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We consider an N-server queuing system with Poisson arrivals and
exponential service, in which arriving customers must pass through a
gate into a waiting room before becoming eligible for service. Customers
who find the gate closed wait oulside until the gate opens; customers
inside the waiting room are served at random. When the last customer
inside acquires a server, the gate admits all those outside and then closes
again. If no customer is waiting outside when the gate opens, the gate
remains open until there 1s a queue of k wailing customers.

Service offered by this system is intermediary between random service
and order-of-arrival service. As long as the gate 1s open and fewer than
N + k customers are in the system, service is purely random. The param-
eter k can be regarded as a threshold at which the queue 1s judged too long
to permit random service to continue.

Our main results are (1) the Laplace-Stieltjes transform of the equilib-
rium distribution of the waiting time of an arbitrary customer and (iz)
a comparison of the second moments of the waiting time for different
values of k with those of the waiting time under random service and order-
of-arrival service. The service is shown to be ‘“nearly random” at low
loads and “not quite order-of-arrival” at high loads; for higher values of
k this transition occurs at higher traffic intensities.

I. INTRODUCTION

Switching systems, particularly electromechanical switching systems,
are often constructed so that if several customers are awaiting service
simultaneously, they will receive service in what is essentially random
order, i.e., a server which becomes idle will choose its next customer
at random from the queue of customers awaiting service. Such an
arrangement may be satisfactory when the traffic intensity is low:
but as the intensity increases, a progressively greater number of
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customers will have to wait an undesirably long time, and the quality
of service may become unacceptable.

There are available, however, methods of providing service other
than “random service: the most obvious one is service in order of
arrival. The quality of service, which depends in part on the variance
of the waiting time, will still diminish as the traffic intensity increases,
but not as quickly as when random service is used. In fact, order-of-
arrival service is the “best” discipline (at least when the order of
service does not depend on individual service times) in the sense that,
for a given traffic intensity, and hence mean waiting time, the variance
of the waiting time is smallest.! Unfortunately, it may not be worth-
while (or even possible) to build a system which offers service in order
of arrival. One is therefore led to consider an intermediary queue
discipline, one for which the variance of the equilibrium waiting time
lies between that of random service and that of order-of-arrival
service.

Suppose we have an M/M/N queuing system with customers arriv-
ing at rate A and requiring a mean service time u~'. Suppose further
that customers must first pass through a gate into a ‘‘corral,” or
“waiting room,” before becoming eligible for service. So long as there
are not more than N customers in the system, the gate remains open;
an arriving customer enters the corral immediately and, if some server
is idle, begins service. As soon as a customer has to wait (having
found N customers in the system), the gate closes until that customer
enters service. The gate then opens to admit all those who have
accumulated outside the corral, and immediately closes again, re-
maining closed until all those inside have acquired a server, and so on.
Thus the customers are admitted in bunches to the corral, and once
inside, they are served at random. It is assumed that the corral has
an unlimited capacity. If there is no customer waiting when the gate
opens, the gate remains open until there is again a customer who has
to wait.

A gated queuing system merits consideration, not only because of
the anticipated improvement over random service, but also because
it can overcome design problems in certain telephone equipment which
might otherwise lead to poor service for some customers. For example,
in some switching equipment, each server hunts in a fixed sequence
over a group of customer-sources; when a customer is found, the
server stops to provide service and then resumes hunting from that
point. Such a hunting procedure may be desirable from a hardware
viewpoint, but it can result in unequal service among customers.
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Gates have been successfully used to improve service in the manner
described above, that is, by temporarily blocking subsequent bids
for service until all those customers present have been served.

Some discussion of the gated queuing system is given in a 1953
paper by Wilkinson.? Theoretical results were summarized in 1958
by Beckwith,? although he gives few details as to how the results are
derived. The model we consider in this paper is more general than the
one described above. We shall assume that as soon as there are &
customers (rather than one) waiting, the gate closes until all & cus-
tomers have entered service. Thus the parameter & can be thought of
as a threshold at which the queue is judged to be too long to permit
purely random service to continue; the system enters the ‘“‘gating
mode,” and the gate admits customers in bunches as described pre-
viously. If the gate opens and there is no customer waiting outside,
then the system leaves the gating mode and the gate remains open
until there is again a queue of k waiting customers.

