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This paper treats the problem of analyzing a first-come first-served
queuing system, in equilibrium, when subjected to a peaked input (e.g.,
traffic overflowing a trunk group with Poisson tnput). The basic GI/M/N
(renewal input to N exponential servers) quewing result is used, together
with each of two models for representing peaked traffic, the Equivalent
Random (E-R) model and the Interrupted Poisson Process (IPP) model.
The equilibrium virtual delay distribution is derived and compared with
the equilibrium distribution of delays seen by arriving calls. Numerical
examples are presented, along with comparisons of results using both the
above models. The results show that delays can be quile sensitive fo
peakedness.

I. INTRODUCTION

It is well known, from analysis of blocking in trunk groups, that the
blocking seen by peaked traffic (e.g., traffic overflowing a first-choice
trunk group with Poisson input) can be significantly larger than block-
ing seen by Poisson traffic with the same intensity. In this paper, we
are interested in determining the effect peaked traffic has on delays in
queuing systems. The analysis was motivated by a study of sender
attachment delay in Crossbar Tandem switching machines receiving
alternate routed (peaked) traffic.

We treat the problem of analyzing a first-come first-served queuing
system with peaked input for the situation where there is no idle
server if there is a waiting customer. The basic tool is the GI/M/N
queuing result which requires a characterization of the input process
in terms of the Laplace-Stieltjes transform of the interarrival time
distribution. This characterization is provided using Wilkinson’s
Equivalent Random! (E-R) model where the peaked input is modeled
as an overflow process from a finite trunk group with Poisson input.
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The size of the finite trunk group and intensity of the Poisson input are
chosen so that the overflow process produces the desired mean and
peakedness (variance to mean ratio of trunks up on an infinite trunk
group). The E-R method has been widely used in analyzing blocking
in trunking networks and is considered our basic model when the source
of the traffic peakedness is from alternate routing.

A second model, which gives a much simpler characterization of the
peaked input (both computationally and analytically), is the Inter-
rupted Poisson Process.? Here the peaked traffic is considered to be the
output process of a switch, with Poisson input, where the switch is
opened and ¢tlosed for independent, exponentially distributed time
intervals. The parameters of the switch are chosen to match either
the first two or three moments of trunks up on an infinite trunk group
with the corresponding moments obtained for the E-R model.

Comparisons between results using each of the above models are
presented along with a set of numerical results which show that delays
can be quite sensitive to peakedness.

For Poisson traffic, the virtual delay distribution (time congestion)*
is identical with the delay distribution seen by arriving calls (call
congestion). This is not the case for peaked traffic. Since in some
applications measurements form estimates of time congestion (e.g.,
SADR measurements), it is of interest to relate the time and call
congestion quantities. Numerical results show the sensitivity of the
relationship to peakedness.

II. GI/M/N QUEUING RESULTS'

Consider a recurrent input’ to an N server queuing system. The
service times are independent, exponentially distributed with the mean
service time given by 1/us. The customers are served in their order of
arrival, and there is no idle server if there is a waiting customer.

Let F(z) denote the distribution function of the interarrival times.
The mean interarrival time, 1/),, is given by

:\lz - L ® 2dF (x) )

. " Time and call congestion are commonly used in trunking analysis (BCC system;
i.e., blocked calls cleared). In the delay case (BCD system), we use call congestion for
the delays seen by arriving calls and time congestion for the virtual delay. See appendix
for ]’)Eecme definitions.

t'The reader is referred to chapter 2 of Ref. 3 for a more detailed mathematical
description of these results.
F(IOE; eopeaked input will be modeled bv recurrent processes. For these processes,
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and the Laplace-Stieltjes transform of F(z) is given by

a(s) = f e=dF (z). @)
0
We define the load/server (sometimes called occupancy) as
- M
- N[.lzl (3)

The following result is available to us:* If p < 1, then the equilibrium
delay distribution (as seen by arriving calls, i.e., call congestion) exists
and is given by

Pr[delay > T] =

—— exp [~ Npu(l — )T, 4
The exponential delay distribution is seen to be a function of two
parameters, w and A. The parameter o is the solution, in (0, 1), of the
equation

w = ®[Nu(l — w)]. 5)"

For p < 1, this equation is known to have a unique solution in (0, 1);
furthermore, the solution can be found by successively iterating on
(5); i.e.,

wiy1 = @[ Npa(1 — wi)] (6)
with wo € [0, 1). If we define
d)i = q’(jﬂ?) (73)
and
g,
¢ =1 =% (7b)

then the parameter A is given by

, B 1 . ®)
[ L (qu—m—ﬂ]

T~ A 00— &INT=w = 7]

Thus, given the characterization of the input in terms of &(s), eqgs.
(6), (7), and (8) provide the means to compute the equilibrium delay
distribution as seen by arriving calls (4). The mean of the equilibrium

A =

* In Poisson traffic, the solution of (5) is w = p. In some cases, to be treated later,
(5) can be solved in closed form.
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delay distribution is given by
A
Niall = o) )
In the next two sections we discuss the Equivalent Random and
Interrupted Poisson models for generating peaked traffic and charac-
terizing ®(s).

