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Consider a nonlinear system, with memory, which has two tnput ports
and one output port. It is assumed that the system can be represented by
a double Volterra series. Two results for such a system are stated in Part I.
The first is a general expression for the sinusoidal components of the
output y(t) when the two inputs z.(f) and z,(t) are sums of sinusoidal
terms. The second result vs an expression for the power spectrum of y(t)
when x.(t) is a stationary Gaussian process and z,(t) = P cos pt. Part
1T is concerned with using results from the theory of Volterra series for
multi-input systems to calculate the third-order distortion in an idealized
frequency converter.

I. INTRODUCTION

This paper deals with nonlinear, time-invariant systems with
memory which (¢7) have more than one input port, and (#7) are driven
by inputs which are essentially sums of sine waves.

The paper consists of two parts. Part I is concerned with a system
which has two inputs, z.(¢) and z,(t), and one output y(¢). Two results
for single-input systems are generalized : (i) an expression is given for
an arbitrary frequency component of y(t) when z,(t) and z,.(f) are
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finite sums of sine waves, and (7z) an expression is given for the power
spectrum of y(¢) when 2,(t) is a stationary, zero-mean, Gaussian noise,
and z,(t) is a single sine wave.

Although most of the discussion in Part I deals with systems having
two input ports, many of the results can be formally generalized to
systems with more than two inputs.

Part, II is devoted to an example which shows how results given in
Ref. 1 for a one-input Volterra system can be used to examine systems
consisting of a single two-terminal nonlinear element imbedded in a
linear network containing sources. The transformation from a multi-
input to a single-input system is based upon Thévenin’s theorem
(see, for example, Anderson and Leon?. The example treated here
is a frequency converter using a nonlinear capacitor. Particular atten-
tion is paid to computing the limiting form of the expression for the
third-order distortion when the signal and pump amplitudes become
small.

The procedure we use in Part I is essentially a systemization of a
procedure used by Gardiner and Ghobrial® to study the distortion
performance of a varactor frequency converter. As they point out,
their treatment differs from the linear time-varying analysis usually
employed to study frequency converters. It is appropriate to mention
here that a promising new general method of computing distortion in
frequency converters has been developed by R. B. Swerdlow.* His
method is based upon the use of Volterra series with time-varying
kernels.

Part I. Two Input Ports

When analysis of the type used to study Volterra systems is applied
to nonlinear circuits having two input ports and one output port,
some of the simpler results for one-input circuits can be generalized
in a straightforward way. Here we state two such generalizations. In
the first, the two inputs are sums of sine waves. In the second, one
input is stationary, zero-mean Gaussian noise, and the other input is a
single sine wave.

The derivations of the generalizations are not given here because
they consist of rather straightforward, although lengthy, applications
of the procedures used in Ref. 1 to deal with the one-input case.

II. DOUBLE VOLTERRA SERIES

Let 2.(t) and 2,(f) be the two inputs, and let the output y(t) be
given by the double Volterra series
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where the prime on 3’ means that the term m = n = 0 is omitted.
The produet [T is understood to have the value 1 when the number of
factors (m or n) is 0, and if », say, is zero there are no v-integrations.
The kernel g, » is a symmetric function of us, - - -, u, and of vy, - - -, v,.

For the inputs that we shall consider, the (m + n)-fold Fourier
transform

Gumin(fu, Yy fum;fvl: covy fen) = f dus- - dv,

“Grin(Uy, oo ova) exp [— jlurwn + o+ vawen)] (2)

plays an important role. Here Go,o = 0, @ = 27§, and G,,., is a sym-
metric function of fui, -+, fum and of fo1, -+ -, fon.

Much as in Ref. 1, the “harmonic input” method can be used to
determine G, , from the system equations by setting

i‘“(t) = wil exp (jwurt)r
- (3)
I:-(t) = agl exp (jwvlt)r

where the w's are incommensurable, and solving for the coefficient of
exp [j(wur + -+ wum + wu1 +++ -+ w,a)t] in the expansion of y(t).
This coefficient is equal to Gp,n(fu1, = -+, fum; fo1, - -+, fon). Note that
if the system output y(t) is applied to the input of a linear transducer,
the transducer output can also be expressed as a double Volterra series.
The transducer output function corresponding to the transducer input
function G, is

F[J‘(“JHI + T + w“ﬂ)]Gm;n(fulg syt 'fvu);
where F(jw) is the transfer function of the transducer.
If, say, n is zero and m > 0, Gum,o(fu1, fuz, *++, fum;) is equal to

the coefficient of exp [j(wu1 + wu2 + -+ wum)t] in the expansion of
y(t) when z,({) = 0 and x.(t) is given by (3).

