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Under equilibrium conditions, the sample average of the delays en-
countered by all the calls submitted during a given time interval is an
unbiased estimate of the mean of the delay distribution. If some of the
delays are not observed, the resulting sample average need mo longer be
an unbiased estimator of the corresponding population mean. This is the
case when, for instance, only a limited number of delays can be limed
simultaneously. The purpose of this paper 1s to investigate these biases
for queuing systems when only one clock 7s available and thus one delay
only can be measured al o time. It vs shown that, regardless of the order
of service, the expected value of the observed average delays is always
smaller than the mean watting time for all calls.

Although the average delay on all calls is independent of the order of
service, the measurement biases resulting when only one delay can be
measured at once depend on the queue discipline. In particular, we shall
show that the average delay for all calls is always larger than the average
delay of the observed calls even if these calls are always served last (ob-
served-call served-last).

I. INTRODUCTION

The following remarks due to J. F. C. Kingman appear in the
Proceedings of the Symposium on Congestion Theory held at the Uni-
versity of North Carolina in 1964 (Ref. 1, pp. 314-315): “To illustrate
the pitfalls of inference from congestion systems, let me tell a (more
or less true) story. It was desired to estimate the mean waiting time
in a particular queuing system, and for technical reasons, only one
customer could be timed at once. Thus the waiting time w; of a customer
was measured. When he entered service, the next customer to arrive
was observed and his waiting time w. was noted. This procedure
continued, the waiting times wj;, ws, --- being measured, and, for
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large n,
Y wy + we + -+ + wn)

was used as an estimate of the waiting time. It is, however, strongly
biased and inconsistent, because of the selection of the customers to be
observed. The mean waiting time is overestimated by a factor which
becomes arbitrarily large as the traffic intensity approaches one.” We
stress that, according to this sampling procedure, a customer is observed
if and only if it arrives when the clock is free.

Another instance of biases induced by the measurement procedure
is reported by Oberer and Riesz.? These authors have investigated the
possibility of estimating blocking probabilities in telephone networks
by means of test calls generated by a single source repeatedly calling
a dedicated number. Their study shows that the proportion of blocked
test-calls does not yield a suitable estimate of the grade of service as
it is markedly biased downwards. As expected the bias becomes larger
as the intervals between consecutive (nonoverlapping) test-calls
becomes smaller. It is also established in Ref. 2 that the relative
test-call biases increase as the blocking probability decreases.

It is worth noting that the biases studied in Ref. 2, as well as here,
are of a different sign than those referred to by Kingman. Much more
important, however, is the fact that measurement techniques which,
superficially, appear to be adequate may prove to be very unreliable.
It is thus becoming increasingly clear that great care is required in the
design of performance measurements for stochastic service systems
so that unanticipated biases are not encountered.

The purpose of this paper is to investigate the effects of partial
sampling on the estimate of the mean (overall) waiting time obtained
by averaging measured delays. The biases induced by such limitations
will be studied here for M/G/1 and GI/M/s when at most one call
can be observed at once and the estimation procedure is as described
by Kingman. We shall see that, in these systems, the equilibrium
average delay of the observed calls is always smaller than the equi-
librium average delay for all calls.

It is well known that the average delay for all calls is the same for
all queue disciplines which are independent of the lengths of the
individual calls (no other type of queue disciplines will be considered
here). As we shall see, this is not true of the mean measured delay when
only one delay can be recorded at a time. In this case, both the un-
conditional and the conditional average delays' are (as expected)

t As customary, unconditional and conditional delays pertain to arbitrary and
delayed calls respectively.
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smallest when the observed calls are served first and largest when they
are served last. (In particular, the second extreme case occurs in
systems with first-come last-served queue discipline.) Furthermore,
in view of the general inequality mentioned at the end of the preceding
paragraph, the upper bound for the unconditional average delay of
the observed calls (which is reached when the observed calls are served
last) is always a strict lower bound for the unconditional average delay
for all calls!

The preceding result pertains to unconditional delays and does not
always hold for the average delay of those sampled calls which en-
counter a delay. Thus for M/M/s, the conditional average delay for
all delayed calls is equal to the conditional average delay of the ob-
served delayed calls so long as these are always served last. (Note that
for M/M/s, the average delay of the delayed calls is equal to the
average length of the busy period, and that the waiting-time distri-
bution of the observed calls coincides with the busy-period distribution
for the observed-served-last measurement procedure.) In contrast,
for the M/T:/1 queue, the upper bound for the conditional average
delay of the observed delay calls is larger than the average conditional
delay for all delayed calls when & > 1, the inequality being reversed
whenever 0 < k& < 1. (T, is used here to designate the gamma distri-
bution with mean 1 and wvariance k—'. Thus M/T;/s is identical to
M/M/s. When k is an integer, I'; is the Erlangian distribution often
designated E,.)

