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Optimum Mean-Square Decision

Feedback Equalization

By J. SALZ
(Manuseript received April 20, 1973)

In this work we report new results relating to decision feedback equaliza-
tion. The equalizer and the transmitling filler are optimized in a PAM
data communication system operating over a linear notsy channel. We
use @ mean-square error criterion and impose an average power cCOn-
straint at the transmitter. Assuming correct past decisions, an explicit
formula for the minimum altainable mean-square error is given. The
possible advantages of signaling faster than the Nygquist rate while de-
creasing the number of levels to maintain the same information rate are
investigated. It is shown that, in all cases of practical interest, signaling
faster than the Nyquist rale, while keeping fived the information rale,
increases the mean-square error. Finally, to tllustrate the use of the
results, application is made to a cable channel where the loss in dB varies
as the square root of frequency. Various asymptotic formulas and curves
are provided to exhibit the relationships between the quantities of interest.

I. INTRODUCTION

A great deal of research, particularly in the past decade, has been
expended on the problem of linear equalization. This has yielded a
considerable body of theory and technology making possible the design
of apparatus for successfully combating intersymbol interference in
PAM data transmission systems operating over noisy linear channels
where delay distortion predominates. Since linear equalizers must com-
pensate for the channel characteristics in the presence of noise, they
cannot be expected to perform well over severely frequency-attenuating
channels or channels possessing nulls in the amplitude characteristic.

Interest in the high data rates over voiceband and cable channels
inevitably leads to the search for more effective equalization methods.
Faster pulse rates place signal energy well within the badly attenuated
portion of the transmission spectrum, resulting in severe intersymbol
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interference correctable by linear methods only at the expense of a
significant enhancement of the noise.

A “bootstrap” technique, commonly referred to as “decision feed-
back,” when combined with linear equalization can yield significant
performance improvement.!? In this method the samples of the pulse
tails (postcursors) interfering with subsequent or future data symbols
are subtracted without incurring a significant noise penalty. The effect
of pulse tails (precursors) which occur prior to detection and inter-
fere with past symbols is minimized by a conventional linear equalizer.

Much has been written about this subject. In a fundamental paper
where an excellent bibliography can be found, Robert Price? demon-
strated quantitatively the merits of decision feedback equalization in
certain applications.

In this work we jointly optimize the receiving and transmitting
filters in a PAM data transmission system employing decision feed-
back. The chief difference between our work and Price’s is in the choice
of performance criterion. We minimize mean-square error while
Price maximized the signal-to-noise ratio under the constraint that the
overall intersymbol interference be zero. Our criterion is not as strin-
gent as Price’s and allows trade-offs between added noise and inter-
symbol interference. Monsen* also investigated some aspects of our
problem but did not arrive at a complete solution. Our chief contribu-
tion is an explicit formula for the minimum mean-square error (MSE).
The simplicity of the formula makes possible detailed investigation of
optimized system performance.

In Section IT the model is stated and the problem is formulated.
In Section III the receiving filter is optimized and in Section IV the
transmitter filter is optimized. In Section V we examine the problem
of signaling faster than the Nyquist rate and finally in Section VI
we use our results to investigate in detail the performance of a data
system operating over a cable channel.

II. THE MODEL AND PROBLEM FORMULATION

The system model under investigation is depicted in Fig. 1. The data
signal denoted by D (%) is passed through the transmitting filter having
an impulse response s(t) and giving rise to an average transmitted
power P. The data symbols {a.}=. are independently picked at the
rate 1/T and take on values with equal probability from the set
{1, £3+5--- = (L —1)} where L is an even integer. The
resulting signal is admitted to a linear channel characterized by an
impulse response A(f). The received signal plus noise is processed by
the equalizer which is comprised of a linear filter having impulse
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Fig. 1—Block diagram of the model.

response w(t), a sampler, a decision rule, and a feedback digital filter
characterized by the infinite set of real numbers {b,}*. The added
noise n(f) is a zero-mean white random process with double-sided
spectral density N,/2. The output data symbols are denoted by d..

The general problem we would like to solve is the minimization of

MSE = E{vi — d:}®

with respect to the set of square integrable functions {s(t), w(t)} and
the infinite sequence of numbers {b.}. This is to be carried out when
the channel impulse response h(t), transmitted power P, and a decision
rule are given. The symbol E(-) denotes expectation with respect to
all the random variables.

The nonlinear relation between the estimated symbols {d,} and the
input symbols {a.} makes this problem mathematically intractable.
However, by assuming that past decisions have been correct, we can
begin to approach the problem. The resulting MSE must then be
interpreted as a lower bound on the true MSE. Alternatively, if no
errors have occurred in the past, the MSE under this assumption
provides an indication of the noise immunity of the system (including
residual intersymbol interference).