There is a resemblance between the double Volterra series (1) for
the two-port inputs z,(t), x,(f) (Case A) and the single Volterra series
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for the special input z(f) = z.(t) + z.(t) (Case B). For Case B,

vy = 3 3 [ due [ dudatun, ooy w)
k=1Mh: Jew

—_—u

T O = w) + 2= )] @)

When the product is expanded and the symmetry of g is used, the
product can be written as

k k m b —m
mzﬁo (m) FI;I]_ Eu(t - 'Lt'm) gI:Il :E.,(t — um_‘_.)‘

Settingn = k — m and Umy. = v, fors =1,2, .-+, n carries (4) into a
form which goes into (1) when gmyn(u, ** ) Um, V1, =+ *, Un) 18 replaced
by gm:ﬂ(ulr frty Ump Uy 0y, ”ﬂ)-

The results stated below for Case A show a similar resemblance to
the corresponding Case B stated in Ref. 1. For example, when 2y (1)
and z,(¢) are the sums of sinusoidal terms, the expression for a particu-
lar component in y(t) for Case A can be obtained from the correspond-
ing expression for Case B by replacing Gmin in Case B by Gm;r and
inserting a semicolon at the appropriate place in the string of argu-
ments [as in eq. (9) below].

III. SINUSOIDAL INPUTS

When the inputs z.(f) and z,(f) are sums of sinusoidal waves, an
expression for any particular component in y(t) can be obtained by
extending the analysis given in Section VI-B of Ref. 1. There, egs.
[1, (138), (139), (140)] [meaning egs. (138), (139), and (140) of
Ref. 1] show that if the input z(¢) to a one-input system is given by

2(t) = 3 P, cos wid, (5)
r=1

where the w,’s are incommensurable, then the exp [j(Nwi +- -
+ N.w,)t], N, 2 0, component of y(t) is

SO | [ (Py/2)N 2 ]

e L (N F W)

Gl (fdNerty (=) 1y 5 TVt (—F)0], (6)
where Go = 0, (f.)x denotes the string of k arguments f., fo, -+, foy

exp [j(Niws + -+ Nuwt]
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and the subscript #» on @ has the value
=3 (V. +2). (7)

Here the notation of Ref. 1 has been changed to bring the statement
of (6) in line with the notation used in the present paper.

Methods of computing (6) when the G,’s are constants, i.e., are
independent of frequency, have been considered by several writers
(see Kroupa® and Sea and Vacroux®).

To state the generalization of (6) let

A
zu(t) = i P, cos wd, z2,(f) = 3 P, cos wd, (8)
r=1 r=pu+1
where the w,’s are incommensurable, w, = 2rf,, A\ = u + », and p and »
are positive integers. Then the exp [j(Nwwi +- -+ Naai)t], N, = 0,
component in y(t) is
) w @ A (Pr/z)Nr+zlr

o Lo 4+ M) £ & 1| 25T

h=0r=1
G [ (SN 1y (= 1)1y (F)Ngrty + oy (FdWurt (= fu)1,;
: (fn+l)Np+|_+l,.+n T (f?«)Nk+h: (_'fl)h]- (9)

Here Go.o = 0, and if I or N + [ are 0 the corresponding arguments do
not appear in G, .. The values of m and n are

A
m = ):1 (Net2n),  m= 3 (No+2h). (10)
r= r=u

The semicolon in the subscript of G, differs in meaning from the
semicolon used in [1, (139), (140)]. The notation (f,)x is the same as
that in (6) and in [1, (169)]. The series (9) may either converge or
diverge, depending on the P’s and G's.

Changing the signs of w; and fy in (9) carries (9) into the expression
for the exp [j(— Nwi + Nayws + -+ Nyan)t] component in y(t),
etc. [see the discussion below eq. (5) in Ref. 1]. When some of the
w,'s are commensurable, some of the components in y(t) coalesce and
can be treated by the method used in [1, (6), (7)].