E[delay] =

III. EQUIVALENT RANDOM MODEL

The E-R model treats peaked traffic as an overflow process from a
finite trunk group with Poisson input. The holding time for the trunk
group is assumed to be exponential with mean 1/u:." The number of
trunks and the intensity of the Poisson traffic are chosen so the mean
and variance to mean ratio (peakedness) of trunks up on an infinite
overflow group closely match the desired mean and peakedness. If we
denote the desired mean and peakedness by mg and 2a respectively,
then Rapp’s formulas* for the Poisson load (@e) and number of
trunks (c),

Geq = %“ = maza + 3za(2a — 1) (10)
_ _matz \_ ., _
o= o (i) - ma— 1, an

yield an overflow process which approximates the desired process. It
should be noted that use of (10) and (11), or truncation of ¢ from (11),
will often lead to overflow traffic with mean and peakedness different
from (but usually close to) the desired values. To quantify this effect,
the actual mean and peakedness should be computed using

M = AegB(c, teq) (12)

— _ Teq
z—[l m+c+1+m_aeq:|, (13)
where B is the Erlang B function.

Takédes?, Chapter 4, shows that the Laplace-Stieltjes transform of the
interarrival time distribution of the overflow traffic is given by

c 1 4=1 ) e+l N1 oi=l .
B(s) = X (c) 5 II (s + %#1)/ _):O (c + '7) ¥ II (s + 4wy, (14!
i=

=0 \J/ Negi=0 J 2iz0

* Note that we can have u; # pa. For example, if overflow traffic from trunks is
offered to a group of senders, 1/u is of the order of minutes, whereas 1/us is of the
order of seconds.

The value ¢ is considered an integer. In practice, we round ¢ given by (11) up
and down and choose the one that gives an actual z closest to za. TEL. actual m and z
are computed from (12) and (13) using the rounded values of c.
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where the empty product is unity. Note that &(s), given by (14), has
to be repeatedly evaluated in (6) for the solution of (5) and in (8). In its
present form, (14) is unsuitable for computation (for large ¢) because
of numerical problems. In order to avoid these problems, we use a
recursive method for the evaluation of ®(s) developed by A. Descloux.®
If we use the notation ®°(s) to denote the dependence of ®(s) on ¢,
then ®°(s) satisfies

Bk(s) T = > + 14 B B g 15
with initial condition
0 - Aeq .
do(s) = I (16)

The solution is thus obtained as follows: Using (15) to evaluate
®(s), we iterate on (6) to find the w parameter and subsequently the A
parameter (8). Having evaluated the w and A parameters we can
compute Pr[delay > T] from (4).

We now turn our attention to the interrupted Poisson process model
for generating peaked traffic, the resulting simplifications, and com-
parisons with the E-R model.

IV. INTERRUPTED POISSON PROCESS MODEL

This model, suggested by W. 8. Hayward and analyzed by A.
Kuczura,? treats peaked traffic as a Poisson process modulated by a
random switch where the switch is opened and closed for independent,
exponentially distributed time intervals. The importance of this process
is that it can provide a simple and accurate approximation to overflow
traffic.

This model contains three parameters, the intensity of the Poisson
process into the switch, A, calls per second; the mean open time of the
switch, 1/&, seconds; and the mean closed time of the switch, 1/7,
seconds. If we choose

= =A,=mz+ 3z2(z — 1), a7

K1

Gy _ _m _

== g [m+ 32— 1], (18)
and

Yo _ . _[4e _

il I 4o

then the mean and variance to mean ratio of trunks up on an infinite
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trunk group, with mean holding time 1/, will be m and z respectively.*?
This corresponds to the two-parameter match of Ref. 2. The so-called
three-parameter match is obtained by matching the first three moments
of trunks up on an infinite trunk group with the corresponding moments
that would be obtained using the E-R model. In this case, ¢ and a.q are
computed from (10) and (11) and the switch parameters are obtained
from

As 82(81 — 80) — 8o(dy — 81) i|
- = 8 = ’ 20
M1 4 aeq[ (81 — 80) — (82 — 61) (20)
C:l_: _ _ _lsi A, — aeqfsl
g @ = A.[ 81 — b ]’ (21)
and
:Y-_,. - — & Au - aeqaﬂ] 2
B e Qeq [ 8o ’ (22)
where the 8;, defined in Ref. 2, are given by
do = B(c, @eq) (23)°
and
gt = S E T G | ey (24!