Let r(t) = s(t)*h(t)*w(f) denote the overall impulse response,
where * denotes convolution. Under the assumption of correct past
decisions, the received sample taken at time t = kT is

Vi = 2, Talk—n — 2 bali—n + n(t)*w(t) | =ir
n=1

nN=—w0

and the mean-square error is then by definition

1 L)
MSE =K Z Tnlk—n + Z (rn - bn)ak—n
n=1

n=—w

+ @)% w(t) | i + (ro — Dax)
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A straightforward calculation gives

MSE = o 3 i+ alro— P+ i 3 (ra— b + o
n=1

n=—=c0

where

L —1

and
Ty

It can be immediately concluded that the mean-square error is
minimized by setting b, = 7., n = 1, 2, ---, which eliminates the
feedback coefficients {b,} from further consideration.

The problem we now confront is the dual minimization of

0 2
MSELs(O), w®] = i [ ¥ r-2rot 1+ % |
with respect to s(f) and w(f) when a constraint is imposed on the
average transmitted power.

The above expression indicates that, under the assumption of
perfect past decisions, the mean-square error is minimized by minimiz-
ing both the pulse precursors in the overall impulse response and the
output noise power, while keeping ro close to unity.

We give a precise formulation and solution to this problem in
Section IIT.

III. RECEIVER OPTIMIZATION
Writing the MSE in detail we obtain

MSE 0 - 2
.,Sg -1+ > [[_mw(r)'p(nT— r)d-r]
L] N L]
—2 " wop(= ndr + 55 [ wrndn, O
where

p(t) = s(B)*h(t).

Keeping s(t) fixed, and using a standard calculus-of-variation ap-
proach, results in an integral equation for w(t)

n=-—a®m

, o 0
p(= ) = Nw(®) + [ w0 (2 _pT = opel —0)dr, @)
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where
. Ny
NU _ %g‘
If in eq. (2) we set

U, = f w(r)p(nT — 7)dr,
we see that the optimum solution must have a representation in the
form

0
w()) = T _gp(nT — 1), (3)
where
1
o = ﬁ;—) (1 - UQ)
and
U,
n = = S n=3=—1
g N,

In (3) is revealed the structure of the optimum receiving filter. It is
composed of a maiehed filter having impulse response p(— t) followed by
a one-sided (anticausal) tapped delay line with weights equal to gn.

Linear equations involving the set {U,} can be obtained by first
multiplying both sides of (2) by p(kT — ), k¥ = 0, then integrating
from minus to plus infinity. The resulting linear system of equations is

0
Rk == N;JU.L + Z Rn—kLrn, k = 01 - 1“'! (4)

Nn=—10
where

Ro=Ro= [  p(= 0p(T — .
The system of egs. (4) can be solved by standard Wiener-Hopf tech-
niques and the details are given in Appendix A. The solution in terms
of the discrete Fourier transform of the sequence {U,}% . is

0
U@ = > U
No

RO (5)

=1
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where
M) = M+O)M-(9) = R() + Ny = 3. M.ein,
MH(0) = 3 yaei™,
n=0
and

M-(6) = M+(— ).

This is standard procedure making use of the well-known factoriza-
tion property of covariance functions. Methods for obtaining the
sequence {y.}¢ from the given sequence {E.}Z. are well documented
in the literature. One method is summarized in Appendix A.

Having specified the optimum receiving filter, we now obtain a
formula for the minimized mean-square error. The availability of this
simple formula will allow further optimization of the transmitting
filter.

Let wo(t) be the impulse response of the optimum receiving filter.
[This function solves the integral equation (2).] Substitute wo(t)
into (2), multiply both sides by wo(f), and integrate from minus in-
finity to plus infinity to obtain

" p(— we(t)dt = N j_ " wi(t)dt

+ ¥ ( f_:p(nT—t)wo(t)dt)z- (6)

n=-—w

Putting this into (1) with w(f) replaced by wo(t) we get a formula for
the optimized MSE

MSE[wo(t)] = ¢2(1 — Uo) = Nyoigo. (7

This result was obtained by Monsen* but unfortunately he did not
go any further. As it turns out, a much richer formula than (7) can be
obtained since U, can be expressed directly in terms of the spectrum
of the channel characteristics in cascade with the transmitting filter.
To carry this further, observe from (5) that

U, = de term in U(6)
Ny
=1-—= 8
7o ®
and consequently

MSE = o2 No. ©)
Y
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As it turns out, v, is functionally related to M (6) in a rather simple
manner. This relationship can be found in the literature but the deriva-
tion is short and so we briefly outline the approach.

Under very mild conditions on M (§) (see Doob,® pp. 159-161)

Z Tﬂeinﬂ :
0

n=

M(§) =

(10)
where 7, is real and positive. Since M (8) > 0, consider

" In M(9)dt = f' In [-,.,+ i_:l'y,.e""”:lde

— -

4 In [70 + X Tﬂe““”]dﬂ. (11)

—-r n=1

When the In’s on the r.h.s. of (11) are expanded in a power series

and the integrations are carried out (recognizing that all integrals
involving powers of exp {inf}, n # 0, vanish) we get

vE = exp [2% f_r In[R(6) + N;ﬂdﬂ}: (12)
where
R{B) = i Rﬂeinﬂ’
Ra= [ 1P@) it 22,
and

Iy
£

S
I

f () #h(t)esrdt.