To examine the case in which z,(¢) contains a de component, let f;
and w; tend to 0 in (8) and (9). Then P, is the de component of z,(t)
and the exp [j(Naws + - -+ Nyw)t] component of y(t) is the result
of the coalescence (as f, —0) of (i) the components exp [j(Niw:
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4+ Nawzs + -+ + Naw)t] for Ny =0, 1, 2,---, and (77)
exp [j(— Niw1 + Nows + -+ M)t for Ny =1, 2, -+, . When
(9) and (9) with — f1 in place of fi are summed over the values of N,
the double sum with respect to I; and Ny can be reduced to a single
sum by setting k¥ = N1+ 2[; and using the binomial theorem. The
desired component, namely exp [j(Nauws +---+ Man)t], in y(f)
when z,(f) = P1+ P2cos wst +- -+ Py, cos wl and z,(f) is given by
(8) is found to be

0 =0

Ms

. o P"- A (Pr/z)Nr'l'ﬂr
exp [} (Vaws + -+ Nyot] T, EL=2{@f¢7§ﬁj]

G [ (O, (f)Ngrtgy (—f21y =5 oy (MWt (—f)n]. (A1)

Here n is given by (10), and m = k + (N2 + 2ls) +-- -+ (N, + 21,)
when g = 2and m = k when p = 1.
Equation (9) can be generalized to the case of three or more input

ports in a straightforward way.

IV. Z4(f) GAUSSIAN AND z,(f) = P cos pi

The case z,(t) = P cos pt and z.(f) = I(t), where /(t) is a station-
ary, zero-mean, Gaussian noise having the two-sided power spectrum
Wi(f), can be handled in much the same way as was the case ()
= I(t) + P cos pt discussed in Section VII-C of Ref. 1.

The discrete sinusoidal components in y(t) are given by the ensemble
average

) = ,,gw cn exp (jnpt), (12)
where
e B e S o),
Snaslfn -+ Joi f = 5 P Gopppas sl =11y, 1
— o J1, foy -y Ju; (8afodaxin, (— $afp)ed (13)
Here 27f, = p, o = 1 forn = 0, s, = — 1 for n < 0, and as in (6),

(snf»)s denotes a sequence of ¢ arguments, all equal to s.fp. As ex-
plained in connection with [1, (145)], @[W:(f')] denotes a v-fold

integration with respect to fy, - - -, f, with limits & . The integrand
is Wr(f))---Wi(f,) times the function [in (13) the function is G]
of fi, -+, f. represented by all of the terms lying to the right of

QLW (f)]. Qu[Wi(f’)] denotes the identity operator.
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The two-sided power spectrum of y(t) is

]

Wu(f) = X leal®(f — nfy)

+kz::lQ_"[E}:_;(.f_)Jn:i_m 5(f_ fl_“‘_fk —_ nfp)

el '9\20+ | n|
|5 e Sneahy - i £ 9)

Replacing @, by Gny, in eq. (13) for S and substituting in (14)
gives the expression [1, (175)] for W,(f) in the single input port case
x(t) = I(t) + P cos pt. There is a corresponding similarity between
the one input port formula [1, (16)] when the two-port expression
(14) for W,(f) is written out.

V. EXAMPLE—COMPUTATION OF Gl;l

Consider the circuit shown in Fig. 1. The admittance H( /) is linear
but the resistor R and capacitor C are nonlinear. The voltage across
R is

ol + BI3 (15)
and the capacitance of C' depends upon the charge Q, the capacitance
being a + bQ. The output of interest is the voltage ¥ (t) across C':

= b
Q = (a+ bQ)y, (16)
Ii+ I, =1 =dQ/dt.
The current I,(t) is given by
L) = [ hlz( — ) — yt — u)]du, (17)
where £ (u) is the Fourier transform of H(J).
Elimination of 7, leads to the circuit equations
ru = aly + BI2 + y,
dQ/dt = I+ [~ h(w)[xu(t — u) — y(t — w)Jdu, (18)
Q = (a + bQ)y.

The G’s corresponding to y can be obtained from (18) by the harmonic
input method. In using this method it is convenient to work with the
notation z; = exp (jwit) where the w's are incommensurable.