In Section II we obtain a recurrence relation for the probability-
generating function of the nth bunch-size and, after that, the generat-
ing funection and moments of the equilibrium bunch-size distribution.
Using these results we determine in Section III the Laplace-Stieltjes
transform of the distribution of the equilibrium waiting time of an
arbitrary customer. In Section IV we obtain the first two moments of
the equilibrium waiting time, and we make some comparisons of the
second moments of gated service for different values of the parameter
k with those of random service and order-of-arrival service.

In several places in the text, we specialize a general result to the
case k = 1, since that is the simplest of our gated systems. This
allows us to verify that our results then agree with Beckwith’s, and it
often reduces a complicated expression to one that is more easily
comprehended.

We can assume, without loss of generality, that the system is
initially empty. Since we assume that the traffic intensity, p = A/Nuy,
is less than unity, the number of customers will always return to zero
in a finite length of time, regardless of how many customers may be
present at the beginning. Consequently, our equilibrium results do
not depend on the initial conditions.

Several other authors have considered systems which operate in a
manner similar to ours, but they all take & = 1 and assume that the
underlying system is an M/G/1 queue. The “generations’” in the
M/G/1 queue, as described by Kendall* and later studied by Neuts,®
correspond to the bunches in our model. Nair and Neuts®’ subse-
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quently consider the waiting time distribution for the M/G/1 queue
under the assumption that the queue discipline was either longest-
processing-time-first or shortest-processing-time-first.

II. DISTRIBUTION OF THE EQUILIBRIUM BUNCH-SIZE

Let X, be the number of customers in the nth bunch; that is, there
are N + X, customers in the system the instant after the gate closes
for the nth time. Thus X , is the number of customers waiting outside
if that number is positive, and is k if there was no one waiting, when
the gate was opened for the (n — 1)st time. Let T, be the time it
takes to serve X, customers. Then, denoting by pé(T. =1t) the
density of T, at f, we can express the distribution of X, in terms of
that of X1 by

P = j) = 5 PEea =) [(PXa= jlXas =i Tor = 1)
Ty = t| Xoa = 9)dt. (1)

But, given that X ,_; = 4, T'n_1 has a gamma distribution with param-
eters 7 and Ny; and

P(Xn = j|Xn-l = 7:, Tn—l = t) = P(X" = leﬂ—l = t)

A7 .
_(j!) M, J#Fk

k
Q;%e—“ + e, j=kF

The extra term e ** in this expression is the probability that no one is
waiting when the gate opens; when this happens, the next bunch-size
is necessarily k. Substituting these expressions into eq. (1) gives

- o 1Y
PX,=) = ‘;l P(X,1=1) (1 T p)
e V(iti-1 .
() (5 1) o],
where p = \/Np and §;; is the Kronecker delta. Now, letting
Po(u) = ¥ P(X. = j)u
=1

be the probability-generating function of the distribution of X., we
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have

Po(u) = Poy (m) + (k= 1)Poy (ﬁ;) 2)

Starting with Pi(u) = u*, we can determine successively the P, (u).
When k& = 1, eq. (2) agrees with Beckwith’s eq. (1).

We wish to obtain the distribution of the equilibrium bunch-size
X = liMmn.w X». To see that an equilibrium distribution exists, we
observe that the bunch-sizes X, form a Markov chain which is ir-
reducible and aperiodic. Since we are assuming p < 1, the number of
customers in the system cannot grow without bound, so the states are
not all transient or null. Therefore all states are ergodic, and there is
a unique equilibrium distribution.® The distribution of X = lim. X+
has a probability-generating function P(u) = lima.. Pa(u), which
satisfies

Pw = P (5= ) + @~ 0P (15 )

This can be written in the form

Plr(u)] — P(u) = F(u)
by setting
r(u) = 1/[1 4+ p(1 —w)]
and

F(u) = (1 —u)P[1/(1 + p)].

