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Stmple statistical procedures for analyzing error data, e.g., in digital
data transmission systems, are usually based on the assumption of in-
dependence. This paper studies the performance and potential utility of
such simple statistical procedures in the case of nonindependent error
occurrences. The burst notse model s selected for this purpose because of
its neatness, its mathematical tractability, its built-in structure of de-
pendence, and its importance tn communication theory. We show that
statistical procedures designed under the assumption of independence tend
to be conservative for the burst noise model. For example, the usual bi-
nomial test will reject, on the average, more channels with small error
rates than it would if the errors were independent. The case that the sample
size m and the error rate p converge in such a way that np — po ts also
studied. It is shown that the error process can be approvimated by a
compound Poisson process in continuous time t. The statistical implica-
tions of this fact are also discussed.

I. INTRODUCTION

A dilemma long existing in the theory and applications of digital
data transmission is the precise determination of the error structure.
On the one hand, it is a well-recognized fact that errors do not occur
independently ; on the other hand, only the assumption of indepen-
dence offers us a model sufficiently tractable that ordinary statistical
procedures can be designed accordingly. A direct consequence is,
of course, that we are using statistical methods designed for in-
dependent observations to make statistical inferences on dependent
data.

The fact is, we do not have much knowledge of the error structure
of data transmission channels. Mathematical models have been
constructed for fitting observed data streams containing errors,
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noticeably the burst noise model of Gilbert,! the Markov error process
and renewal error process of Elliott,2? and the binary regenerative
model of MeCullough.*

One of the most pertinent models with a built-in dependence
structure is Gilbert’s burst noise model. It is this model that we shall
study in this paper. One of the prime concerns of this study is the
behavior of various statistical procedures under the burst noise model.

Gilbert! constructs a model for burst noise as follows. An input
binary signal (0 or 1) is transmitted through a noisy channel with
noise z (0 or 1) so that the output is given by

output = input + z (mod 2).

The channel can be in either of the two states, good (G) or bad (B).
If, at time n, the channel is in G, there is no noise so 2, = 0; if the
channel is in B, a “coin’” with P[head] = & is tossed and z, = 1 is
identified with a tail outcome.

The channel can shift from a good state to a bad state and vice
versa. Identify 1 as G and 2 as B and let X, denote that state of the
channel at time n. It is assumed that the process {X,: n = 1} is a
two-state Markov chain with stationary transition probabilities

P[00

and initial distribution (i, 7).

Let Z, =2 4 -+ z, denote the number of errors through the
nth-bit output (0 or 1) digits of the channel where z; = 1 if and only
if an error oceurs at the ¢th bit. The statistic Z, is obviously the
quantity that will be used in any statistical procedure concerning the
bit error rate. The statistical behavior of Z, will be studied extensively
in this work.

In Section II, we derive most of the exact formulas concerning Z,,
including explicit expressions for its probability-generating function
and its first and second moments. The exact form of the probability
distribution of Z, is quite involved in general. For the special case
p+ P =1, Z, reduces to the binomial variable. The quantity A
=1 — p — P can thus be used as a measure of dependence; most of
the complications in this work are caused by the presence of a nonzero
A. The effect of dependence is discussed in some detail in Section III.
Transmission in blocks of digits is considered ; one of our major results
is that it can be shown in this model that the block error and the bit
error have essentially the same covariance structure. Thus, most
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results concerning bit error rate can be transferred easily to results
about block error rate. As a corollary, the variance for Z, is obtained
as a sum of two components, one due to the sum of variances (as if
the z’s were independent) and the other due to the fact that A = 0
(the effect of dependence).

Since Z, is known to be asymptotically normally distributed, the
variance formula of Z, can be used to judge the effect of dependence
on the robustness of statistical procedures (i.e., on how well procedures
based on the independence assumption perform if this assumption is
violated). A general conclusion of Section IV is that statistical pro-
cedures designed under the assumption of independence tend to be
conservative for the burst noise model. For example, the usual bi-
nomial test will reject, on the average, more channels with small
error rate then it is supposed to.

It is shown in Section V that if the bit error rate p — 0 in such a
way that np — o > 0, then Z, converges in distribution to a com-
pound Poisson distribution. The statistical implications of this fact
are also discussed. In particular, Z, is a minimal sufficient statistic for
uo(p) in some approximate sense. This justifies the use of Z, in any
statistical decision procedures concerning the error rate p.

Despite the model’s simplicity, the insight we gained in studying
this burst noise model enables us to investigate more deeply the
structure of error processes. For example, it is possible to treat the
underlying Markov chain {X,} as an s-state stationary Markov chain.
Details of this and other extensions and their implications will be
discussed in a forthcoming report.