In order to get Gy (f1;) we set zy = 21, 2, = 0,y = c12, + higher
harmonics, I, = 42, +- -+, and Q = g121 + - - -. The harmonic input
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P Figci é—Circuit. with input voltages z.(t), z.(f), output voltage y(t), and nonlinear
an .

method states that Gy (f1;) is equal to ¢;. Substituting in (18) and
equating coefficients of 2, gives

1 = ai1 + ¢y
joigr = 11 — H(f1)ey, (19)
g1 = ac.

Solving for e; gives Gyo (f1;). Similarly, starting with z, = 0 and
x, = 2; gives Go,1(;f1). The results are

Y . S—
Gro(f1;) = [1 + aH +J'Waa:|f1,

B aH
6D = | T a7 |

where the subseript fi; means that f = fi is to be substituted in
w = 2rfand in H(f).
To get G1,1(f1;f2) we set zu = 21, z, = 22, and assume

(20)

Y = €121 + Ca22 + c1e2122 + -+,
I, = i121 + 22 + d122022 + - 1, (21)
Q= G121 + 22 + qua2122 +-een

When (21) is substituted in the circuit equations (18), the coefficients
of z; give the equations (19) and therefore ¢1 = G1.0(f1;). Similarly,
¢z = Go1(;f2). The coefficients of 212 give a set of equations which,
upon solving for ¢;2 and using g1 = acy, g2 = @ca, 1a = — cafa, iy = -,
give

(8/e) (H + jwa)s, — J(wi + wi)aab |
(1 + aH + jwaa)f1+f: ] (22)

Replacing ¢ica by Gi.o(f1;)Go;1(;f2) gives the required expression for

Gi;1(f1;f2) = enn.
To get Ga;o(f1,f2;) We start with z, = 21 + 22, 2, = Oand again make
the substitutions (21) in the circuit equations (18). The coefficients of

€12 = 2C1Ca [
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212, give the same set of equations as before because z, and z, ap-
pear only linearly in the circuit equations. We have ¢, = Gy, o(f1)),
iy = ei[H(f1) + jwal, q1 = acy, and ¢; = ac; as before, but now
Cy = G:;o(fg;), iy = Cz[H(fa) + .fwza], and ¢, = Gz:o(fh fa3).

To sum up, we have

Gia(f1; f2) = 2G10(f15)Go1(;f2)
X [expression in brackets (22)], (23)

where G1;0 and Gy, are given by (20). Expressions for Ga.o(f1, f2;) and
Go.2(;f1, f2) are obtained by replacing the product G1.¢Go;1 in (23) by
G1,0G1;0 and Go,1Go;1, respectively, and changing the bracket slightly.
To get Gi,2(f1; f2 f3) we set zu = 21, @, = 22 + 23 and proceed
along the lines used to get G1.1, and so on.
As an example of the use of (23), suppose that x, = P, cos w¢ and
%, = Pycoswst. Then the exp [j(w: &+ ws)t] component in y is,

from (9),
exp Cilon = ot D000 =+ ] @

Similarly, the leading terms in the series for the components of fre-
quency 2f1 and 2f2 are given by GE;D(IIJ fIr) and GD;E(;fﬁs f'o‘):
respectively.

Part II. Analysis for a Simple Frequency Converter

Here the circuit shown in Fig. 2 is used as an example to show how
a multi-input system can sometimes be analyzed by the single-input
formulas of Ref. 1. The output of interest is the voltage y(t) across the
nonlinear capacitor C. Thévenin's theorem is used to replace the circuit
of Fig. 2 by that of Fig. 3, and a recurrence relation is derived for the
corresponding (,’s. The results are used to get an expression for the
third-order distortion when Fig. 2 is regarded as the circuit for an
up-converter.

" E

o
)
A

I
I
\
|
v
|
|

4

Fig. 2—Frequency converter with nonlinear capacitor C.
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VI. REDUCTION OF A MULTIPLE-INPUT SYSTEM TO A SINGLE-INPUT
SYSTEM
The system considered here and in the following sections is shown
in Fig. 2. The admittances H.(f), H.(f), H:(f) are linear and C is
the nonlinear capacitor used in Section V. The charge on C'is @(¢), the
current I = dQ/dt flows into C, the capacitance of C is a + b@, and
the voltage y(t) across C' is related to Q(t) by

Q = (a + bQ)y. (25)

P, is a biasing dc voltage.
The problem is to determine the components of y(f) when
2. (f) = Py cos wit + P2 cos wst,

26
Z,(t) = Py cos wyl, (26)

and wi, ws, and w, are incommensurable.