Expressions for the moments of the equilibrium delay-distribution of
the observed calls are given for M/G/1 and first-come first-served
queue discipline. The equilibrium delay-distribution of the observed
calls is also derived for M/M/s with order-of-arrival service. (Cor-
responding results for the “observed-call served-first” and the ‘“‘ob-
served-call served-last’”’ measurement procedures are immediate.) These
formulas are used to show that the biases induced by partial sampling
can be quite substantial.

When the average service-time is unity, an assumption made
throughout, the average delay, EW, for the single-server queue
M/G/1 is given by the formula (Ref. 3, pp. 46-50):

EW = am:/2(1 — a),

where a is the server occupancy and m; is the second moment about 0
of the service-time distribution. Since ms can be arbitrarily large, no
bound can be placed on the value of EW. But when only one delay
can be timed at once, we shall see that the expectation of the observed
delays cannot exceed 1/(1 — «). Therefore for any prescribed value
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of a, it is always possible to find service-time distributions for which
the ratio of the average delay for all calls to the average delay of the
observed calls exceeds any given bound.

To simplify the exposition we restrict ourselves to full-access delay
systems with recurrent inputs in which delays are measured by means
of a single clock. Some of the results obtained below can, however,
be extended to more general situations.

(In the sequel, W, with or without affix, is used to designate the
waiting time of an arbitrary call while Wy, with or without affix, is
used as the generic symbol for the observed delays when only one
clock is available.)

II. A GENERAL DELAY FORMULA

Consider the queuing system GI/G/s and suppose that the arrival
and service-time distributions are such that equilibrium can be
reached. (To avoid trivial qualifications we assume throughout that
the mean interarrival time is finite. For the same reason, the under-
lying distributions are also supposed to be such that simultaneous
occurrences of events need not be considered.) The purpose of this
section is to derive a formula relating the average delay of the observed
calls to the equilibrium probability, ®, that an observed call has
immediate access to a server. To this end we prove first that

®=(1—-B)(1+4)/[(1 - B)(1+4) + B], (1

where B is the equilibrium blocking probability for all calls and A4 is
the expectation of the number of unobserved calls originating during
the waiting time of an arbitrary observed delayed call.

It follows from (1) that the probability that an observed call is
blocked is always (strictly) smaller than the overall probability of
delay (so long as B 5% 0 or B # 1, two trivial cases that we exclude
from our considerations). This, of course, is a consequence of the fact
that all nonblocked calls are observed whereas, with one clock only,
some delays may not be recorded.

We turn now to the proof of (1). Consider an infinite sequence of
consecutive calls and for the sth call ( = 1, 2, ---) let

X, = 0 if the 7th call is delayed,
' 1 if the sth call is not delayed,

0 if the th call is not observed,
0 if the ith call is observed and not delayed,
1 if the 7th call is observed and delayed.

Y;
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Let € > 0. Then assuming that the system is in equilibrium when
the first call arrives, we have, by the integral stationarity theorem
(Ref. 4, p. 419),

n— (X1+Y1+f)+‘+(Xn+Yn+e) -Ej(‘Xl_i_le)_}-é

and

hy Kot V) 4ot (X, + V) _ B+ ¥)
n— (X1+E)+"'+ (Xn_l_e) EX1+E !

with probability 1. However, since (Ref. 4, p. 421)
Xy +---+ X,
n

3)

lim =EX1=PI'[X1=1]>O,

n— «

with probability 1, there is, for almost all realizations of the process,
an integer n such that the ratios

X4+ X e
X+ V) F X T V) ="

are well defined. Hence, by (2) and (3), we have
EX, Xi+---+ X,

< lim
E(X1+Y1)+E n— oo (X1+ Yl)++(Xn+Yn)
< EX], + €
T EXyi+ Yy’
with probability 1 and, letting € tend to 0,
lim Xit. -+ X, EXy (4)

moe X1+ YD) 4+ (XoF Vo) EX+ V)’

with probability 1.
[The preceding derivation makes use of the fact that the station-
arity—and hence the integral stationarity—of the processes |X;,

t=1,---}and {X;+ Y;, 2 =1, - - -} follows from the property that
the random variables X;and Y;,7 = 1, - - -, whose means are finite, are
“translates” defined on the stationarity queuing process (Ref. 4,
p. 417 ff.).