II. STATISTICAL PROPERTIES OF Z,

We shall assume, for simplicity and without loss of too much
generality, in the sequel that the initial distribution (1, 72) of the
two-state Markov chain {X,} agrees with its absolute stationary
distribution (p/(p + P), P/(p + P)). Under this assumption, {X,}
is strictly stationary.

Let

gn = PI:Zn = 0]
Note that the bit error rate p is given by
pr=1—gq
P[Z, # 0]
Plz; = 1]
(1 —=h)P/(p+ P); (2)

Il
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and the block error rate pg, the probability that a block of size k
contains at least one error, is

pr =1 — g (3)
Thus, p1 = p.

Since the event [z; = 1] implies [X; = 2] and thus signifies a
return to a bad state (a recurrent event), it is possible to utilize the
renewal equation to derive an exact expression for g.. The following
theorem is essentially due to Gilbert [Ref. 1, eq. (14)].

Theorem 1: Forn = 1,

_ Aﬂ{”’l Agag-’-l
A QL

) (4)
where

ar=3[-0-mN1—-p)—(p+P—2)

+ v[(@1 — P) — h(1 — p)* + 4pPh]
ar=3[-010-nN1—-p)—(p+P -2

—V[(@ — P) — k(1 — p)* + 4pPh]
Ay = plar + (p + P — 1)J/ar(ar — a2)
As = plaz+ (p + P — 1) J/az(ez — en1).

A proof of Theorem 1 different from that of Gilbert (and the proofs
of all other theorems) will be presented in the appendix. We remark
here that since a broader view and a more systematic approach is
adopted in our new proof, it is possible to extend our method readily to
a more general framework than a two-state Markov chain.

Relation (4) can be viewed as a relation between bit error rate and
block error rate. If A = 1 — p — P > 0, it can be shown that 0 < a»
< ay < 1 so that g, — 0 exponentially fast. One effect of dependence
in this model is reflected in (4), namely that g, is the sum of two
exponential terms instead of one. In general, if the underlying Markov
chain is s-state, g will be a sum of s exponential terms.

The right-hand side of (4) is a function of p, P, and h. We shall
write g. = g.(p, P, k) when we want to emphasize this point. An
important connection between ¢, and Eu?", the probability-generating
function (PGF) of Z,, is stated in Theorem 2.

Theorem 2: The probability-generating function of Z, is given by

Eu?r = Qn(p; P} H): (5)
where
H=(1—hu+h
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Thus, replacing each h by (1 — h)u + & in (4), we obtain the PGF
of Z .. The exact expressions for P[Z, = 7] are involved unless 7 is small.
Using (4) and the fact that 0 < as < ay < 1, it is possible to express
P[Z, = i] approximately in terms of its leading term as

i+1
P[Z, = i]~ IAI (n.)cri“'". (6)

— ay 1

Relation (6) can be used to establish the Poisson convergence of Z,
if p = wuo/n — 0. However, an indirect proof will be presented later.

Moments of Z, can be obtained by differentiating the right-hand
side of (5) and setting w = 1. Specifically, we have

EZ, = np, (7)
Var Z, = no(l — p) + 20[ (n = DA _ A%(1 — an—) ] (8)

I

1 — (1 — M)
where
C=(1— h)*mrms
A=1—p— P.

Relation (8) also can be obtained by other methods which we shall
discuss in Section III.

III. MEASURE OF DEPENDENCE AND ITS EFFECT

If the transition matrix of a Markov chain has identical rows, then
this Markov chain is merely a sequence of independent and identically
distributed (iid) random variables. For the two-state Markov chain
{X.] underlying this burst noise model, the matrix 7 in (1) has
identical rows if and only if p + P = 1. Letting A = 1 — p — P, we
see that |[N| =1 and that A\ = 0 if and only if the channel is
memoryless.

The eigenvalues of the transition matrix play important roles in
the theory of Markov chains. The largest (in absolute value) eigen-
value is always 1; in general, it is the second largest eigenvalue that
affects all the essential features of a Markov chain. The parameter
defined earlier is the second largest eigenvalue of the matrix T in (1).