As far as y(t) is concerned, the analysis of Fig. 2 can be reduced to
that of the simpler circuit shown in Fig. 3. To accomplish this we
apply Thévenin’s theorem to the portion of Fig. 2 lying to the left
of the terminals of C. As far as the exp (jwit) components of y(t) and
I(t) are concerned, this portion of the system can be replaced by an
admittance H(f,) = H.(f1) + H,(f1) + H.(f1) in series with the
(open-circuit) voltage

& ejout __L_ ) .
2 H,+ H, + H /),

Similar consideration of the remaining components shows that I(2)
and y(t) can be computed from the circuit of Fig. 3 in which

H(f) = Hu(f) + H,(f) + Hi(f),
2(t) = poPo + p1P1cos (wit + ©1) + p2Pacos (wit + @2)
+ ppPy cos (wgt + ©p))

_ Hy{(0) ior — HulS1)
pPo = FI(T) ’ p1€ = H(fl) ) (27)
ior — Hu(f2) iop = H,(f»)
PTGy 0 T T HT)
The equation for y(t), namely
d W _ (" et —w) -y — 0, (28)

dtl —by Jow

where h(u) is the Fourier transform of H(f), can be obtained by
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Fig. 3—Thévenin equivalent of Fig. 2.

equating two expressions for /, the one on the left being I = dQ/dt
in which @ = (¢ + bQ)y = ay/(1 — by).

It is convenient to subtract out the de components of x(f) and y(t)
and apply the formulas of Ref. 1 to the portion §(¢) of y () which tends
to 0 when #(t) — 0, #(f) being the time-varying component of (t).
Therefore, in the system equation (28), we make the substitutions

() = xo + £(2),
y(t) = yo + §(),

where 2o is the de value of z(f) and y, is the (de) value of y(t) when
x(t) = xo. From (27) xo = poPy, and substitution in (28) gives
0= H(0) (x0— yo). Assuming H(0) 5 0 gives yo = 2o = poPo. It
should be noticed that the substitutions (29) are not strictly necessary
because the de component in z(f) could be handled (at the cost of
more work) by the analogue of (11).

Subtracting the result of substituting z; and y, in (28) from the
result of substituting (29) in (28) and using

(29)

a(yo + ) ayo aj (30)

L—blyo+9) 1 —bye 1—bj

shows that the system to be analyzed by the single-input formulas of
Ref. 1 is described by the equations

d 4§ = Bl o ars
AT~ L h)[E(E — u) — Gt — w)]du, (31)
‘f‘(t) = p1P1 COS (wlt + ﬁ01) -+ ,Osz CcOoS (wzt + goz)

+ ppPp cos (wpt + ¢p), (32)

where
G = a/(1 — byg)? b =b/(1 — bys). (33)

Here 2(t) and j(t) play the roles that z(¢) and y(¢) play in Ref. 1;
and in the remainder of this paper the G,’s will refer to #(t) and #(¢).
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VII. CALCULATION OF THE G,’s

The functions Gy1(f1), Ga(f1,f2),- -+ can be computed from (31) by
the harmonic input method. A guide to the work is furnished by the
resemblance of our problem to the one described by Fig. 3 of Ref. 1
and eqs. [1, (42), (43), (106)]. Expanding the left side of (31) as

d 3 fi—1 1
P vION (34)

carries (31) into the form of [1, (106)] except for the operator d/dt. A
procedure similar to the one used to deal with [1, (106) ] gives
H — 2jwd
a0 = (7). KD~ gy Fia
Ga2(f1, f2) = bG1(f)G(f)K(f1 + f2),
Gs(f1, fa, f3) = BC1(f1)G1(f)G(f)K(f1+ f2 + [a) (35)
[K(fi+ f2) + K(f1 + f2) + K(f2 + fa) + 3],

and the recurrence relation

Galfu 1) = $E(fu+ -+ £2) 5 8260 (fye o, f)- - (36)

The G®’s are the G,’s for the Volterra series for [y(f) ], and formulas
for computing them are given in [1, (24) to (29)]. Equation (36) is a
recurrence relation because G can be expressed as the sum of products
of Gy, Gy, -+, Gn_1. By starting with G1(f1), the relation (36) can be
used to compute G, G, - - - in succession. In the next section, (36) will
be used to compute Gs.