After minor algebraic manipulations and changes of variables we
obtain by substituting (12) into (9)

T w|T
MSE = ¢2exp { — — In[Y(w) + 1]dw; , (13)
2T —=/T

o(e-2)

This formula, as far as can be determined, is new and its simple
form will enable us in Section IV to carry out an additional optimiza-
tion with respect to the transmitting filter.

It is instructive at this point to compare this formula with the one
obtained for a linear equalizer without decision feedback. Berger and

where
2

Y (w) = ﬁ, P> (14)

=—®
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Tufts® have found such a formula and from their paper we have that

T xIT
(MSE)tinear = 02 5= [Y(w) + 1] dw
21 Jxim
1
- (ro¥1) (15)
where
T w/T

) = g2 .
() =oig qm[ Jdw.
In terms of the same notation, (13) can be put into the form
MSE = exp{—(In[¥ («) + 1D} (16)

from which we get immediately that

—I1n @ — _4_1._ — .
MSE g <8 In[¥( )+ll> = <Y(w) + 1> (MSE)],“"M. (17)

As expected, the mean-square error with decision feedback is always
smaller than the MSE of a linear equalizer. Comparing (15) with (16)

AMPLITUDE SQUARED

Z 1 | | 1
0 1000 2000 3000 4000 5000

FREQUENCY IN HERTZ

Fig. 2—Amplitude-squared characteristic of typical voiceband channel.
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Fig. 3—MSE in dB vs binary data rate for channel shown in Fig. 2 without dec
{ransmission.

shows that both equalization methods yield the same MSE if and only
if ¥ (w) is a constant, i.e., there is no intersymbol interference.

Prior to optimizing the transmitting filter we wish to illustrate the
behavior of (15) and (16) for a typical voiceband channel as the signal-
ing rate 1/T is allowed to increase. An amplitude-squared character-
istic for a typical voiceband telephone channel is shown in Fig. 2
(the dashed line with zero transmission at zero frequency is typical).
Figure 3 shows the resulting MSE vs pulse rate for both a linear equal-
izer and a decision feedback equalizer when ¢2 = 1 (binary data) and
— 10 log Ny &~ 40 dB. The calculations were done numerically by
using (15) and (16). We note that the performance of the linear
equalizer deteriorates rapidly when the rate is greater than =2 3000
bits/second while the decision feedback equalizer deteriorates grace-
fully. The reason the linear equalizer shows such a poor performance
is that it must compensate for the missing energy around de. In
practice, of course, modulation is used to place the data energy at a
more suitable location in the passband spectrum to avoid this severe
null. To make the comparison fair, we artificially extended the channel
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Fig. 4——MSE in dB vs binary data rate for channel shown in Fig. 2 with de
transmission.

characteristic from about 300 Hz to 0 Hz to a constant transmission.
This is indicated in Fig. 2 by the dashed line parallel to the frequency
axis. Figure 4 shows the comparisons for this atypical channel. As
expected, the linear equalizer has a sharp threshold at approximately
the Nyquist rate but, as before, the decision feedback equalizer
deteriorates much more gracefully.

IV. TRANSMITTER OPTIMIZATION
The problem we address here is the optimization of (13) with
respect to the transmitting filter characteristics subject to an average

power constraint.
Let S(w) and H(w) be the Fourier transforms of s(f) and h(t) re-

spectively. The average power at the output of s(f) is

2 o0 2 o«
P=% [ eou=5 [ S
=%52iwf’”( 5 Sz(w—-E;—n))dm, (18)
_,-.,'T n=—m

where by S%(w) we mean |S(w)|%
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The problem at hand is to maximize the functional

I= [ In[K T S2)H2(s) + 1]dw

—x/T n
2 _"ﬂtzsz(wndw (19)

with respeet to the infinite set of functions {S%(w), n = all integers].

Where
2rn

2
smpﬁs@—ﬁjy K = 1/N{T
and \ is a Lagrange multiplier to be determined from the constraint
on the average transmitted power. Observe that these funetions
are independent over the range — #/T £ w = #/T and therefore
consider the variation of I with respect to, say, S2(w)

T KH(w)
aJ_LM[Kzgwmm+lwmﬂqwm)m.mm

When S%(w) = 0, setting (20) to zero implies

KHi(w)
K'Y Si(w)Hi(w) + 0

+Ar=0 (21)

for all w € [—#/T, =/T]. Now, assume that H2(w) > HZ%(w) for
[n|<|m| and w € [—=/T, #/T]. When this condition is satisfied it
is not possible to solve the system of equations given in (21) unless

S2(w) =0 foralln = j
in which case we get
KH%w) = — M KS%(w)H%(w) + 11. (22)

Substituting this into (20) indicates that the largest value is obtained
when S%(w) = S2(w) = S2(w) and furthermore A must be negative.