k k

For a given mean m and peakedness z, it has been shown? that the
Laplace-Stieltjes transform of the interarrival time distribution of the
output process of the switch is given by

kyrim Kkorap
B(s) = , 25
® s+ T 8+ T (25)
where the parameters r1, 2, k1, and k. are given by
™ = %[Al + ws + Ve + V'(An + ws + 'Ys)z - 41Aawl] (26)

re = 3[Ads + ws + va — {(Aa + ws + ¥e)? — 44 .0] (27)

_ Aa — T2
b= (28)
kz =1- ’61 (29)

and A,, w,, and 7, are given by (17), (18), and (19) for the two-param-
eter mateh and by (20), (21), and (22) for the three-parameter match.

* B is the Erlang B funection,
RffThJ's equation can be simply obtained from equation (1.15) in the appendix to
ef. 1.



FIRST-COME FIRST-SERVED QUEUING 1221

With (25) defining ®(s), eq. (5) becomes a cubic in the w parameter
of the delay distribution. Dividing the cubic by the known root at unity
gives the desired root in (0, 1)

(14 a4+ a _ 1+t¥1+0£2-2__ﬁ_ _.':i_
o= (77 )‘/( 5 )~ (1) @0
with

1M1

a = Ve (31)
and
= Ief1
ay = N (32)

Thus w, given by (30), together with (8) specify the equilibrium delay
distribution. Note that the iteration procedure (6) has been eliminated
and that ®;, defined by (7a), is simple to compute using (25).

V. TIME CONGESTION

For Poisson traffic, the virtual delay distribution (time congestion)
is identical with the delay distribution as seen by arriving calls (call
congestion). This is not the case for peaked traffic. Since in some
applications measurements form estimates of time congestion (e.g.,
SADR measurements), it is of interest to relate the time and call
congestion quantities.

We define time congestion as the delay in being serviced experienced
by a fictitious call arriving at an arbitrary time ¢ when the system is in
equilibrium.* It is shown in the appendix that, in equilibrium, the rela-
tionship between call congestion (CC) and time congestion (TC) is
given by

Pr[TC > T] = £Pr[CC > T] (33)t

if p <1 and the interarrival time distribution, F(z), is not a lattice
distribution.! Pr[CC > T7] is the delay distribution seen by arriving
calls and is given by (4).

VI. NUMERICAL RESULTS AND DISCUSSION

One measure of system performance of possible interest is the mean
delay experienced by arriving calls, given by (9), versus CCS offered

* See appendix for a more precise definition of time congestion.

! For Poisson traffic, w = p giving Pr[TC > T'] = Pr[CC > T].

* The E-R model and Interrupted Poisson model clearly satisfy the nonlattice
hypothesis.
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to the servers where

#CCS =362 m (34)
H2
with m given by (12) in the E-R model and
Ws
m= A4S 2

for the interrupted Poisson model. Here A,, v,, and w, are given by
(17), (18), and (19) for the two-parameter match and by (20), (21),
and (22) for the three-parameter match. Figures 1(a) and 1(b) are plots
of the mean delay characteristics for each of the three models of
interest. The values of peakedness z ranging from 1 to 3 are presented
on Fig. 1(a), and the z = 4 results are plotted on Fig. 1(b). The param-
eters of this example are N = 18, 1/u; = 180 seconds, and 1/u; = 7.6
seconds.

It is seen that, while the two-parameter results tend to overestimate
both the E-R and three-parameter results, the differences are indis-
tinguishable (for the entire CCS range shown) up to z = 1.5 and small
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Fig. 1—Mean delay characteristics.
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Fig. 2—Delay distribution.

up to about z = 2. The three-parameter results* are seen to be in-
distinguishable from the E-R results up to z = 2.0 and close up to
about z = 3. In all cases, the E-R results tend to lie between the two-
and three-parameter results. We see in Fig. 1(b) that the results differ
greatly for z = 4. The results of Ref. 6 show that fixing the equivalent-
random mean and variance for a renewal process does not necessarily
tightly tie down the blocking in the BCC case. We are observing the
same phenomenon here. In fact, nonnegligible discrepancies between
the E-R and three-parameter results for larger z’s can occur despite
a matching of three moments.

Specific delay distributions are shown in Figs. 2(a) and 2(b). An
observed property of the results are that the w parameter (5) for the
two-parameter case exceeded the w parameter of the E-R model which,
in turn, exceeded the w parameter for the three-parameter case. This
explains the slope differences. This also tends to order the T = 0
results as shown. In many cases, the A parameter of the distribution

*In order to avoid severe numerical problems in computing the three-switch
parameters, double precision was used in eqs. (20) through (24).
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(8) for the two-moment match exceeded the A parameter for the E-R
model which, in turn, exceeded the A parameter for the three-param-
eter match. From these figures, we again observe the closeness of
results for z = 2 and the large differences for z = 4.