[The formulas in Ref. 4, p. 419, Theorem A, involve conditional
expectations with respect to fields of invariant events. Under the
present circumstances these expressions can be simplified. Indeed
let us specify the state of the system, 7, at time {, by means of the
vector whose components are the arrival time of the last request
placed before ¢ and the elapsed portions of the service-times in progress
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at time £. Then the only invariant sets (Refs. 4 and 5) of the process
(7, — ®» <t< =} are the whole space and the null-set. This
property, in turn, implies that the conditional expectations of the
random variables X; and X+ Y relative to their invariant fields
can be replaced by the unconditional expectations EX; and E (X + Y,),
respectively. These and other similar substitutions are made here
without formal justification. ]
Consider now an infinite sequence of observed calls and let

7. — 0 if the ¢th observed call is delayed,
# 7 11 if the ith observed call is not delayed.

Then (Ref. 4, p. 421)

i Lot Zatt 2 g )

n—® n

Since (4) and (5) are both equal to the proportion of observed calls
with zero delay over an interval of infinite length, we have

® = EXy/E(X1 + Ya). (6)

We note that EX, is equal to the probability that a call (observed
or not) is not delayed. Hence

EX,=1— B, (7
and to complete the proof of (1) we have to show that
EY,=B/(1 + A). (8)

To this end consider again a stationary sequence of observed calls and
let A; be the number of unobserved calls placed during the waiting
time of the ith call that is both observed and delayed. Then we have
(Ref. 4, pp. 419-421)

(9)

lim " RS S
amen+ A1 +--+A, 1+ EA, 1+4°

with probability 1.
Furthermore, by the integral stationarity theorem (Ref. 4, p. 419)
and a simple e-argument of the type used in the proof of (2), we have:

. Yo+t V. _ EY,
m o r T a-xy Ba-%Xy 0

with probability 1.
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Since the left-hand sides of (9) and (10) are both equal to the propor-
tion of delayed calls that are observed, we have

EY; = E(1 — X,)/(1 + A) = B/(1 + A).

This completes the proof of (1).

Our next step will now be to relate A to the average delay, EW,,
of the observed calls. Let W,, be the delay of the 7th observed call
and let U; be the interval between the end of the 7th and the beginning
of the (¢ + 1)st measurement. Let also [/, be the interval between
the arrival epochs of the nth and (n + 1)st call (in the whole sequence
of calls, observed or not). Then we have:

Wy +U)+-+ W+ Us) =L +---+ Ig,, (11)

where K., a random variable, is equal to the number of calls placed
during the interval that starts with an observed call and ends just
before the beginning of the (n + 1)st measurement. By the stationarity
theorem, we have (Ref. 4, p. 421):

Hm (W1*+ Ul) +"'+ (Ilrﬂ*+ Uﬂ)

—— n

=E(Wy+ Uy, (12)

with probability 1, and, by the strong law of large numbers (note
that the 7,’s are, by assumption, independent random variables with
finite means and that K, = n),

lim L+ I+ -+ Ik, —
n— o Kn !

with probability 1, where a~! is the expected interarrival-time.
Furthermore,

Ki=[Z:+(1-Z)0+A)]+--+[Z.+ (1 —-Z,)0 + A4,)],
so that

lim K= = B[Zi+ (1 — Z0(1 + A)] = & + (1 — &)(1 + 4), (14)

now T

with probability 1.
Combining (11)-(14) we find that

abE(Wy +Uy) =1+ A(1 — &). (15)

(13)

In particular, when the input is Poissonian, EU; = o™ and (15)
reduces to
abW,, = A(1 — ®). (16)
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Thus, taking (1) into account, we find that:
EW, = EW,, = (8 + B — 1)/a(1 — B). (17)

It should be noted that the preceding relation is valid regardless of
the order of service.

When the calls are served in order of arrival, (16) is an immediate
consequence of the fact that the waiting time of any given call is not
affected by the stream of requests placed after its arrival epoch. This
is also true when the observed calls are always served first and (16)
can then be written down with equal ease.

We note that (17) can be obtained quickly whenever the epochs
at which measurements begin or terminate constitute a renewal
process. In such cases, the expected number of observations in time ¢
is (asymptotically)

(EW, + a~t)~1-t + 0(1), ¢ large, (18)

and the expected number of arrival points at which the system is
empty in time ¢ is

a(l — B)-t+ 0(1), t large. (19)

The long-term proportion of observed calls with no delay is given by
the ratio of (19) to (18) with probability 1 (cf. Ref. 6, p. 264, alter-
native form of Theorem IV):

a(l — B)(EW, + a™). (20)

Since the probability ® that an arbitrary call is not delayed is in-
dependent of the past, a simple application of the strong law of large
numbers show that (20) may be equated to ® and (17) therefore holds.
An instance where the preceding argument can be applied is the
M/G/1 system with observed calls always served last. With this
order of service, there is exactly one call in the system at the termina-
tion of each measurement. These epochs constitute a renewal process
since they also coincide with the beginnings of the service-times of
the observed calls. With an obvious change, the previous argument
remains true for M/M /s with observed-calls served-last.