So far we can conclude that for channels possessing monotonically
decreasing amplitude characteristics, i.e., Hz(w) > Hi(w), — =/T
= w=7/T, when |n|>|m|, the optimum transmitting filter cuts
off at the Nyquist frequency «/7T. The optimum system allows no
transmission outside the band |w| > x/T. The restrictions imposed on
the channels are mild and are expected to be satisfied in most situa-
tions of interest. However, removing these restrictions makes the
problem slightly more complicated, and it is left up to the reader to
reason how it can be solved.
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Making use of this partial solution permits writing the mean-
square error in the simplified form

—In (1\@) _T 1r“Fln [KH?*(w)S*(w) + 1]dw (23)

0’3 2 —x /T

and the functional now to be further maximized with respect to the
inband structure of S?(w) reduces to

m|T
S2(w)dw.  (24)
1T

-

1[S(w)] = [_:’;m [KS () H2(w) + 1]dw +

As can be seen from (20) and (22), eq. (24) is maximized when

KH*(w) — Xo 0]

MK H (@) (25)

S*(w) = max [

where A = — Aq.
To determine the Lagrange multiplier Ao, two cases must be dis-

tinguished.
Case 1: KH*(w) — o > 0, for all |w| = /T
In this case, we get
1+ KH*S* = uH?, u = K/\g,
which when substituted into (23) results in an explicit expression for

the optimum MSE

MS T T
—ln( = ) =lInp+ ﬁ In H(w)de. (26)

a

The factor u is determined from the average power constraint in the
following manner. Use (25) and (18) to write

_ 6’3 =T " 1
P‘_wfn [I_{ KHz(w)]dw
oa
= Ic_Tz (I-L - A): (27)

where
T (7 1

Substituting the parameters K = 1/TNy and Ny = No/207 into (27)
gives explicitly
p=p+A, (28)
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where
_ P _ Average transmitted signal power _
P ( Ny 1 ) ~ Average noise power in the Nyquist band
2T

Thus (26) and (28) provide a complete solution for this case.

Case 2: There exists a set of w for which KH2(w) — g £ 0

The optimization procedure in this case involves the standard water-
pouring argument. To illustrate the nature of the solution we take
the situation where H?(w) is strictly monotonically decreasing in the
Nyquist band. This implies that there exists only one frequency wo
for which KH?(w) = X\, and consequently we get

IS S
BT H (w0

This gives one relation between the unknowns g and w, and another is
obtained from the power constraint. Since the optimum filter char-
acteristic is zero when w > wy, the signal-to-noise ratio is

o= e - ] @

and an explicit formula for the mean-square is

(29)

T [ M8 } =L [T - oo Brwo. 31)
a m™ Jo ™
We now briefly summarize how these optimized formulas are to

be used:

() For a given transmitted average signal-to-noise ratio p, solve
eq. (30) for wo.
(#7) If wo < 7/ T, use formula (31) to compute MSE.
(427) If wo = =/T, use formula (26) to compute MSE.

In Section VI we shall illustrate numerically the use of these
formulas.

V. SIGNALING FASTER THAN THE NYQUIST RATE

Here we examine the behavior of the optimized mean-square error
when the frequency support of an ideal unity-gain channel is smaller
than the Nyquist rate 17T. After deriving the optimized MSE for this
situation, the possibility of further optimization relative to the signal-
ing rate when the information rate per unit bandwidth is held fixed
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will be investigated. This has been an open question thus far and the
issue is whether increasing the signaling rate beyond the Nyquist rate
while decreasing the number of levels to maintain a fixed information
rate is ever beneficial.

Consider a channel having the characteristic

0
Hﬂ(w)={1' “Ea - (32)

where the sets E; and E, form a partition on the frequency interval
E = {w:0 = w = =/T}. By frequency support we mean the measure
of the set E» denoted by m(H2).

For this channel it is easy to calculate explicitly the mean-square
error. Observe from eq. (22) that for a piecewise constant channel the
optimum transmitting filter is a constant when « & E» and zero other-

wise. The minimum MSE is then calculated from (23)

—ln[MS ]= T (™ KRS (w) + 1]des

oz 27 J =1

T In [KS? + 1]dw
™ JuECE;
= Donm) (K8 + 1], (33)
where 8 is a constant to be determined from the power constraint
% 2 % S (E 34
P—TI_—T-1 QEE,de“wTsm( 2). (34)

From this equation and the definition of K = 1/(N,T) it can be
checked that
p = K§ = Average signal power

Average noise power in a band = m(Eq)

Substituting this into (33) gives the simple desired formula

MSE = o3(1 + 0)7°, (35)
where

o = ——t

™

Channel bandwidth _
2 X Signaling rate =

For fixed p, MSE — ¢2 when a=0 and, as expected, MSE — ¢2(1+p)™"
when « = 1. It is curious that as long as « = 0, MSE — 0 as p — .
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When the set E, is the interval 7 = {w:0 = w = «/Ty < #/T}, it
is referred to as being less than the Nyquist band. Since there is no
mathematical reason for making this distinction we shall refer to
“signaling faster than the Nyquist rate’” whenever & < 1.

We now investigate whether it is ever advantageous to signal
faster than the Nyquist rate. Clearly, for fixed ¢2 = (L? — 1)/3, or a
fixed number of levels, (35) shows that MSE degrades rapidly with
decreasing a. An interesting question, first raised by R. W. Lucky,” is
the possibility of trading L with « to further minimize the mean-
square error. This is the problem we address.

