enter the network
originating at machine ¢ with destination machine j. Suppose that,
if a call is placed and receives a no-circuit announcement, the customer
decides to retry with probability P or to give up placing the call with
probability 1 — P. Suppose this is true independently for every call
irrespective of how many times the customer may have tried pre-
viously to place the call and failed.*

Let a;; denote the rate at which calls including retrials are being
placed from 7 to j. Let r,; denote the rate at which no-circuit announce-
ments are being given and s;; the rate at which calls are being com-
pleted from 7 to j. Then

aij = 8ij + rij = Aij + PT,‘,‘. (11)

* Customer retrial behavior is discussed by Wilkinson in Ref. 14. The model
considered here can be considered as an idealized approximation to the more com-
plicated behavior reported in Ref. 14.
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Solving for ry,
Aij — 8ij
Tij = 1: — P]‘ (12)
Now the rate at which calls are being completed between ¢ and j is the
sum over all the complete routes joining ¢ and j of the rate at which
calls are flowing onto these complete routes. Hence,
Sij = z ) ARZR. (13)

R=(i,*++.7)

Using (11), (12), and (13) gives

Aij — P 0 (}: ) Arer
ai; = 1 _1}5"1 . (14)
Calls entering the network at machine ¢ will be assumed to originate
through an end office which leads into machine . Since this is so, there

z Rr é Cl{Si - Z (Sr + Vr + Mr) - Z Wr*} (21)
re&li r&l: rreo:

S ou < Gl — ¥ M, (2.2)
reli r&li

A.',' - P Z ARZR

2 = T g = bun (2.3)
R;)_NR + -+ S, + Vet M) =Cy  (24)
v = C1S, (2.5)

ur = CoM, (2.6)

% =z, + 1 @.7)

2, = ¥, (2.8)

Arzr = vNi (2.9)
Ur=0v,+ XL tr= 2 x++b (2.10)

rtE0i r*E0i

Fig. 2—Equations and inequalities described in Section V.
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will be a possibility that a call which wishes to enter the network at
machine 7 with destination machine j may be blocked in the end office
prior to its getting into the network. Let b, ;, denote this rate at which
calls from 7 to j are blocked in the originating end office.

If r = (4, j), that is, r is the partial route of a call just starting at ¢
whose destination is j, then the rate of flow onto » is given by

Tr = Qi — b(f.i)-

Since all the variables of the problem are mean numbers of calls
or mean rates at which calls are flowing, all variables must be
non-negative.

The equations and inequalities which have been deseribed so far are
gathered together in Fig. 2.

Rewriting the equations of Fig. 2, it can be seen that z,, v,, u,, Nz,
S,, and M, can be expressed in terms of z,, {,, and b,. Eliminating these
variables from the problem, we arrive at the equations expressed in
Fig, 3.

2, =b,+ X oz (3.1)

r*&0i

e +C)z,+zv,+ > W
r&li 4

r&li r&0:

4r&li r*€0i

(. *a) LB+ B Beism o

r&li r*E0;

C Cdr

+E0:

2 + tap + bapy = [Nij — P Z Aaz;a][l — PJt (3.5)

R=(1,-

Fig. 3—Formulas of the relaxed optimization problem.
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VI. AN OPTIMIZATION PROBLEM

Up to this point we have been considering the very complex sto-
chastic process of calls progressing through a telephone network. For
any such process, the constraints in Fig. 3 must be satisfied by the
appropriate mean values. Next we will consider the relaxed optimiza-
tion problem mentioned in Section I.

The total expected number of talking calls at a given time is

% Nk. (15)

Suppose it is desired to maximize this quantity. From (10) this is
equivalent to maximizing
%: Arzg. (16)

Let us first assume that it is possible to control the variables
ZR, Zr, Vr; Wn br; Ly

We formulate the optimization problem of maximizing (16) subject to
the formulas of Fig. 3.