III. TWO EXTREME CASES

In this section we show that if only one clock is available then the
expected average delay of the observed calls is largest when the
observed calls are served last and smallest when the observed calls
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are served first. These relations are not statistical: They are satisfied
by all the realizations of the process over any finite or infinite time
interval regardless of the arrival and service-time distributions. (To
avoid ambiguities, we assume that the timing device is free at the
beginning of the realizations.)

We note first that under any measurement procedure, all the calls
which arrive when all the servers are busy, but no request is waiting,
are observed. These calls are the only delayed calls that are observed
when the observed calls are served last. Therefore (z) the number of
observed delayed calls takes its smallest value for the observed-served-
last procedure and (##) during the measurement of a delay, D, under
this particular procedure any observed delay under any alternate
single-clock measurement procedure cannot exceed D. Combining these
two facts and taking into account that all calls with zero delay are
observed we may conclude that the observed average delay takes
always its largest value when the observed calls are served last, as is
the case for the first-come last-served queue discipline.

When the observed calls are served first, we note that (i) the number
of observed delays over any busy period (initial or not) is never smaller
than for any other single-clock measurement procedure and (if) to
each observed delayed call there corresponds, under any other single-
clock measurement procedure, one call whose delay is at least as
large and this correspondence involves all the observed delays under
the alternate procedure. All calls with zero delay are again observed
and the average delay of the observed calls takes therefore its smallest
value when the observed calls are served first.

Clearly the conditional average delays of the observed calls do have
the same property.

1v. BOUNDS FOR THE AVERAGE DELAY OF THE OBSERVED CALLS IN
M/G/1
The object of this section is to determine the upper and lower
bounds for the average delay, EW,, of the observed calls in M/G/1.
These bounds, as we have seen, are reached when the observed calls
are served last and first respectively. Under the present conditions,
formula (17) may be written as follows:

EWe=(@®+a— 1)/a(l — a). (21)

For a given server occupancy a, EW, is a monotone inereasing function
of ® = &(a). Since & < 1, (21) implies that EW, < (1 — a). Hence
fora < 1, EW, is always bounded (but EW is not).
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It will be convenient to define here the service backlog, at a given
instant ¢, as the sum of the service-times of all waiting requests plus
the residual of the service-time of the request being served. [When
calls are served in order of arrival, the service backlog is equal to the
virtual waiting time (Ref. 3, p. 59 ff.).]

Now let F(:) be the stationary cumulative distribution of the
service backlog at the end of a measurement. The probability, ®(e),
that an observed call does not suffer a delay is simply the Laplace-
Stieltjes transform of F(-) evaluated at « since it is equal to the proba-
bility that no call originates during a time interval whose length is
that of the service backlog:

®(a) = f e~=tdF ().

Writing o(-) for the Laplace-Stieltjes transform of the service-time
distribution we have the following inequality :

P(a) = o(a). (22)

This inequality is a consequence of the fact that, at the conclusion of a
measurement, the service backlog may be represented as the sum of
two independent random variables, one of which is the full service-time
of the request whose delay has just come to an end while the other is
equal to the sum of the service-times of all the waiting requests.
Writing R(-) for the c.d.f. of the latter and S(-) for the service-time
distribution, we have:

B(a) = f: e—atdfﬂ‘R(a — 9)dS()

Il

o () ﬁ " e=dR(1) £ ola).

When the observed calls are served last,

1 for 1=0,
k@ = {0 for t<0,
and
®(a) = o).
We can therefore conclude that
ol@) +a—1

EW, < (23)

a(l — a)
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We are now in a position to prove that the average delay, EW,, is
always smaller than the average delay for all calls (observed or not).
Since the service-time is unity, we have:

= 2
o) S ol@) = [Temds@®) <1-a+ %07,

where m; is the second moment of S about the origin. Hence, substi-
tuting 1 — a + a*ms/2 for o(a) in (23) we find that, irrespective of the
service order:

g _

By (23) and the equality in (24) we also have:

EW/EW, > %"2

so that, for any given «, we can always find a service-time distribution
such that EW/EW, exceeds any preassigned value.

We now derive an absolute lower bound for EW,. As shown above,
this bound can be found by assuming that the observed calls are
served first. Our first step here is to determine 4.