The significance of the parameter \ can be interpreted intuitively.
If p and P are small, the underlying Markov chain {X,] tends to
stay in a certain state (G or B) once it enters this state; hence, A > 0
indicates the tendency of producing bursty errors. If both p and P
are large, then {X,] tends to shift between the good state and bad
state alternatively. Since the latter case is obviously not very interest-
ing, we shall always assume A\ = 0 in the sequel.
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Let I denote the 2 X 2 matrix with identical rows

I = [”1 “],
T1 ma
where (1, m2) is the absolute stationary distribution of {X.}. By the

definition of the absolute stationary distribution and by some simple
calculations, it can be seen that

n7 = T = 0 = 1. (9)
It follows from (9) and simple induction that, for n = 1,
Tr — I = (T — TI)"

— n 772 Tr2 N
= [m m] (10)

Relation (10) allows us to calculate the {-step transition proba-
bilities of {X .} accurately. It can also be used to find the covariance
of z; and z,. We restate eq. (17) of Ref. 1 as follows:

Theorem 3: The covariance of zs, z; (i ¥ J) is given by
Cov(z;, 2;) = CONF, (11)
where C = (1 — h)*myma.
Corollary:
_ _ (n — DN N1 =27,
Var (Z,) = np(1 — p) + 20[ Y CR=SNE (12)
Define, forz =1, 2, - - -,

T:.=1 if 2(i—1)k+1 + Z(i-1)kt2 4tz z1
=0 otherwise; (13)

namely, T; = 1 if and only if the ith block of length & is not error-free.
It is possible to extend eq. (11), and therefore (12), to the correspond-
ing equations involving the T’s.

Theorem 4: There exists 0 < Cy < o« such that
Cov (T;, T;) = Cy\—ilk, (14)

The value of C; can be found explicitly. However, we shall be satisfied
with a crude estimate Cy = CarymN—* where |Cy| = ¢

Note that T; = z; if £ = 1. In this case, eq. (14) reduces to (11).
Theorem 4 not only states that the T’s are “less dependent” than the
2's but it also tells us, in some sense, how much less dependent the
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T’s are. Let
Sn= T1+ T2+"'+ Tn-

The statistic S is the obvious statistical quantity to analyze if digits
are transmitted in blocks of size k. For example, in the 1969-70
Connection Survey®® on the Bell System Switched Telecommuni-
cations Network conducted by Bell Laboratories, statistics of block
errors are presented for both high-speed and low-speed data trans-
mission. Hence, the more important implication of Theorem 4 is that
eq. (14) exhibits the same general structure as eq. (11). For example,
replacing C by Cy, p by pi, and X by A* = \* in (12), we immediately
obtain the formula for Var (S,).

Corollary:

Var (5 = nau(1 — ) + 20, TR - X0 = Al |- as

Consequently, statistical procedures using S, and concerning the
inferences on the block error rate p; should have essentially the same
behavior as those procedures using Z, and concerning the bit error
rate p. The above reasoning implies that, at least as far as the large
sample properties are concerned, it is sufficient to consider inference
on p only.

Both the law of large numbers and the central limit theorem hold
true for the sum of Markovian random variables; see, for example,
Ref. 7. Hence,

S.

-, ek (16)
with probability 1; and
Sn — Npy
P[ —_— < ] — & 17
YVar S, ! ) l

for each — « < v < =, where ®(») denotes the cumulative distri-
bution function of an N(0, 1) random variable. Relations (16) and
(17) will be used in Section IV to discuss the robustness of some
statistical procedures concerning inferences on py.

IV. STATISTICAL INFERENCES ON p;

For simplicity, we shall consider the special case ¥ = 1 and concen-
trate our discussion on problems of statistical estimation and hy-
pothesis testing of p = p;. As remarked earlier in Section III, the
restriction £ = 1 can easily be extended to the general case.
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Since { X .} is assumed to be stationary, so is {z.} ; we have seen that
E[Z.] = np, (18)

so that the obvious estimator s, = Z,/n of p is unbiased. Relation
(16), specialized for the case k = 1, states that 3, is a strongly con-
sistent estimator of p.

Very few (optimal) small sample properties of 5. can be stated,
however. For n = 3, it can be shown that no uniformly minimum
variance estimator of p exists. Nevertheless, it is intuitively obvious
that 4. is about the best we can do if the 2’s are the only observables.
From (12),

n Var ()

p(1 = p) + 20 = + o(1) (19)

2

o+ A,
where
ot = p(1 — p)
A = 2(1 — h)mamar/(1 — N).

Note that the term p(1 — p) in eq. (19) corresponds to n Var (p,) if
the z’s were independent. Since we have assumed that A = 0, it follows
that A = 0 and n Var (5,) = o2 Thus, the presence of a positive A
actually causes loss of efficiency in estimating p. Writing A = 7%,
we see that if the parameters h, p, and P (hence ¢* and 7?) can be
estimated from the data, the loss of efficiency due to dependence can
be estimated as the ratio #/¢, where # and ¢ denote the estimates of
r and o from the sample. Hence, if control or confidence limits are
used to evaluate the channel performance, the actual 3 standard
deviation or 2 standard deviation limits should be wider by 100(7/¢)
percent.