This is the relaxed optimization problem mentioned in Section I.
Notice that while we have argued that the formulas of Fig. 3 must
hold, it seems apparent that other relationships than those given in
Fig. 2 will have to be satisfied for corresponding variables in the real
network. However, we shall treat this relaxed optimization problem as
a “model’”’ for the network and investigate the optimum mean number
of calls carried by this model. Later, for an example, the calls carried
by the model and those carried by a call-by-call simulation will be
compared to show that these call-carrying capacities are close. In this
sense, this indicates that the model mirrors the major features of the
call-carrying capacity of the network.

Notice that the variables which are to be controlled contain mean
rates of flow of calls throughout the network. Implicit in this is the
assumption that the routing of calls is to be chosen in the relaxed
optimization problem. This will result in a routing different than
conventional alternate routing. The relaxed optimization problem as
formulated is a linear programming problem. If rules for alternate
routing were imposed in addition to the formulas of Fig. 2, this linearity
would be destroyed. For this reason the more flexible type of routing
will be allowed rather than insisting on conventional alternate routing.

Notice that it might be felt that the variables to be controlled by
the program are not really subject to control in a real network. It will
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be shown that the optimum solution only adjusts a subset of those
variables and it does appear that the variables which must be adjusted
in the optimum solution are subject to adjustment in a real network.

VII. GRADE OF SERVICE CONSTRAINT

In the relaxed optimization problem that has just been formulated,
no provision has been made to assure maintenance of an appropriate
level of service. For instance, it is conceivable that the solution of
the optimization problem would deny service completely to some
point-to-point pair if the facilities on the route it used could be better
utilized by other traffics. A provision should be made to insure at
least a certain level of calling between each point-to-point pair.

Since the situation to be considered is one in which the network is
already overloaded, it will not be possible to keep the blocking for
each point-to-point pair below desired levels. However, it is possible
to require that each point-to-point pair has the capability of com-
pleting through the network a fixed minimal number of calls per unit
time. The total mean rate at which calls are completed through the
network between point-to-point pair (7, j) is

Z2R.
B=(iir o)

The inequalities
ZR g K.'j (17)
Re=(i,cee0d)
assure that calls between each pair (7, 7) will be completed through the
network at a mean rate greater than or equal to K. In the future
inequalities, (17) will always be added to the formulas of the relaxed
optimization problem given in Fig. 3.

VIII. REDUCTION OF THE OPTIMIZATION PROBLEM

Notice that in this problem if zg, 2., b,, ¢,, V,, W, is an optimal
solution, then there is another optimal solution with the same zz and
2y, the same b, for r not of the form r = (i), new b(ij) equal to the
previous b(¢j) + ¢(¢j), and with V, = W, = ¢, = 0. This is so since
the equations and inequalities are still satisfied and the quantity (16)
to be maximized is unchanged.

Notice also that eq. (3.1) in Fig. 8 implies that

2, 2 3 2x. (18)

rOR

In this, the notation » O R means that the sum is to be taken over all
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complete routes which have the partial route r as their common
beginning and destination.
Let
2R, 21, 0, 0,0,0

be any optimal solution of the type described above. If
b; = O: T (?‘1 .?)r

bap = [?\ﬁ -P X , ARZR]U — PJ - R (_Z _2r, (19)

R=(i,".d S

Z; = 2. 2k (20)

ra R

Then
2R, z;, b;, 0, 0, 0

is an optimal solution since (20) implies equation (3.1) in Fig. 3 is
satisfied, (18) and (19) imply that the equations or inequalities (3.2)
through (3.5) are satisfied, and (16) and (17) are unchanged. This
implies that the optimization problem may be rewritten in terms of
only the variables b, j and z through using egs. (19) and (20). The
optimization problem is restated in this form in Fig. 4.