The solution to this functional equation is®
P@) =1 — ¥ Flr@],

where r, is the nth iterate of r and 4 is a constant. To evaluate this
expression, we first need to find r.(u). We have ro(u) = » and

1

pap—— 3)

T'n =

Letting y. be such that
g Yt o1
Yn P

transforms eq. (3) into a linear homogeneous difference equation,
which is easily solved. Thus we determine that

1 —pu+4 (u— 1)p"
Tn(u) - l _ pu + (u _ 1)p"’+1.
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The solution to our functional equation is therefore

R I l—pu+(u—l)p"]“ ( 1 )
pw =0~ £ - [P | (s
Since P(1) = 1, we must have n = 1; since no bunch-size can be zero,
P(0) = 0. This determines P[1/(1 + p) ], so that finally

d 1 —pu—~+ (u— 1)p" 1
Eo{l_[l—puﬂu—l)pﬂ“] }
0 l_pn k
ngo{l_ [I—P"“] ]

h(u)

~ ROY 4)

Plu)=1-—

where h(u) is the numerator in the second term of P(u) above. By

=
=

N+k+ 1IN SYSTEM

=
=
>

.
~—F A
>

N+k IN SYSTEM Y

A4

o
DANE
N
DL

ol

a0
Ny

=
=

~
iy

N+k—1IN SYSTEM, GATE CLOSED L]

N+k—1IN SYSTEM, GATE OPEN
A

N+k -2 IN SYSTEM, GATE CLOSED

LJ N+k—2 IN SYSTEM, GATE OPEN

=
=

A

>

\_;f\__l
-

=
=

A

)
)
)
)
)
)
)

\.._Jf
>

N+2 IN SYSTEM, GATE CLOSED N+2 IN SYSTEM, GATE OPEN

=
=

=2
J"—'\l‘"\ r—\r—t\r—\r‘\r\

~—
>

N+1 IN SYSTEM, GATE CLOSED
N+ 1 IN SYSTEM, GATE OPEN

74
/
>

N IN SYSTEM

=

(' N—1 IN SYSTEM
lN—H.u( A

2u I
® 1IN SYSTEM

(O
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setting k = 1, we can reduce eq. (4) to Beckwith’s result, his eq. (2):

P = =422 +g()-g(i‘“),

- —u
p

where
g(u) = u E m

The moments of X are obtained by differentiating P (u). We find
that

B = PO = = i)
and
B k k P k .
Var (X) = AOIE) [1+p+ 1—p AO)(1 - p)]

III. DISTRIBUTION OF THE EQUILIBRIUM WAITING TIME

Let W be the waiting time to the point of entering service of an
arbitrary customer when the system is in equilibrium. The distribution
of W depends on which state the system is in when the customer
arrives; i.c., it depends on the number of customers already in the
system and on whether the gate is open or closed. These states, to-
gether with the transition rates from one state to another, have been
enumerated in Fig. 1. Let

p; = P[j customers in the system ], j=0o,
p5 = P[j customers in the system, gate closed],

j=N+1,N+2 --- , N+k—1,
p% = P[j customers in the system, gate open],

j=N+1,N+2 ---,N+k -1

Obviously, p§ + p3 = p;. It is also clear that when j = N, the gateis
open, and that when j = N + k, the gate is closed. The values of the
p; are just the equilibrium state probabilities of an M/M/N queue,
which are

N ) N)7 ;
pi:{jf)pl):(Pj!) Po, J=0;1;"'sN
. (pN)N .
DN+i = PPN+j—1 = p'py = p’ (pN? Po, >0
B [ L
Po [Zo ;TN =)
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To find p? we equate the rates at which the system leaves and enters
the state {7 customers in the system, gate open}. From Fig. 1, we see
that

(1 + p)Py+s = PPN +1—1 T Phtity i=14L2 -, k-1

with p%4: = 0 and p% = pn, where py is known from the above.
The solution to this equation is

p’— p* .
p?v'H:lTpkpN’ J=0,1,,k—'1
It then follows that

Div4s = DPN+i — Pl+s

1 — p? .
=1_:,,P*PM J=112:"'1k—1°

To find the distribution of the waiting time W, we shall consider
what happens when an arriving customer encounters one of the
following conditions:

H,: < N customers in the system,
H;: the gate is closed,
H;.;: N + j customers in the system, and the gate is open,
i=01,---,k—1

From the above computations,

= . 1
PHy) =1— X plpy=1— 7 Pn (5)
=0 - P
k=1 ) kpk
P(Hy) = X phts+ L Pyvei = 7_ 5 PM (6)
i=1 i=k P
and
p! — p* :
P(Hs-j)=r_7pm i=0,1,-, k-1 (7)

An arriving customer who encounters H, immediately gains access
to a server, so
1, t=0

0, t>0 ®)

P(W = t|Hy) = {
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Fig. 2—Relations among the variables used.