For the observed-served-first procedure, the circumstances under
which a positive delay can be observed are as follows: at some time
the clock is not in use and a service-time begins, and during this service-
time a new call arrives. Thus 4 is the conditional expectation of the
number of arrivals minus 1 during an arbitrary service-time given that
at least one call is placed during a service-time. A, therefore, is given
by the formula

-

A

(- 1)%e—==d3(z) / [] " (1 = edS (1)

0 n=

L Lot — 1+ e=]dS (1) / ﬁ T (1 — e=9)ds (1)

[« =1+ c(@)]/[1 - ofa)]

By means of (1) and (21), it is now readily shown that, for the ob-
served-calls-served-first procedure:

Il

[l

)

Bla) = 2—a—o(a)
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and
_ ola) +a—1
* a2 —a—c@)]

EW

Summing up, we have the following inequalities for ® and EW,,
regardless of the measurement procedure:

l—a

m < ®(a) £ ola), (25)
and
ola) +a—1 cla) +a — 1
a[2 —a — o(a)] s EW, = “a(l —a) ‘ (26)

For exponential service-times, (25) and (26) reduce to

(1—a?)/(1+a—a) =®i(e) =1/(1+a),
a/(l +a—0o) SEW, =a/(1 — a?).

(The subscript 1 is added to ® and EW, to indicate that the service-
times are exponentially distributed.)

V. THE SINGLE-SERVER QUEUE M/G/1 WITH ORDER—OF-ARRIVAL
SERVICE

In this section we consider the M/G/1 queue under the assumption
that the calls are served in order of arrival. Our principal aim here is
to determine ® = ®(a) and then, by means of (17), EW,. To this end
let p.. be the probability that there are n calls in the system immediately
after the conclusion of a measurement. Then, relating the state proba-
bilities at two consecutive conclusions of delay measurements, we
find that

pr = pnf“ et dS™ (1) + 3 pa [ ate=tdS™ (1),
0 n=1 0

© L] @f at ) (27)
oo [ Gl e asom, k> 1,

Pr =

where S is the nth convolution of the service-time distribution, S,
with itself.
Now let

w0

G(z) = ; k™.

Equations (27) yield:
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G(x)

L] L] 0 0 t m
mz=1 pmxm = gl xmngl p"j; (:xn)1 e—atds(n)(t)
+z 21 Pa | e=tdS™(¢)
n= 0

= ni;l pn]:n [mz::l (a;::!)me—a!:]dS(n)(t) + a:nél Pac™ ()

= E p"j;w e—ul(eulz —_ l)dS(")(t) + In; pna.n(a)

n=1

Il

% portfa(l = 2)] = (1=2) T par™(@)

= Glola(l —2)]} — (1 — 2)G[o(a)].
Summing up, we have the relation
G(z) = Glofa(l —2)]} — (1 — 2)G[o(a)]. (28)
Note also that
8@ = £ p. [ eedS® () = GLo(@)]
Let 7o = o(e) and z, = o[a(l —z,—1)],n =12, ---.

Since 0 £ a <1, we have 7o < 71 <---= 1 and lim,..2, does
therefore exist. With this notation, we obtain, from (28):

®(a) = G(z1) — (1 — 20)2(),

G() = 6@) — (1 — 2)2, 29
G(.’cn:..l) = G(zn) — (I — zp1)P(a).
Adding up these relations, we find that:
@1+ E (1 -2 | = 6@,
and, by passing to the limit,
*@[1+ % 1 —en| -1 (30)

(Note that lim,.,.G(z,) exists since the z, constitute a positive
monotone-increasing sequence bounded by 1. By letting n — in the
last of the relations (29) it follows immediately that limn.et. = 1 s0
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long as ®(a) # 0. This last condition is however clearly satisfied
whenever & < 1.)

In particular, when the service-times are negative exponential, we
have: S(t) =1 — e, t 20, o(s) = (1 + 8)7% and (1 — xp) = a™*/
(1 + a +-- -+ a™). Hence, by (30),

@ 1+ ¥ o - 31
("‘)—[ 7,,Z=:ol+a+"'+a’"+1] : (31)

We examine briefly the case where the service-times have a gamma
distribution with parameter k (the subseript k is added to the symbols
considered earlier in order to stress their dependence on k). We have,
in this case:

oula) = [k/ (6 + o) I

Then ox(e) is a strictly decreasing function of k(> 0) as can be seen
by taking the derivative of In o;'(2) = In (1 + a/k)* and using the
inequality In (1 — ) > a/(1 + ), x>0 (Ref. 7, p. 68). This
monotonicity property of o, implies that

Xro > Thih,0 Tr1 > Thth 1, " k>0, h >0,

and we have, therefore:

Z (1 — 2rm) < z (1 — Zignm), h >0,

m =0 m =0

so that
i) > Prinla),
and from (21)
EW o > EW o iy, k> 0.