We may also consider the loss of power for statistical tests for Ho:
p < po of the form

reject Hy, if Z,= C*.

Based on the assumption of independence, the power function is

approximately
c* — np)
=1—-& —— ); 20
or (5= (20)

whereas for our model, the power is approximately

3D=1—¢(%)- (21)
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POWER

P[zn=c*|p]

BIT ERROR RATE p

Fig. 1—Comparison of power functions.

If the first-type error ¢ < %, we see from (20) that C* — npo = 0. We
see that gr < 8p if C* — np = 0 and B; = Bp otherwise. This means
that it might be possible to design more powerful tests for H, based
on the knowledge that the dependent model obtains. On the other
hand, the test is conservative in the sense that it may reject more
channels than expected if the bit error rate p is close to the service
objective po and if the dependent model obtains. The rules of the game
shift in the other direction if C* — np < 0. However, it is the smaller
values of p that we are really concerned with and we may claim that
the test based on the assumption of independence gives a pessimistic
estimate of channel reliability (see Fig. 1).

V. POISSON APPROXIMATIONS

The bit error rates of high-speed digital channels are usually very
small, say 10~% to 10—%; therefore, the normal approximation and the
statistical theory discussed earlier may not be too helpful in practice
unless » is large. In this section, we prove that Z, converges in distri-
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bution to a Poisson distribution if np — po in a suitable way. Using
this result, we construct a Poisson process in continuous time ¢ that
approximates the process {Z,(t):t > 0} where n denotes the number of
transmitted digits per unit time.

We have shown earlier in (2) that the error rate p is given by

p=(1—HhP/(p+P). (22)

If p — 0 in such a way that np — uo > 0, what do we expect to be the
asymptotic distribution for Z, = 21 4+ + z,, the number of errors
in the first n digits? Note that we have quite a few choices for the
convergence np—> uo. For example, keeping p fixed and letting
P = (u/n), 1 —h = (g/n)? e + e = 1, we have, by (8),

Var (Z.) & wo(1 — p) + 2Cn-—>—

1 —2A
oy 2 el =P
RS po + kT L—E’E_' (23)
where uo = u/p. Also,
EZ, = np
= Ko

Hence, if e, = 0 is selected, we see that for large n, Var Z, = EZ,
so that the limiting distribution of Z, cannot be Poisson.

In order that p = (1 — A)P/(p + P) & po/n, the most general
choice of h and P would be

1 —h=awx+ awx®+ a® +- -,
P = by + by + bay® + -,

wherez = =,y = n%, &1+ e2= 1,1 =2 0, &2 > 0, and ab/p = wo
(the case e; = 0 is of particular interest and will be considered sepa-
rately later). We state the main theorem of this section as follows:

(24)

Theorem 6: If p — 0 in such a way that (24) holds, then
PLZ, = i]— Jube»

as n — 0, where uo = a1b1/p. Furthermore, the convergence is untform
mi=201,2 ---.

By using the result of Theorem 5, we may construct a Poisson
process in continuous time ¢ as an approximation to the process of
partial sums {Z,: n = 1}. Suppose the underlying channel can
transmit » digits per unit time. Let Z,(f) denote the number of errors
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in (0, f). Theorem 5 states that, fori =0, 1,2, ---
PLZ,(®) = i1 5 (u)ie™;

here u denotes the limiting error rate per unit time. Let Z(f) denote
the number of errors in (0, {) in the limiting case. The fact that Z(f)
is a process with independent inerements, namely that Z(t) is indeed
a Poisson process, is easy to prove and we shall omit it.

Theorem 5 implies that Z, is asymptotically a minimum sufficient
statistic for the bit error rate p if (24) can be justified ; this provides
theoretical support for the use of Z, in any statistical inferences
concerning p. We remark here that, by replacing p by p; and Z, by S,
the same comment applies for block error rates. Another consequence
of Theorem 5 is that

Var (Z,) — po = aiby/p. (25)

Note that if \ = 1 — p — P = 0 (the independent case), (24) implies
P — 0 and this in turn implies p — 1. From (25), we see that Var (Z,)
is minimized in the independent case. The increase of variance due to
dependence is therefore 100(1/p — 1) percent. Hence, in the dependent
case, the confidence interval for p should be wider than we thought
in the independent case.

The null hypothesis Ho: p < po becomes Hy: ug < pg in the limiting
case. The uniformly most powerful test for H, exists and is given by
the rule:

reject H, if Z, = C*.