Figures 3(a) and 3(b) plot the load service relationship P(delay > 2.5
seconds) versus offered load for each of the three models. The compari-
sons again exhibit the same characteristics that were seen for the mean
delay results [Figs. 1(a) and 1(b)].

These results show the extreme sensitivity of the queuing system
performance to the peakedness of the input process. They also give some
insight into the region where two- and three-parameter results are
expected to be closest, i.e., low peakedness and high congestion. When
seeing the discrepancies between the two- and three-parameter matches
and the E-R model, we may question which is the bench mark. If the
peakedness arises from alternate routing, the E-R model seems basic
since it is an overflow model which has been shown to accurately
describe superposition of overflows.! This has led to its wide use in
analyzing blocking in trunking networks. It should also be noted that
the parameters of the interrupted Poisson process have been chosen to
match the moments of the E-R model.
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Although there are discrepancies between the two- and three-
moment matches and the E-R model for high z’s, the IPP is a close
approximation to the E-R model for a wide range of practical z’s.
Furthermore, it should be emphasized that it provides a convenient
method of analysis using birth and death equations (and simplified
Laplace-Stieltjes transform) in many cases where the E-R model is
intractable.

Figures 4 and 5 result from applying (33) to the example under
consideration using the E-R model. Figure 4 shows the load service
relationship for both call and time congestion. The call congestion
results, taken from Figs. 3(a) and 3(b), are reproduced here for com-
parison. It is seen that the time congestion (TC) results consistently
fall below the call congestion (CC) results.* Figure 5 shows the CC-
to-TC ratio (w/p) as a function of peakedness. While for a given load
the time and call congestion can differ substantially, the decrease in
load that makes up the difference may be relatively small.

*It has been shown by R. P. Marzec that for the Interrupted Poisson Pro-
cess, Pr[TC > 0] < PrE'CC > 0]. This implies p/w < 1, which in turn implies
Pr[TC>T]= Pr[CC >T
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Fig. 5—Call-to-time-congestion ratio.
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APPENDIX
Time Congestion
Let £(f) denote the state of the system (number of customers waiting
or being served at time ¢) and let Py(t) = Pr[£(f) = k]. Moreover,
define £, = £(t7) (i.e., the number of customers in the system just
prior to the arrival of the nth customer). Takdcs shows (Ref. 3,
Theorem 1, p. 148) if p < 1 then the limiting distribution
hmP[Enzk:I:Pk (k=0J11) (36)
exists and is independent of the initial distribution. Furthermore, he
shows that
P, = Aw* ¥V (k=N,N+1,---), (37)

where A is given by (8) and w by (5). It is also true that the above
holds for k = N — 1, i.e,,

P.=Aw*¥ (k=N-—1,N,N+1, ). (38)

If we denote by 7. the waiting time of the nth customer, then the
equilibrium delay distribution,

W(z) = lim W,(z) = lim P[y. =< z],

n->0 n
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exists and is given by
N-—-1 w©
W@ =5 Pt 3P [ e S Sy, (a9
which reduces to (4). We have

N-1 oo
W) = ¥ P+ X Pilz),
=0 F=y

where I;(x) represents the integral in (39). The complementary dis-
tribution, W(x), is given by

W@ =1~We) = ¥ P1-L@)]. (40)

If p < 1 and the interarrival distribution F(z) is nonlattice, then the
equilibrium time congestion probabilities given by

Pi=1LmPyt) (k=0,1,--) (41)

t-»o0
exist and are independent of the initial state. Furthermore,
Py = pPi, (k=N,N+1, --). (42)*

At this point, we are able to evaluate the equilibrium time congestion
distribution under the hypothesis p < 1, and F(z) is not a lattice

distribution. .
Denote 5(t) as the waiting time of a fictitious arrival at time ¢ and let

W(t, z) = Pr(a(t) < z]. (43)
We have

W2 =5 P + 5 P [ e B Ny o

since 5(¢) = 0if £(tf) < N. And if £(f) = j = N, then fictitious arrival
must wait for j 4 1 — N successive departures. These departures

follow a Poisson process with intensity Nu.. Taking the limit and using
(41) we have

WH@) = lim W(,2) = ¥ P+ £ Pil(@). (45)
t-+0 =0

Using (42), the complementary distribution is given by
W@ = » & Prall — L)1 (46)
=

* See Theorem 2, p. 153 of Ref. 3.
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From (38), (40), and (46):

WHz) = 2 W (). @n-

This result is given by Ref. 7, p. 229, for a single-server queue; the
multiserver case is given here for completeness.
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