Let the source information rate be R = logsL/T bits/second.
The available bandwidth is equal to 1/(27)m(Es) cycles/second. Thus
the normalized information rate is

e R _ 2

- log,L
1 m(Es) [ Tm(E») ]
27 T
2 bits
= o logel eycle’ (36)
Writing (35) in terms of this quantity gives
208 — 1 1
M = . 37
SEE) = T Tty 7

Letting C = loga(1 + p) be the ultimate attainable rate according to
Shannon’s theory, eq. (37) can be put into the form

MSE(a) = (27=(¢—8) — 2-aC)% (38)

Note that, since L = 22¢/2 and the minimum allowable L is equal to 2,
the parameter « must be in the range (2/8, 1).

The problem initially posed can now be stated as follows. Find a
set of &’s, 2/8 = a = 1, which minimize eq. (38). We begin by setting

the derivative of (38) to zero,

dMSE(e) _

_ —a(C—E) —aC —
da (C — 8)2 & 4+ C2 ,

from which we find a unique stationary point
2 C 3
a = glogg[m] . (39)

Since MSE(0) = 0 and MSE(a) > 0, the value of « found above
must be a point where MSE attains a maximum. If this maximum is in
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the range (0 = « = 2/§), then the minimum value of MSE is attained
at the boundary (a = 1). The condition for this to be the case is
determined from (39).

3

From this we deduce that as long as § < $C, @ = 1 minimizes MSE.
For this region of & and C there is no advantage gained by signaling
faster than the Nyquist rate. Since C is channel capacity, . = ac
seems to be a critical rate. If the rate is greater than this critical rate,
the maximum point lies within the allowable range of «(2/§, 1) thus
raising the possibility that eithera = 2/8 ora = 1isa minimum point.
Suppose @ = 2/8 is a minimum point. Equation (38) gives for this
case

MSE (a = %) = 272008 = 27813 1 0.157. (41)

Thus we have found a region for which signaling faster than the Ny-
quist rate appears to be beneficial. But at this high level of MSE, we
are no longer justified in assuming that the feedback decisions are
correct most of the time. In fact, what is more likely to happen is
that errors begin to occur resulting in a larger value of MSE than
predicted by the error-free model. We are therefore led to the con-
clusion that a minimum point other than at « = 1 will render an MSE
to be outside the range of practical utility. To emphasize this point
further substitute (41) into (38) to get

MSE(a = 1) = [MSE(2/8) " . (42)

26 — 1
3
Thus « = 1/ 8 is & minimum point whenever

28 -1
3

[MSE(2/ s)]sfz( ) > MSE(2/ §)

or

3 2/e—-2.
MSE(2/8) > (5o e

As an example of the use of these inequalities, suppose that § = 3
and C = 3.5; therefore, « = % is the minimum point and the achievable
MSE = 0.198 which can be obtained with a binary system (L = 2).
On the other hand, M(a = 1) = 2-%:5(7/3) = 0.206 which can be
achieved with (L = 2!5 = 2.8)!!

It is interesting to see what MSE can be achieved when only a
linear equalizer is used. Using formula (15) and following the same
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reasoning as before yields an expression for the optimized mean-

square error

sl —a)p+1
(MSE)lineﬂ.r - 0'2 —fr‘l'T—.

In this case, unlike in the decision feedback case [eq. (35)], as p — 0,
MSE — 1 — @, when @ > 0. Thus the mean-square error cannot be
made vanishingly small as the signal-to-noise ratio increases without
bound.

Expressing (43) in terms of the normalized rate & we get

2 1 [pu ;f)1+ 1]. (44)

Again we seek to minimize (44) with respect to a in the range
(2/8, 1). It can be checked that (44) has at most one stationary point
in the range 0 = « = 1. Sincee = 0 is 2 minimum point, the minimum
in the range (2/8, 1) must lie on the boundary. Thus the condition for
achieving a smaller MSE when signaling faster than the Nyquist rate
(@ < 1) is

(43)

(MSE) linear —

28 — 1
3

p(1—2/8 +1=

or

26 — 1 1
—9c _ 1< — - _ -
p=2 =51 gE
Is it possible to find an & = C, § > 2 which satisfies the inequality
(45)? A straightforward analysis reveals that the answer is negative.
In other words, the Nyquist rate is optimum provided the information

rate is less than channel capacity.