Based on the approximation that Z, is Poisson, we may compute the
power functions as

Bp(wo) = P[Zn = C*|uo]

= 1 .
e 1 — I C*—1
and
ab 1 — T C*—1
ﬁ,—:/; (C*—l)!em‘ de.

It follows that 8; < 8p so that a test for H, based on the assumption
of independence and used when dependence is present rejects more
channels than it should. In other words, tests designed for independent
observations protect customers in the sense that channels they are
using may have better quality than inferred.
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The effect of dependence reported for both the binomial and the
Poisson cases has an intuitive explanation. By using Z, or S,, we are
actually abandoning some of the information contained in the sequence
21, 2, -+ -, SO that statistical inferences based on Z, or S, tend to be
more conservative in the sense that channel reliability is estimated
pessimistically.

We now return to (24) and consider the special case e; = 0. This
case cannot be ignored because previous papers, for example Ref. 1,
indicate that sometimes h =~ 0.5 (rather than 0.999) is a reasonable
value. The fact that Poisson processes do not describe certain error
processes well has also been reported in the literature.

If e; = 0, eq. (24) reduces to

P = [by + o(1)]/n b1 > 0. (26)
We have
Theorem 6: If (26) holds, then

Eu?» — exp [f T%_—%—H?)H_ ], (27)

where H = (1 — h)u -+ h.

We remark here that the limiting value in eq. (27) is the PGF of a
compound Poisson process. More specifically, let N be a Poisson
variable with mean by/(1 — p), and let Wy, Wa, - be iid random
variables with the geometric distribution

pw= = [ [ RS ] @

i=01,2 -

If the W’s are independent of N, then the left-hand side of (27) is
simply Eu"+Wr--+¥x~_ It is of course possible to introduce a con-
tinuous time parameter ¢ and consider the following random mecha-
nism which describes the bursty nature of this error process vividly.
The bursts are generated by a Poisson process; given that a burst
oceurs, the errors are generated by a geometric distribution.

From the right-hand side of (27), it is possible to compute the
moments of the limiting distribution of Z,. We have

bi(l — h)
P

EWr+ Wat---4 Wy) = (29)

Var (W1 + Wa -+ Wy)
_ b=k 251 = hgﬁ(l —P). (30
p p
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Note that the variance is always larger than the mean in this case.
Note also that, as h approaches 1, the second term on the right-hand
side of eq. (30) is of higher order and vanishes in the limiting case.
Another interesting thing is that it is possible to show that the right-
hand side of (30) is minimized at p = 1, and as p approaches 1, the
limiting distribution is Poisson.

Branching renewal processes have been suggested in the literature®
as a model for series of events. The basic structure for branching
renewal processes can be deseribed in terms of our problem as follows:
The series of primary events (bursts) are generated by a Poisson
process. Each of these primary events generates a subsidiary series
of events (bit errors), separated by the waiting time Y,, ¥s, -+, ¥,
where S is random. If we assume that these subsidiary series of events
take no time, then the branching renewal process reduces to the com-
pound Poisson process.

VI. CONCLUSIONS AND FURTHER EXTENSIONS

() The burst noise model of Gilbert discussed in this paper pro-
vides a vehicle for studying the robustness of some fixed sample size
statistical procedures. The general result is that the presence of
dependence increases the variance of the random variable Z,, for
the case where the bit error rate p is fixed and the case in which p
= [uo + 0(1)]/n. Thus, use of statistical tests based on the assump-
tion of independence increases the power at the cost of rejecting more
satisfactory channels than would be rejected if dependence were
absent. The use of blocks does reduce the covariances among errors
compared with bits or smaller blocks. However, the covariance
structure among the blocks is essentially the same as that among
the bits.

(#7) Although the dependence structure of the Gilbert’s burst noise
model is a simple one, it is by no means a trivial one. In fact, from the
insight gained through this study, many results obtained in this paper
have generalizations in error processes defined over an s-state Markov
chain as well. A unified treatment on channels with Markov type of
memory will be reported elsewhere.

(7i7) The second largest eigenvalue (in absolute value) of the
(s X s) transition matrix of the underlying Markov chain is a param-
eter which should not be overlooked. It can be viewed as a measure
of dependence of a Markovian model. The effect of this parameter
(=X in this work) is visible in many important formulas, for example,
in (14).
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(7v) Another important question to ask is what kind of stochastic
process ean be used to approximate the error process of a binary
channel with memory. If the bit error rate is small, we can extend the
proof of Theorem 6 (in a nontrivial way) to find an important con-
clusion: the compound Poisson process can serve the purpose.