For k = 1 (exponential service-time) the conditional average delay
for the delayed calls under the observed-last-served procedure is equal
to the average length of the busy period. To see this one need only
note that each positive observed delay begins with an arrival that
oceurs when there is exactly one customer in the system and ends
when, for the first time thereafter, there is no waiting customer.
Hence, for k = 1, the conditional delay distribution of the observed
calls is the same as the busy-period distribution (Ref. 8, p. 32). Since
the average length of the busy period and the average of the condi-
tional waiting times of all the delayed calls are both equal to (1 — a)™!
(Ref. 3, p. 63), we have

EWl EW . o1(a) +a—1 1
a 1 — ala) [1 — o1(e) Je (1 — oe) 1—a’ (32)
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where EW,, designates the average delay when the observed calls
are served last.
Clearly, the inequalities (22) and (23) imply that

EW L < orla) +a — 1 )
1—&, = [1— gile)a(l —a)

We note that if the service-times have a gamma distribution with
transform ¢,(s) = (k/k + s)*, then the conditional average delay on
all delayed calls is given by the formula (Ref. 3, p. 50):

EW, [k+1 1

a k 2(1 — w)
Substituting (k/k + a)* for ¢x(a) in (33) we obtain the following
upper bound for the conditional average delay of the observed delayed

calls (this bound, as we know, is reached when the observed calls are
served last) :

(33)

: (34)

(k/(k+ )] +a—1

{1 —[k/(k + a) Fla(l — a)

Subtracting (34) from (35) we find that the difference is of the same
sign as

(35)

a— {1 —[k/(k+a)J[1+ (k+ 1)a/2]. (36)

The two factors in the second term of (36) are both increasing func-
tions of k¥ and since (36) vanishes for & = 1 [a fact that we already
know from (32)] we may conclude that (35) is smaller than (34) for
0 <k <1, and greater than (34) for £ > 1. This proves that, for
k < 1, the conditional average delay for all delayed calls is still larger
than the conditional average delay for all observed delayed calls even if
these calls are served last. For & > 1, the conditional average delay
of the observed delayed calls for the observed-served-last procedure
is larger than the conditional average delay of all the delayed calls.

Expressions for the higher moments of the observed calls delay-
distribution are also readily obtained. Let F' be the equilibrium cumu-
lative distribution of the virtual waiting time, V, at the conclusion
of the measurement of a delay (this delay, of course, may be equal to
zero). The delay distribution, K, of the calls whose delays are observed,
can be readily expressed in terms of F. Indeed we have:

K@w) = PrW, < w] = af { fw exp — aly — t)-dF(y)]dt
0 t

+ [ * edF (y). (37)
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TasLE —MEANS AND STANDARD DEvVIATIONS OF THE DELAY Dis-
TRIBUTIONS FOR ALL CALLS AND FOR ALL OBSERVED
Cauts (1 Crock) IN M/M/1—FIRsT-
CoME FIRST-SERVED

@ EW, SW, EWe SWey
0.1 0.11111 0.48432 0.09259 0.42264
0.2 0.25000 0.75060 0.17840 0.58463
0.3 0.42857 1.0202 0.26684 0.72360
0.4 0.66667 1.3333 0.36669 0.87308
0.5 1.0000 1.7321 0.48958 1.0590
0.6 1.5000 2.2913 0.655564 1.3188
0.7 2.3333 3.1798 0.90754 1.7310
0.8 4.0000 4.8990 1.3659 2.5191
0.9 9.0000 9.9499 2.5808 4.7519
0.92 11.500 12.460 3.1398 5.8266
0.94 15.667 16.637 4.0284 7.6793
0.96 24.000 24.980 5.6974 10.987
0.98 49.000 49.990 10.243 20.776
0.99 99.000 99.995 18.393 39.434

The problem of finding the distribution K of the observed delays
is thus reduced to the problem of finding F. The distribution F satisfies
the following integral equation:

PO = L [aso [Tew " 4r )
+ j; " dS () [ emar@, (39

where S stands for the nth convolution of S with itself. Equation
(38) follows immediately upon noticing that, at the conclusion of a
measurement, the only calls in the system are (z) the call whose delay
has just been measured and (77) all the calls which arrived during the
measurement interval (we note that the preceding argument makes
essential use of the assumption that calls are served in order of arrival).