(45)

VI. APPLICATION TO A CABLE CHANNEL!

This section will illustrate the use of the formulas developed in
previous sections in a particular application. For this purpose we
choose a cable channel having frequency characteristic

H(f) = exp {N— 2iaf}. (46)

We shall develop in detail the applicable formulas, provide asymptotic
behaviors, and exhibit numerically the relevant parameter trade-offs.
For comparison purposes, the applicable formulas for the optimum
linear equalizer will also be developed.

tI am indebted to Dr. Robert Price for calling my attention to Ref. 8 where

related work is reported. The paper is in Japanese ; however, Dr. Price has an English
translation.
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We begin by first considering a suboptimum system where the
transmitting filter is flat across the Nyquist band and zero outside.
For this case, the minimum attainable mean-square error is [eq. (23)]

/T
M, = exp {— rz f In [S2Ke~V2#a/* 4+ 1]dw , (47)
0
where
M, = MSE/q2, |H(w)|? = g~ Viwalr and K = 2¢2/TN,

are to be determined from the average power constraint. Since the
transmitted power P = (¢2/T)S?, we find that S?K = 2PT/N, = p,
the transmitted signal-to-noise ratio, where the noise is measured in
a band = 1/7. Substituting these constants into (47) and making
some changes of variables result in

L]
Mg = exp {— 2[ In [pe~V4¥v + 1 ]dy ¢, (48)
0

where 8 = a/T. The parameter V28 is seen to be proportional to the
loss of the cable in dB at the Nyquist frequency 37

We are interested in the behavior of (48) when p and 8 are varied.
While it is not possible to express this integral in a closed form, it is
possible to obtain a rapidly converging series in the two parameters of
interest from which asymptotic behaviors can be deduced. Appendix B
shows the details of the development. Different power series apply in
different regions. The first series applies when In p < V28 and the
second In p = V28. The results are as follows

1:V28=Inp >0

- _(npptatlng _ o [ee
o e = 68 Eng'l (=D n?
g 1[1
it _— a+l — - _m nl. 49
+ﬁng’1( b n’[.ﬂ" (o™ ] (49)

2:Inp=V28>0
e‘&—f]"

*“lnMd:lﬂp—g"[z_B-‘i'Jiil(—l)""'ln—];[T
lw — n+l l_(iﬁ)”].
tpE oy (5)] @

It can be checked that (49) equals (50) when In p = V28. The first
asymptotic behavior is deduced from (50) when p — = and V28 is
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held fixed. For this case we get
V28

(51)

Another asymptotic behavior is deduced from (49) as 8 — « while
p is held fixed. In this case

My~ g—‘ﬂ'(!)fﬂ, (52)
where
_(np)P+=lnp = e 11
g(p) = 8 + X (=D
In order to make possible performance comparisons, we develop
similar formulas and asymptotes for a system employing only a linear
equalizer. The minimum mean-square error applicable in this situa-
tion is obtained from eq. (15). After substituting the cable char-
acteristic we obtain

4
ML=2[ [peVifv + 1]dy, (53)
0
where
ML - (MSEzlinunr )

Og

Here, as in the decision feedback case, rapidly converging series can
be developed from which asymptotic formulas are deduced. The
detailed calculations are also given in Appendix B. The desired results
are

1:V286=Inp>0

3(In p)? + =* \/ﬁ
My=1-—2"RPL T L 201+ peVeB
L 63 ,Bln pe™?]

_.|..

M

(—1)"“1[ +(e—ﬂ)] (54)

1 n?

Tl —

n

2:lnp>V28>0

28
My = yfgn [1+ﬁ]

2o A ()] @

p"

The asymptotic formulas are readily deduced from (54) and (55).
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When p — « and g is fixed we get
1

—Va
o = [\G-5+5 |

On the other hand, when 8 — =« and p is kept fixed,

where

_ 3(ln p)* + =* n D (57)

My~ 1 68 8’

where

o 11
D = — 1) — =,
Y
At this point it is possible to make some judicious performance
comparisons between the two schemes. The first observation is that,
in order to get a small mean-square error, p must be large and greater
than e¢¥?8, In this case, (51) and (56) apply. On the other hand, when

V28 > In p, and 8 — o, performance deteriorates rapidly as can be
seen from (52) and (57). Suppose now that a large signal-to-noise
ratio is available and we wish to obtain the same mean-square error
in both schemes. How do the signaling rates compare?

Equating (51) and (56) shows that 84/8z ~ 9/4 when these quanti-
ties are large. In other words, asymptotically, the signaling speed of
the cable may be increased by more than a factor of two with the
use of decision feedback. Clearly when 8 is small no significant ad-
vantage can be obtained from using decision feedback equalization.

To exhibit these phenomena further, we have used numerical
integration to evaluate (49) and (53) and checked the accuracy by
summing terms in the various power series. The results of these
calculations are exhibited graphically in Figs. 5 through 9. A striking
feature in all these curves is the manner MSE degrades as 8 increases.
The linear MSE exhibits a sharp threshold while the MSE for the
decision feedback equalizer degrades much more gracefully.

Next we wish to examine the possible payoffs when the inband
characteristics of the transmitter filter are optimized. To do this
explicitly, we follow the procedure outlined in Section IV. Equation
(30) must first be evaluated for the cable characteristics. (We omit
all straightforward integrations and algebraic manipulations.) Re-
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Fig. 5—MSE in dB vs V28 for p = 20 dB.

writing eq. (30),

P T [w 11
b= (1) - e mw |
2T

!
where

Bo = a/T,, wo = 7/T, g=a/T,

H(w) = eVeualr)

and

F(z) = eV*(Nz — 1)41 ~ 2/2 when z is small.
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Fig. 6—MSE in dB vs V28 for p = 40 dB.