(v) The by-products of this work are also fruitful. For example,
the variance formula of Z, can be generalized to find the variance of
T, = f(X1) +---+ f(X,) where {X,} is an s-state Markov chain,
s < w, and fis an arbitrary function. Since many continuous sampling
plans, such as CSP1, CSP2, CSP3, can be described as random walks
of the form T, (see Refs. 9 and 10), the application of this formula to
quality assurance is evident.

(vi) Mathematically speaking, there is an essential difference be-
tween Gilbert’s original treatment and our generalizations to the
s-state Markov chain. More specifically, Gilbert viewed his problem
as one of the renewal type whereas the s-state Markov case should
be handled by the semigroup property (of taboo probabilities). We
remark here that many results of the theory of recurrent events (see,
for example, Ref. 11) can be applied to Gilbert’s model. We also
remark that the renewal process is a one-state semi-Markov process.
A general question can be raised at this point: What is the behavior
of an s-state semi-Markov channel? Since it is known that distri-
butions other than the exponential (for example, the Pareto distri-
bution, see Ref. 12) describe the waiting time distribution well, the
question raised is a realistic one and should not be merely considered
as an attempt at mathematical generality.
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APPENDIX
A.1 Proof of Theorem 1

Consider ¥, = (X,, z,) as a three-state Markov chain with transi-
tion matrix

(G,0) (B,0) (B, 1)

(G,0 [1—-P hP (1 —h)P

(B, 0) p  h(l—p) A—hQ1-p)|=8Q=(g) B

(B, 1) p h(l—p) 1 —h(Q1~-p)

say. We have
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FEuér = Fysitat-: -+
= Zyo ziﬂ Zyn e Zyn ustee .+anyn—lyn
Quncavnas " Quony Mg (32)

where A, = P[Yo = yo]. Note that the value of z, is completely de-
termined by the value ¥, = y,. Let

Typaw, = WGy, .y,
4 { ¢ 14

and let
R = (T{j).
Relation (32) can then be written as
EuZ» = 3'Rn1, (33)

where

A = (M@0, A0y A1),

' = (1: l; 1):

R = (ry)

1 0 0
Qo 1 0]
0 0 u

We remark here that eq. (33) can be extended to the case of an s-state
Markov chain easily. Letting « = 0in eq. (33), the PGF of Z,,, we have

1 0 O\]
P[Z,=0] = Q(O 1 0) 1- (34)
00 0

The last column of the 3 X 3 matrix in eq. (34) is always a zero vector
for every n = 1. Hence, the right-hand side of (34) is essentially the
nth power of a 2 X 2 matrix. The explicit formula for g, in eq. (4)
follows from (34) by straightforward calculations.

A.2 Proof of Theorem 2

The 2's are conditionally independent if the values of the X’s are
given. Hence,

P[Z, = 0]

Il

E{P[si=2:=--=2,=0|Xy, Xy, -+, X,,]}
E Hl P[z: = 0|X.]

= E IHI h-'(n‘*l

i=1

= FhX1+Xo+- - +Xp—n, (35)
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Similarly,
Eu?n = E[E[uu+za+--v+zanh X -, X1}

= E{E E[u“lX‘-]}

- E{n [h+ (1~ h)u]x-‘—l}
i=1
= FHX1+Xat+-- '+Xn—n, (36)
where H = h + (1 — h)u. By comparing eqgs. (35) and (36), Theorem
2 follows.

A.3 Proof of Theorem 3

By eq. (10),

P[Xn 2|X0=2:|=7r2+?\"1r1.

Il

Hence,
Cov (2i,2;) = P[ei=2; = 1] — p*
= (1 — h)P[X;=X;=2] — p
(1 — h)*ra(me + mdli=71) — p?
= mma(1 — R)2I QED.

A.4 Proof of Theorem 4

Let us compute a special case first. Consider P[T, = 0, T, = 07].
A typical path of the underlying Markov chain {Xy, X3, - -+, Xya}
may be of the following form:

b(xr, Tht1) T(n—D2ky T(n-1)k+1)
= (:El.’,t:z' R+t T (=R (n—1) k1T (1) k42" " 'xnk)- (37)
|~ —|

| = d
firat block last block
of size k of size k

The rest of the z’s in b (and in Wi, W, later) are omitted for typo-
graphical reasons. Note that the values of Zi4s, * ¢, T(n-ni-1 are
deliberately unspecified ; also, n > 2 is assumed pro tem.