IX. CONSEQUENCES OF THE OPTIMIZATION PROBLEM

Notice that the variables of the final optimization problem are

b, = the fraction of calls given a no-circuit announcement in
their originating office

rate at which calls are being completed through the network
on complete route B

2R

and that it has been shown that if b, and zz are optimal values for
the final relaxed optimization problem, then
Zp, 2= 2 28, V,=0, W,=0, =0

ROr
) bepy i r=0,7)
"o it 75 (i, 5)
are optimal values for the original optimization problem.
This implies that the solution of the relaxed optimization problem
may be taken to be of the following form: An appropriate fraction of

point-to-point attempts are blocked in their originating end office. The
remainder is appropriately divided among the various complete routes
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Maximize
% ArZp (4.1)

subject to

> zm
r&lirDR

. 1 1 1\ 1 1\
ng['g"(ﬁJ’@JrE) '9“"(_3+7) ] (4.2)
>

Ag 1 1
wei v T (€+?)Z

Zr 20y (4.3)

Z ) (1 - P + PAR)ZR = )\,-,' —_ (1 - P)b“'j) (44)

R=(i,-++,7)

ZR ;_ K(j (4‘5)
R=(i,---,j)

Fig. 4—Reduction of the optimization problem.

joining the origin and the destination. No further blocking takes place.
The fractions of traffic assigned to each complete route are chosen so
that no queues build up in senders or markers and no blocking occurs
on trunks. They also maximize the total expected number of talking
calls. The fraction of each point-to-point traffic which is blocked at its
source and the fractions which are routed over each complete route
joining a point-to-point pair can be considered to be the optimal
controls chosen by the relaxed optimization problem.

Of course, the above paragraph refers to the solution of the relaxed
optimization problem and not to an optimal control for a real network.
Recall that the relaxed optimization problem contained some, but not
all, of the constraints of a real network. As a result, its optimal solution
may violate some of those additional constraints. However, the message-
carrying capacity found by the relaxed optimization problem must be
at least as large as the capacity of the corresponding real network.

The optimal solution of the relaxed problem is suggestive of a good,
but suboptimal, control for a real network: Code block calls in the end
offices by the same amount as used in the relaxed optimization problem
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and route the calls as indicated. Do not intentionally block calls at any
other point. Since the real system is stochastic, this will result in some
queues forming and, depending on the method of implementation, in
some blocking internally in the network. Because of this, the control
might be improved by choosing slightly different values of code
blocking.

X. JUSTIFICATION OF THE OPTIMIZATION PROBLEM

It is natural and crucial to ask if the capacity of the model will
approximate the capacity of the stochastic network. It might be
thought that the optimal solution of the model is an “Alice in Wonder-
land”’ solution due to the relaxed nature of this model, especially since
it chooses just the right amounts of traffic to route over each complete
route so that there is never any internal blocking or any queues in the
switching mathines. We will try to demonstrate that this is not so by
the following argument.

It has been shown in establishing the equations and inequalities of
Fig. 4 that corresponding variables for any real network must satisfy
these conditions. Hence, these variables for a real network are a feasible
set for the optimization problem. Thus the capacity of the model is an
upper bound on the capacity of a real network. We will show in typical
examples that controls similar to those of the optimization problem
when incorporated in a stochastic simulation of these networks give a
carried load close to this upper bound.

The first example is shown in Fig. 5. The small network shown there
was subjected to severe overloads. An overload factor of one corre-
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Fig. 5—Comparison of upper bound and achieved carrier loads with severe overloads.
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Fig. 6—Network used in focused overload example.

sponds to the traffic load for which the network was designed, an
overload factor of two corresponds to twice the design load, and so
forth. For all the overloads shown the upper bound on the network
capacity was 238 messages. A Monte Carlo simulation of the network
was run restricting the offered traffic at the end offices. The steady-state
average number of messages carried was 228.

The second example was run on the considerably larger network
shown in Fig. 6. This network received its design offered load except
that all offered traffics destined for the node marked “Focus” were
eight times their design levels and all traffics originating at that node
were twice their design levels. Focused overloads of this type occur
in the toll network. A similar pattern might occur following a natural
disaster in the vieinity of the node marked “Focus.”