The explicit evaluation of MSE is as follows: For a given p, 8 solve
(58) for Bo. If 8¢ > B, calculate MSE from eq. (26),

w/T
—1n[M82 ]=lnMd=]np+§f In H2(w)dew.
1}

a

An explicit evaluation gives

F(2p)’

p+—|6ﬁ

On the other hand, if (58) yields a 8y < 8, use formula (31) to compute

Mg = Bo = B. (59)

T
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Fig. 7—MSE in dB vs V28 for p = 60 dB.

MSE. The explicit evaluation for this case gives

My = e 3BVl g, > g (60)
1 1(Bal B
= B H

? + F(284)/Bo
0

where ¢¥2% was obtained from (58). It can be checked that when
Bo = Bin (58), eq. (59) equals (60) as it must.

Let us now pause and examine what these optimized results are
telling us. Suppose 3 is fixed in (58) and p is allowed to increase.
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Eventually a 8, will be found which satisfies (58) and which ultimately
will be greater than 8. The physical implication of finding a 8, which
is less than 8 is that the transmitting filter cuts off before the Nyquist
frequency 37'. This will oceur only when p is relatively small and thus
results in a poor MSE. Practically, the region of interest is when p
is large such that 8o = B, in which case the filter cuts off at the Nyquist
frequency. In this region (59) applies and, upon comparing (59) with
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the asymptotic suboptimized result, (51) shows that
eiV2B < etvas
F(28) =
o+ (Bﬁ) p

Since ming [F(8)/8] = 1, the optimized result appears to be
asymptotically equal to the suboptimized result. In other words, in
the region where In p > V28 and p — = no benefits are obtained from
inband optimization. This is also evident from eq. (25) since when In p
is large relative to V28 the structure of the optimum transmitting
filter is a constant. The situation where 8y < g is slightly more com-
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plicated to compare. Here inband optimization should perhaps be
beneficial. However, comparisons in this case between the optimized
MSE and the suboptimized ones must be made on the basis of the
same transmitted power rather than signal-to-noise ratio because the
systems operate over different bandwidths.

Again for comparison purposes, we summarize the formulas that
apply when the inband characteristics of the transmitting filter in a
system using only linear equalization are optimized. Berger and Tufts®
carried out such an optimization and the procedure is similar to the
one carried out in Section V. Adopting our notation and the same
definition of parameters as above we can obtain explicitly the follow-
ing formulas applicable for a linear system.

Choose a p and a 8 and solve for 8, in the equation below:

_ Bl 4 vae _ 1 ]
o= b [BU F(8y/2)eV® — 2 F (260 |. (61)
If By > B, calculate
4 2
[E F(a/z)]
Mg = ——7(2—3)4, Bo > 8. (62)
p+ ——
8
If By in (61) is < @, calculate
Mi=1- %+ %F(ﬁn/?)ff e, (63)

It is now possible to cross plot the formulas derived in this section ad
nauseum. We shall show only two sets of graphs. Figures 10 and 11 show
four curves of MSE/¢? in dB vs V28 where E = 2aP/N, and P is the
transmitted power divided by the parameter No/2a. In each case we
plot the optimized results and the suboptimized results. The optimized
decision feedback equalizer results were evaluated from equations
(58), (59), and (60) and from equations (61), (62), and (63) for the
linear equalizer. The nonoptimized results are given in (48) and (53)
respectively. In all cases E = p/8 in dB. Marked on the curves is the
value of V28, where the transmitting filters cut off. We show two
cases, 10 logieE = 60 and 10 logioff = 100. It appears that inband
optimization does not provide a great deal of performance enhance-
ment. As expected, inband optimization yields more improvement in
the linear equalization scheme than in decision feedback.

We have also evaluated the optimized results as a function of the
actual signal-to-noise ratio p, where the noise is measured in whatever
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band happens to be optimum. We found insignificant differences
between these and the suboptimized results shown in Figs. 5 through
10.

In concluding this section we wish to stress that in practice error
propagation problems may negate the indicated theoretical results for
this channel. When the MSE is large, errors will result. In addition, the
tap gains of the feedback filter may become quite large causing those
errors which do result to propagate.
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APPENDIX A
Solution of the Wiener-Hopf Equations
We wish to solve the set of linear equations

0
Ry = X M. .S, k=0-1,—2---, (64)

n=—o

where {Ri}2cand M, = R+ Ngbrx (0o = 1,n = k;8ni = 0,
n # k) are given.
Since {M,}=. is a correlation sequence with positive Fourier

coefficients it is well known that it can be represented as the discrete
convolution of a sequence {M,}% . and a sequence {M F1&, namely

M, = % MMz, foralln (65)
Let the sequence {X .} 2. be determined from
R, = ;i, MifX.,  alk (66)
Substituting (65) and (66) into (64) gives

= 0
Z}] Mj+ {Xk_,' - z: SnMﬂ__k_j} = (. (67)
7= n=—o
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Clearly a solution of

0
Xk = z S"AI,.:_D k é 0, (68)

n=—og

is also a solution of (67).
Define the two-sided diserete Fourier transform of a sequence { X, |2 .,

by
X(0) = 3 X,

Take the transform of both sides of (66) to obtain
R(8) = M*+(8)X (). (69)

n=—m®

0
The one-sided transform ( > ) of (68) is

X—=(6) = S~ (6) M— () (70)
and X—(6) is obtained from (69) as
X-(0) = [%}%—)]_, (71)

where [-]_ stands for “‘projection to negative integers only.” To
obtain the projection, expand [ -] in a two-sided Fourier series and
retain only the part of the series containing negative/positive coeffi-
cients (including zero).