For fixed first block and last block, there are four different kinds of
paths, according to the values of Zxy1, (n—1)x. Let m denote the number
of 2’s in the first and last blocks together. We have

P[Ty =0, T. = 0|b(x, Tat1, T(a-)ks L(a—nres1) ] = A" (38)
and .

P[b(xr, Tes1, Tin—1rts T(a_1)k41) ]

_ —2)k—1 .
= Wi(ka)qub,]PEﬂm..},m ]pzt,.,l)kt(n_muwﬂ(a'(ﬁ—l)k+1): (39)
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where

.I;Vl(xk) = P[Xl = I, X2 = 11'2, ceey Xk—l = xk—l, Xk - I?_,'k]
and
Wa(znnyerr) = P[X (nonkie = Tnmnrrsy 'y Xk = Tok
i-X{n—l)k+1 = ﬁ:(ngl)k_,_]]_
We may also find P[7T; = 0]-P[T. = 0] by considering their

conditional probabilities over the first and the nth blocks. It is not
difficult to see that

PLT:y = 0]P[T. = 0] = E I"Wi(@) Wa(2 (1) 641) *Tagupyppy  (40)

where the summation ranges over all 22* possible blocks. The expression
for P[T:1=0,T, = 0] can be obtained by taking the product of
(38) and (39) and summing over all 22#+2 possibilities. The 22%+2 terms
in this form of P[Ty = 0, T, = 0] outnumbered the terms in (40)
by a margin of 4 to 1, and there is an obvious 4:1 correspondence
between these terms. Consider

Cov (T, T,) =Cov(l —T,,1—T,)
=P[T:=0,T.=0]—P[T,=0]P[T. =0]. (41)

For fixed first and last blocks, a typical difference between the (4:1)
correspondent terms is

hm[Wl(:Ek)Wz(fC(nq)k+1)]Epzkmﬂ“”mk_1]?31:(,,_1,,,+1
+pzklphm72)k_1]p2x("_1)k+1 + pzkﬂpg{n_mk_ljplz(n_l)k.g.l
+ pzkﬂpgéﬂnz)x_ljpﬁz(n_m.g_ “r-‘:(-n—l)k—].]‘ (42)
By (10), it can be shown that the third factor of (42) becomes
(p:;,lplz(n_”;‘_,_l + pzklpﬂz(n_l)k_'_l + p:kzpu(,,_l}k_}l + pa*2p2=(h_1);‘+1)>\(nmz)kge

-

P+ p AR (oy 2aens) = (1, 1)

_ ; _f 5 A (n—2) k+1 =(1,2)

- -fP A (=2 k41 =(2,1) (43)
P
5 i 5 3 (n=2) k41 = (2,2).

Note that in all terms we have a common factor A{»=2%+1 By factoring
out this common factor, Theorem 4 follows immediately.
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We may even push the computations further to find an exact
expression for the constant C; in Theorem 4. Note that we have four
types of combinations of blocks, according to the values of z; and
T(a—ky+1- The quantity in (42) becomes

P
(1, 1) = h”‘W’l(l)WG(l) p + P ;\(H—E)k—HJ
2 — W \ (=) k1
(1,2) = (D) - p ,

(44)
(2,1) = — AmW1(2)Wa(1) ﬁ—l—’ A=k

mIi7 p (n—2) k+1
(2,2) =h W1(2)W2(2)p+P?\ ,

and Cov (T, T.) is the sum of all 2%* terms in (44).
Let

Tf1=31+22+"'+5k—1, T = 2o+ -+ 22

(We should use T;, = z(n—1)#+2 + - - - + 2ax; however, the distribution
of T, is independent of n so we may take n = 2.) Then

= Z h’"P[X1 = 21, ',Xk71 = .’,l‘-kk”Xk = 13

22(k-1)

-P[Xk+2 = DLgy2y 0, Xow = xzlek-;-l = 1]

1
== 3 AW Wi(1)W:(1),
Tl 220 1)
where m denotes the number of 2’s in the sequence x;, ®2, + -, ZTr_1,
Tpt2, *  *, T2k, which 1s equal to the number of 2’s in the sequence 3, 3,

- -, a3y in the ease xr = xp41 = 1. Thus, the sum of terms of the type
(1,1) in (44) is simply

mP[T, = 0| X, = 1JP[Ty = 0| X1 = 1] - maA i DEHL

Similarly, we may find the sums of other types of terms in (44).
We have

(1, 2) = — 'ﬁ"th[T’l = Ole I:IP[T; = O‘X,H,l = 2]1!‘2)\(“—2)"”'1
(2,1) = — 7hP[T; = 0|X; = 2]P[Ts = 0|Xpp1 = 1] mA (Db
(2, 2) = Trzthl:Tll = O[Xk = 2:|P|:T'2 = O‘Xk.pl = 2]#1?\("_2)k+1.
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Thus, ifn > 2,7 = 1,