VIII. COMPONENTS OF ¥(f) OF FREQUENCY f1 + fp AND 2f1 — fo + f»

In this section we use (6) and the recurrence relation (36) to derive
expressions for the exp [j(w1 + wp)t] and exp [J(2w1 — w2 + wp)t]
components of y(t) in Fig. 2 when (z) Py, P3, P, are small, (27) fi and
f2 are nearly equal, and (44%) H(f) is zero except for frequencies lying
in narrow bands about the values

0: fl; fp: fﬂ: (37)

where f, denotes the upper sideband frequency fi + fp.

The component of frequency 2f; — f» + f, represents a typical
third-order distortion product in an up-converter when fi and f; are
signal frequencies, f, the pump frequency, and fu = fi + f, f2 + f»
the output frequencies.
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TaBLE I—NoTATION FOR VARIOUS VALUES oF H(f) anp K(f)

Frequency, f H(f) K(f)
0, i — fa H, 0
Ty fou 2f1 — fo H, K,
P fl"‘ 2+fp Hp Kp
fl‘i'_fp(=fn):2fl_f2+fp H, K.
outside bands 0 —2

As mentioned in Section I, the procedure we use here can be regarded
as a systemization of a method used by Gardiner and Ghobrial® to
study the distortion performance of a varactor frequency converter.
In our notation, the problem they solve is that of determining the
exp [j(2w1 — w2 + wp)t] component of the charge Q(#) from the
system equation

V({t) = aQ + bQ* + k(w)I(t — w)du. (38)
Here V() is the sum of three sine waves [just as £isin (32)], I = dQ/dt,
and k(u) is the Fourier transform of the linear impedance Z(f) in the
Thévenin equivalent of the converter circuit. It can be shown from
(38) that the G'.’s corresponding to Q(#) can be determined by recur-
rence from

Gi1(f1) = 1/(a +jwZ)y,

—b
Gol(fr, - fa) = [—]
(71 ! 0+ jwZ |fi4iss
Now we return to our own problem. From the expression (32) for
the input £#(f) and the leading terms in the series (6) it follows that the
exp [7(2w; — w2 + wy)t] and exp [j(w1 + wp)t] components of y(f)
are, respectively,

G2 (fyy- 1S n) (39)

exp {j[ (201 — w2 + wp)t + 201 — @2 + ¢,
“(p3p20,PIP2Py/32)[Ga(f1, f1, — 2, f3) +-++],  (40)

exp {Jj[ (w1 + wp)t + @1 + @]} (p1ppP1Py/4)
[G2(fy, f2) + (03P3/8)Gu(fry foy [y —fo) +---1 (41)

Only one G4 term appears in (41) because we shall assume that
mP1/ppPp and poPs/p,P, are small compared to one.

The function @ is given by (35), and the remaining problem is to
compute G4 from the formula obtained by setting n = 4 in the recur-
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rence relation (36):

Gi(fr, 2, fa, f4) = 3K(f1 + fa+ fs + f4)
-gwwmnnm.w)

As explained in Ref. 1 in connection with egs. [1, (24) to (29) ], we have

H6O Sy T I3, 1) = (@B @), (43)

GO Iy Ju 1) = (D@)BD) + (DG4 + (1)(4)(28)
+ @B + @W33) + B@12), @)
G (f1, fo, fo £ = (1(234) + (2)(134) + (3)(124) + (4)(123)
+(12)(34) + (13)(24) + (14)(28), (45)

1
2!

where we have written “(2),” for example, for Gi(f2), “(34)" for
Gz(fa, fq), “(234)” for Ga(fz, fa, f4), and so on.