Let ¢ and o be respectively the Laplace-Stieltjes transform of F
and S. Then transforming (38) we obtain

nn

e(s) = “(s) f - y) dF (y) + o(s) f e~vdF (y)
= pfla[l — o(s)]} + @(x)[o(s) — 1] (39)

This formula may be used to derive recurrence relations for the
moments of V. Let nlu, = EV™® and

nly, = (— l)“-id—cr s)

f tdS (1),
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Fig. 1—Average delay for M/M/1 vs occupancy.

so that n!v, is the nth moment of the service-time distribution. Using
Faa di Bruno's formula for the derivative of a composite function
(Ref. 9, p. 36) we find that:

k!
pn = T e i+ B (@), (10)

with k = ky +- - -+ k., and the sum over all solutions in non-negative
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Fig. 2—Conditional average delay for M/M/1 vs occupancy.

integers of ky + 2k; +---+ nk, = n (note that » = 1 since the
average service-time is assumed here to be equal to 1).
In particular, for n = 1, 2, and 3 we have:

p = EV = 2(a)/(1 — a),

o = Ez_‘,” = B(a)ra/ (1 — ) (1 — a?),

s = EgYa &(a)[269% + m(1 — a?)/(1 — @) (1 — a) (1 — a¥),

where ® () is the probability that an observed call is not delayed.
When the service-time distribution is exponential (with mean 1)
wehavev; = 1,7 =0,1, -+, and (40) becomes:
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k!

.un=Zkl k

pat + @)

k=1

2 () met @, nzt

Equation (37) may be used to express the moments of K in terms of
the moments of V. We have:

EW}, = f wrdK (w) = af w"/ exp — a(y — w)dF (y)dw,
0
and, upon integrating by parts, we obtain

EW, = EV ‘éfl — ®(a)],
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and

gwyr = gy - "t lEws a0

Thus, in particular, we have

_ %@ ta—1
BW, = RO e S,
Ew: = 2022(@vs — 22 + o — 1)1 — oY),

a(l — a)(1 — a?)

The moments of W, depend only on the moments of the service-time
distribution and on ®(a).

As a numerical illustration of the biases induced when only one
clock is available, the means and the standard deviations of W, and
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W, are given in Table I. (The standard deviations of W, and W,
are designated by SW,; and SW,, respectively.) For further quanti-
tative results, see Figs. 1-6.

VI. THE SINGLE-SERVER QUEUE M/M/1

In this section we consider a single-server delay system and assume
that: (¢) calls arrive in a Poisson process of intensity «; (i7) the
service-times are independent random variables with the same negative
exponential distribution; and (#7¢) calls are served in order of arrival.
We again suppose that only one delay ean be measured at a time. Our
purpose here is to derive the delay distribution of the observed calls.

Let F(-) be the equilibrium cumulative distribution of the virtual
walting time at the conclusion of the measurement of a delay; the
measured delay may of course be equal to zero. From (38), the distri-
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bution F(-) satisfies the following integral equation:

F(t) = fo‘ { ® i - (ay)”—["ﬂ——l——!e—"dF(y)l du

0 n=1 n! (ﬂ: - ].)

+ f; e vdu- [: evdF (y).
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This relation implies that F(-) is continuous and that the virtual
waiting time, at the conclusion of a measurement, has a density func-
tion f(-) [at ¢t = 0, the latter is defined as the right-hand derivative
of F(-)]. We have therefore

10 = et [ gpem £ Gy + e [T ey

n!
= adett-) f " S L2y + o " fedy,  (41)

where 7,(-) is the modified Bessel function of order 1 (Ref. 7, p. 374).
The preceding relation implies that f(-) is of the form

f@) = fi(t) 4 ce™,

where ¢ is a constant. Substitution of this expression in (41) yields, on
taking relation 29.3.81, p. 1026, of Ref. 7 into account:

7u0) = e [~ fily)e T2V Yy + 2 0. (42)

Thus fi(-) is of the form

7)) = 1) + e — /(1 + a),

and substituting this expression in (42) we find that f2(-) is of the form

f2(t) = f3(t) + h—_F%aT)gexp —t/(1 + a + a?).

Proceeding in this manner, we define successively fi(-), fs(-), -+, and
it is readily shown, by induction, that:

ca™
fm(t) = fm+1(t) + (1 + a + a? +___+am)2

-exp — /(1 +a+---+ am), m=0,1,2, ---;
fo(:) = f(-). (43)

Passing to the limit, we obtain, in this manner:

m

10 = £0 + ¢ X ety

cexp —t/(1 +a+--+a™),

where f,(-) = limm..fn(") satisfies the integral equation:

fult) = ade—tt-} ] ® fu () ey (2 (ayt) Idy. (44)
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Note that, by virtue of (43), fm(f) > fms1(t) for all ¢ and that
1im e f (£) does therefore exist and is non-negative since f» > 0 for

all m.
We shall prove now that the only non-negative solution of (44)

is fo(t) = 0.
Let

0(s) = '/; ® fa()e .