Cov (T, T.)
= Cov (T4, Tiyn-1)
= mrNDHUPIT, = 0| X, = 1JP[T, = 0| Xy = 1]
— hP[T, =0|X, = 1]P[T: = 0| X141 = 2]
— hP[Ty =0|X; =2]P[Ts = 0|Xyy1 = 1]
+ hEP[T; =0|X; = ZJP[T; = OIXH-I = 2:” (45)
The case n = 2 should be considered separately; this is because
(n —2)k — 1 < 0if n = 2 so that (39) simplifies to

PLb(zry 2k41) ] = Wi(@) Pager W2 (Trs1). (46)
In this case, the number of terms in P[T; = 0, T, = 0] equals the
number of terms in the product P[T, = 0]JP[T. = 0] and there is
an obvious one-to-one correspondence between the terms. Consider the
difference P[T,=0,T. = 0] — P[T, = 0] P[T, = 0]. For fixed
first and last (second) blocks, the term-wise difference is

Wiz Walry ) [Prpap — Taep ) (47)
The last factor in (47) can be computed. We have
Craa= o (whawn) = (L 1)
Dazpzyn Trepn = P+ Ty Tht1) = )
P
P
= — A = (2,1
Ryt 2,1)
= E_a - (2,2). (48
p+ P ’

Note that (43) reduces to (48) if n = 2; hence, all arguments leading
0 (45) hold true even if n = 2.

Let C; be the quantity in the large square bracket of (45); we may

write (45) as
Cov (T;, T;) = Comymae\Ii—7I7Dk+1 (49)
if i < j.

It is possible to find the value of C'» through an argument similar to
that of finding g. in Theorem 1. However, we shall be satisfied with a
crude estimate

{TF}?TECEI é 1,

which follows from mime = m1(1 — 71) = 1 trivially.
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A.5 Proof of Theorem 5

Let H = (1 — h)u + h and let &, &, A1, A2, # be the quantities
obtained from a1, as, A1, A2, p by replacing each k with H respectively.
Asn — o, H— 1. Hence,

a1 — 1
a—1—-p<l1
A,-0
ﬁz—ﬂ)
p—0.

It follows from Theorem 2 that

-

. . A8,

Zn — .

S Buf = mTR

Let A2=[1— P — H(1 — p)J* + 4pPH in the expression of &:.

An important step in our argument is to find the value of A, By
substituting (24) into the expression for A%, we have

(50)

A= p 4 ¥ oyt Xyt ay o), (5D

n=1 n=

where

ven = (1 — p)*(1 — w)*(a + 2a1820—1 + 2020202 + - -
+ 2@n_18n41) + 2p(1 — p)(1 — u)azn
vanpr = (1 — )21 — w)?(2a182, + 2a2a2n—1 + * + * + 202Qn11)
b2 + 2biban—1 + 2bsbans + -+ -+ 2ba1bata
Sonp1 = 2b1ban + 2bobon 1 + - -+ 2b3bap
—2(1 — p)(1 — wab, — 4p(1l — w)abs.

>
-
3

1

m
I

A=p+ T (@dan+e®) + fry + o). (52)

By comparing the A? in (52) with the same quantity in (51), it is not
difficult to see that
dp = (1 —p)(1 — was

53
o = by (53)

fork =1, 2, ---. Also, it is easy to find that

f=— f) (1 — wabs. (54)



BURST NOISE 1323

Using (53), it can be seen that in the expression of &, the coefficients
of x*, y* are zero for all k. Hence, recall that zy = 1/n,

g = 1= L0801 o)
_ _ (1 - u)a.lbl 1 .
=1 - S +o(n) (55)
By (55) and (24), it can be seen that
L il o(l)- (56)
pn n

By (50), (55), and (56), we have
lim Eu?" = exp (

n—rw

albl(u - 1))
p ?
which is the PGF of the Poisson distribution with mean equal to
ﬂlbl/p.
A.6 Proof of Theorem 6

Using (26), we may express &;, & in terms of powers of 1/n as

d1=1—%+0(1—i), (57)
o).
n n
where
_ bi(l — H)
ST—HFpH (58)
H=(1—hu—+h
By eqgs. (60), (57), and (58), we have
lim Euz = lim —21_ lim @y
n—® now 1l — &1 now
=exp [— a]
_ _ =8
'e"‘p[ 1—H+pH] (59)

This proves Theorem 6.
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