Four cases were run on this network with this offered load. In all
four cases only in-chain routing was used, i.e., only message paths
which could exist under the current hierarchial routing scheme were
allowed. The results are shown in Fig. 7. First, a Monte Carlo simula-
tion was run using short sender timing as the only network manage-
ment control. The average number of messages carried in steady state
was 250. Second, the simulation was run using the network manage-
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Fig. 7—Comparison of upper bound and achieved carrier loads with focused overload.

ment controls proposed for the No. 4 ESS switching machine, the next
generation of Bell System toll switching machines. The steady-state
average number of messages carried by the network was 1239. Third, an
analytic model’® was run with code blocking, not in the end offices
but in their associated toll machines. The steady-state average number
of messages carried was 1273. Finally, the upper bound on the network
capacity was 1329.

In this example the proposed, economically feasible No. 4 ESS
controls achieve most of the improvement between the essentially
uncontrolled case and the upper bound on network capacity. The upper
bound is more nearly attained by choosing code blocking in the toll
centers, based on knowing the mean offered loads. Presumably the
upper bound could be even more closely approached if code blocking
was done in the end offices and some routing controls were included.

In summary, not only is it likely that controls based on complete
knowledge of the underlying distributions can nearly achieve the
upper bound on capacity, but also economically feasible control
schemes can approach it.

XI. SOLUTION INFORMATION

Computer programs have been set up to solve the final linear pro-
gramming problem. The program consists of two parts. The first part
takes given data on the network, such as number of toll centers, which
toll centers are connected by links, number of trunks on a link, and
machine operating constants. Then it writes the equations given in
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Fig. 4 in a form suitable for use in a linear programming algorithm. The
second part uses a linear programming algorithm to solve the linear
programming problem. These programs have been used to compute
optimal controls for moderate-sized networks.

For a network with 17 nodes, 57 links, and 272 point-to-point
offered traffics, it cost about $45 to run both programs on an IBM 360.
For 21 nodes, 204 links, and 441 point-to-point offered traffies, it cost
about $100 to run both programs on the same machine. By modifying
the standard linear programming algorithm, taking into account the
special structure of the model, it appears that it will be feasible to
compute capacities for very large networks.

The output of the solution algorithm for the linear programming
problem contains much additional information which can be important
in evaluating the network’s operation. The amount of slackness in the
inequality constraints and the optimal variables for the dual linear
program are printed out.

In Fig. 4, the left side of inequality (4.2) is the rate at which calls
are processed in switching machine 7. The left side of inequality (4.3)
is the average number of calls on the trunk group connecting machines
i and j. The left side of inequality (4.5) is the completion rate for calls
originating at machine ¢ and destined for machine j.

The dual variables for inequalities (4.2) and (4.3) are related to the
incremental increase in the optimal carried load which could be
achieved by adding one sender or marker or one trunk in the indicated
place. The dual variables for inequality (4.5) give the incremental in-
crease in the carried load which could be achieved by relaxing the
minimum service constraint for a particular source-destination pair, 7-7.

The amount of slackness in inequalities (4.2) and (4.3) gives infor-
mation on how efficiently the toll centers and trunks are being utilized
in carrying the given traffic.

XII. CONCLUSIONS

A steady-state, mean-flow-rate model of an overload telephone net-
work with trunk and switching congestion was set up and optimized.
The expected number of calls carried by this model is an upper bound
for the number of calls which can be carried in the real network. The
model takes into account the progression of calls along their routes as
they are being set up and the amount of trunk space and switching
machine capacity used by the calls which are in the process of being
set up. The form of the model was such that the optimization could be
carried out using conventional linear programming.
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The calls carried by the optimized model can be used as a standard
against which the calls carried by various network management control
systems can be compared. The form of the controls of the optimized
model should provide insight for network management. Computations
indicate that there can be a significant difference between the number
of calls carried by an unmanaged system and the optimally managed
system. Some information which may be valuable in assessing the need
for additional facilities in the network is available from peripheral
information supplied by the linear program.
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