Thus the desired solution is

—(a) = L R(6)
50 = 37 |t ) 7

To proceed further, observe that since M(8) = M+(8)M—(8) and
M(6) = R(6) + Ny it is possible to calculate explicitly
R(6) — Ny .
|| -0+ (73)
where 7, is the de coefficient of M+ (8).

The final solution for S—(6) is therefore
N
_’11(_(8)70‘
As pointed out in the text, there are various methods available for

caleulating M=(8) from a known function M (8). We briefly outline
one such approach. Since M(8) > 0, 0 =6 = 2, In M(8) may be

S-(8) = 1 — (74)
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expanded in a two-sided Fourier series

InM@) = 3 vient + 3 yier. (75)

n=—xx n=0

Knowing the sequence {vi} 2. we can get immediately

M+(8) = exp <l Z 'y"'e‘"“’} (76)

n=0

and
0
M—(8) = exp { P> %Te"“"]-
Notice that the de term of M+(8) equals the de term of M—(6).

APPENDIX B
Evaluation of Integrals
B.1 Decision Feedback

The detailed evaluation of
i
=2 f In[1 + pe—Ve8u]dy @7
0

is accomplished as follows: Change the variable of integration to
= (v4B8y — In p) which gives

1 V2B—1n p
I= 5, In[1 + e=][x + In pJdz. (78)

Assume V28 > In p > 0 and write (78) as

(1)

- ‘19 L'”x(mp — 2)dz + %3 f'” (Inp— 2) In[1 + e=Jdz
0

I =

=10

1 VZB—1n p
+1 f (x+p)In[l+e=ldz (79)
8 Jo

(125)3 (h’; P) B f (lll p — T) In [1 + e_,;:ldx

RS Inp) In (1 + e=)d
E.[ (x + Inp)In (1 4 e *)dz.
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Sinee 2 > 0 in the range of integration, expand
In[1+e-]= % (- e
n=1

and substitute into (79) to obtain

p=Wel Ly [P g ) - Bellne)

68 B n n
n B.(¥28 — In p) n Inp A.(¥28 — In p) (80)
n 8 n
where
A = -y
and
B.(t) = 1 — et — nte “5.

nt

Collecting terms and recognizing that

L 1 ,".2
—_ n+l = —=
,.2‘1 (=1 n? 12

we finally get
I = (lnp)3+1r2lnp Jr 1y (€ (pe— ﬁ)n
ﬁ n= 1 n?

PG RN B

When In p > V28 > 0, (77) can be expressed in the form

1_}3 " @4 Inp)In[l+edo
—Ilnp

1 —(1n p—28)
+ 5 f (r 4+ In p) In [1 + e—=]dz
0
In
= %-i f ’ (Inp — z)[z + In(1 + e *) Jdx
0
1 1n p—v28
i}
At this stage In (1 + e ) is again expanded in a power series and when
the terms are collected we obtain

nv28
I——lnp——\/—+\[2(—1)"+le ’

+3 2 (= D) o[- ). (83)

(Inp — 2)[x + In (1 + e=)Jdz. (82)
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B.2 Linear Equation
The integral we wish to evaluate here is

]
I=2 f (1 + pe—VeAu)=1dy. (84)
0

We follow the identical procedure as in the previous case. First change
the variable of integration to obtain

V2p-lnp /o 4 lnp i
ﬁfl“ (1+e_1)da,. (85)

Assume that ¥v28 > ln p > 0 and write

I= é(vf—ulnp + ./;lm_ln’)

_ 1 ¥i-ne (z 4 Inp) e ez (lnp — )
-5 /. ar+g [ dz

1+ e* T 14e*

%ﬂ(@ — In p)(¥28 + In p)

+i3n>:1 — 1)"[B,(¥28 — In p) + B.(In p)]

lnp Z (— 1) [A (\/—3 ]np) — An(lﬂp):l

1 2 2
=1- (;;) - g—B + V2/81In [1 + pe=28]
1 & 1/ 1
+3E (St (o)) - (36)

Whenlnp>\’§3>ﬂweget

1 f‘“ﬂe *(Inp — x)d 1 [“P—"_ﬂ e*(lnp — x)d
0

I
146 8 1T+e-

i~ ™

]

(= Dm{n pd(ln p) — B, (In p)
+ In pA.(In p — ¥28) + B.(lnp — ¥28)] (87)

and after collecting terms we finally obtain

i ] 3 oA ()]

II
Ms

Il

n
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