Then, transforming the previous relation, we have by Ref. 7, p. 1026,
equation 29.3.81:

6(s) = at ﬁ " eete-tt- ﬁ ® fu (e [ 2 (ayt)d Jdy - dt
= ot L " fu(y)e vyt ay)H (et — 1)dy

[ f=(y) exp — ay(l 1 :_S)dy

~ [ 1@ exp (— )iy

Setting s equal to zero in the preceding relation, we find that f(a) = 0
which implies that f,(t) = 0 and we have, therefore, for exponential
service-times:

o« m

a
0 = cmz;’n(l +a+ -+ am)?
cexp —t/(1l +a+---+am), t
- =c 3 a” (45)
L= PO - e
cexp —t/(1l +a+---+ am), t
@ =F@® =0 t<0,
where the constant ¢ is determined by the condition F(0) = 0.
By means of (37) and (45), it is readily seen that the conditional
delay distribution is given by the following formula:

v
L

v
k=]

o m+1

— af =
Pr [W, = t|observed call delayed] = ¢ m2=01 Ta T Fann

cexp — t/(1 +a+---+am), t >0,
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where ¢’ is determined by the requirement that the preceding expres-
sion be equal to 1 for t = 0.

The effect of partial sampling on the delay distribution is illustrated
in Fig. 6.

VII. THE MULTISERVER QUEUE M/M/s

In this section we consider a full-access multiserver delay system
with Poisson arrivals and exponential service-times. Qur purpose here
is to determine the probability ®{® that an observed call is served
without delay and the expected delay EW} of the observed calls
(@) = &, W{} = W,1). This is easily done. Indeed, under the present
assumptions, A{” the expected number of nonobserved calls during
the measurement of a positive delay is:

A (i] _ CEEW*]_

- 8(]. _ q’l) ) (46)

where EW ,, and @, pertain to the single-server queue with load «/s.

Equation (46) is an immediate consequence of the fact that in an

s-server system with demand rate « and service rate 1, the conditional

average delay of an observed call, EW /(1 — ®{7), is equal to the

conditional average delay of an observed call in a single-server queue

with offered load a/s and service rate s, i.e., EW 1/s(1 — ®4).
Hence, by (46) and (1) we have

_ (1 — B)[(a/s)EW 1 + 1 — &,]
(1= B)[(a/s)EW + 1 — @]+ B(1 — &)

so that, by (17),

B

B-EW
pl 5) — * .
EWS s(1 — &) +a(l — B)EW,,
We note that
EW§ (1 —a/s)EW

EWP ~ 1 =& + (1 — B)(a/s)EW

For «/s fixed, the blocking probability B is strictly decreasing and
tends to O as s increases. Hence

EWS _ EWg™

EW{:] EW£s+m] ’ m > 01

and

EW =

EW,| _ o EWY (1 —a/)EW,a
0 e EWP T T =3, F (@/s)EW,a
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We stress that the preceding relations are valid regardless of the order
of service.

Numerical values are given in Table II. They show, in particular,
that, for a given server occupancy, the magnitudes of the relative
biases become larger as the number of servers, s, increases but remain
bounded.

VIII. AN INEQUALITY FOR GI/M/s

For the M/G/1 queue we have seen that the average delay on all
calls, EW, is always larger than the expected delay EW, even if the
observed calls are served last. It will be shown here that the same
relation also holds for the multiserver queue GI/M/s.

When the observed calls are served last, the waiting times of the
observed delayed calls have the same distribution as the busy period
whenever the service-times are exponential. Writing EW§) for the
unconditional average delay for the observed-served-last procedure
we have therefore:

EW = (1 — &)/s(1 —b), (47)
where b is the root of smallest absolute value of the equation (Ref. 10,
p. 225 ff.)

z = A*(1 — 2)
and A* is the Laplace-Stieltjes transform of the interarrival distri-
bution A. We note here that b is also the blocking probability in the
associated single-server queue GI/M/1 with A as interarrival distri-
bution and exponential service-time distribution with mean 1/s.
By means of (1) we can rewrite (47) as follows:

EWS = B/s(1 — b)[(1 — B)(1 + 4) + B], (48)

where B is the probability of delay in the GI/M/s queue.

When the observed calls are served last, 1 + A is equal to the
expected number of calls served during a busy period of GI/M/s
which, in turn, is equal to the expected number of calls served during
a busy period of the associated single-server queue GI/M/1. Hence,
we have (Ref. 10, p. 286):

L+ A= (1—b"
and on taking this relation into account, (48) reduces to

EW$) = B/s[1 — B + B(1 — b)].
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But the average delay for all calls is given by the formula (Ref. 11,

p- 383):
EW® = B/s(1 — b)
so that o
EWE < EW®,
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