The next step is to compute the right-hand sides of (43), (44), (45)
from the expressions (35) for Gy, G2, G5 when only frequencies in the
bands indicated by (37) are allowed to flow. To aid in this, we introduce
the notation shown in Table I for the values of the function K(f)
= — 2jwb/(H(f) +jwd) needed for the various Gu’s and Gy's. We
make the usual assumption that the admittance H(f) remains constant

in each band.
We consider first the Gy(f1, f1, — f2, f») in expression (40) for the
exp [7(2w1 — w2 + wp)t] component of y(f). Equation (43) gives

G (fyy J1, — I Ja) = 24GE(f1)G1(— f2)G1(f), (46)

where, from (35), Gi(f) = [H/(H +jwd)];. In eq. (44) for G
“(34)"” now means (a(— fs, fp) and from the expression (35) for G
and Table I we get

(34) = bG1(— f)G1(f)K(—f2 + f5) = bGr(— f2)Gr(f5) (— 2).

Similarly, “(24)” means G.(f1,f5) and using the notation K (f1+ f») = K.
gives
(24) = bG1(f0)G1(f0) Ko,

and so on. Going through all six terms for G{¥ in this way carries
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(44) into

T G‘3 (f1, f1, = fo f2) = BG([1)G1(— f2)G1(f5)
‘[ﬁ2+K\¢+0+Ku+0_2].

Going through all seven terms in G{” carries (45) into

%Gf’(fh f1, = foy [p) = BGH(f)G(— f)G1(fo) [Kp(Ku + 1)

+ Kp(Ku + 1) + (— 2)(2K. + 1) + Ki(1)
+ (= 2)(— 2) + (0)(K.) + (Ku)(0)].

Substitution of the values of G§(f1, f2, — fo, fo), I = 2, 3, 4, in the
expression (42) for G4 and combining terms leads to

Gify, 1, = fo f3) = BG([)G(— [2)G1(f5)
Ku[2(K, + 1)(Ku + 1) + Ki]. (47)

When this is put in (40) we get the approximation we have been
seeking for the third-order distortion (exp [j(2w1 — w2 + w,)t]) com-
ponent of y(f).

The procedure used to obtain (47) can also be used to show that
the G, in the expression (41) for the exp [j(w1 + w,)t] component of
y(t) has the value

Gilf1, I, for = o) = BG1(f)GI(f5)Gr(— f5)
Ku[2(K: + 1)(Ku + 1) + K] (48)

If we assume that the two series (40) and (41) converge at about the
same rate, we can use (48) to get an idea of how large P, can be before
the leading term in (40) ceases to be a good approximation to the
typical third-order distortion term. Thus, we expect the leading term
in (40) to be a good approximation as long as the ratio

¥ poPsbG1(f5) P[2(Ky + 1) (Ku + 1) + K] (49)

of the first two terms in (41) is small compared to unity.
Note that setting f: = fi and then interchanging f, and f, in the
expression (47) for G4(fi, fi, —fe, f») carries it into the expression

(48) for G4(f1, fp fpy — fp). This is to be expected since G4(f1, f2, f3, f4)
is a symmetric function of fy, f2, fi, fa

REFERENCES

1. Bedrosian, E., and Rice, S. 0., “The Output Properties of Volterra Systems
(Nonlinear Systems with Memory) Driven by Harmonic and Gaussian
Inputs,” Proe. IEEE, 69, (December 1971), pp. 1688-1707.



1270 THE BELL BYSTEM TECHNICAL JOURNAL, OCTOBER 1973

9. Anderson, D. R., and Leon, B. J., “Nonlinear Distortion and Truncation Errors
in Frequency Converters and Parametric Amplifiers,”” IEEE Trans. Circuit
Theory, CT-12, (September 1965), pp. 314-321.

3. Gardiner, J. G., and Ghobrial, 8. 1., “Distortion Performance of the Abrupt-
Junction Current-Pumped Varactor Frequency Converter,”” IEEE Trans.
Microwave Theory Tech., MTT-19, (September 1971), pp. 741-749.

4. Swerdlow, R. B., unpublished work.

5. Kroupa, V., “Amplitude of the General Intermodulation Product,” Proc. IEEE,

8, (May 1970), pp. 851-852.

6. Sea, R. G., and Vacroux, A. G., “On the Computation of Intermodulation Prod-
uggs 31‘3081- a Power Series Nonlinearity,” Proc. IEEE, 567, (March 1969), pp.
337-338.