An arriving customer who encounters H, will have to spend some
time, Z, outside the gate waiting for the gate to open (see Fig. 2);
once he gets inside, he will then have to spend some additional time,
Y, waiting to be chosen for service from the bunch he entered with.
The total amount of time the customer spends waiting to enter service
is therefore W = Z 4+ Y, where Z can be regarded as the residual
lifetime of an interval Gy during which the gate is closed. Thus we
can write

pd(W = tle)

Il

[ 0@+ = 4,60 =y, 2= iya
z=0 Jy=0

f“" TPV =t—2lG=y,Z=1)
=0 y=0
pi(Z = z|Gy = y)p?(Go = y)dydx. (9)

We first need the distribution of Gy. Disregarding our arbitrary cus-
tomer temporarily, let G be the equilibrium length of the time in-
terval during which the gate is closed. If we are given that j customers
entered the waiting room when the gate last opened, then the gate
will remain closed for j service times. Since the equilibrium probability
that j customers entered when the gate last opened is P(X = j),
we have

PG = y) = £ P(X = jb*(y),
=
where b(y) = Npexp (—Nuy) and the asterisk denotes convolution.
The mean of this distribution is easily found to be

_E(X) o
B@) =N, = Maa = @)

Let ¢y be the epoch at which the arbitrary customer arrives, and let
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Go be the length of the G-interval containing #. Then (see Ref. 10)
p4(Go = 1) = gy PG = V)
1 ed R
= 7 Nuy(1 = p)h(0) ZIP(X = Hv*y). (10
i=

Next, the distribution of Z, given Gy = y, is uniform on (0, y), so

A

1, 0=x=y
pHZ = x|Go=1y) =Y (11)
0, x> .
We also have

(Y =t —z|Go=1y, Z =1x) = p(Y =t — z[Go

y)

= i p(Y =t — z|n arrivals in (0, y), Go = ¥)

n=l

-p4(n — 1 other arrivals in (0, y)|Go = ¥)
= 1 * ( y)n 1 e
Er(Ere-a) o Le (12)

where the first factor in each summand reflects the fact that the ar-
bitrarily chosen customer has probability 1/n of waiting one service
time, 1/n of waiting two service times, ---, and 1/n of waiting n
service times. Substituting egs. (10), (11), and (12) into eq. (9), we
obtain

pd(W = t‘Hg)

= LNu(l = kO ¥ T P(X =) 3, " - )

i=ln=1

: f - b*:(y)e—w( y) " dydz.  (13)

Notice that the range of integration of the inner integral was reduced
from (0, =) to (z, =) because of eq. (11), and that of the outer in-
tegral was reduced from (0, =) to (0, t) because b*!({ — z) = 0 for
z > t. By setting k = 1, Nu = 1, and A = p in eq. (13), we can ob-
tain Beckwith’s expression for the corresponding density in his model,
the density of W given that the arbitrary customer finds more than
N customers in the system.

We can calculate the Laplace-Stieltjes transform, y(s), of the dis-
tribution (13), but the algebra is long and tedious. The results are
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given below, one in terms of P(X = j) and the other explicitly :

¥ (Nus)

~ pkst E0Fs+ol+s —»
i 1 -1 l+S -1
2 PXx = )[ (l-I-s) _(1+s+8p)

((1+s)(11:ps+s)_ )““ (14)

_l-p kp"(l—p)] 1 — pn \#1

kps? ng [(1 — pnt1)t I(]_ — pn+1)

1+ s_p—Sp"+l)(1+8—p—5p"+2) )
=o)L+ 8)* —p — s(1 + s + p)p"t]

(
AODCER) ()
A )

(I —p™)(1 + s+ sp) )m

_( 1+s—p— spmt*
( (1 — p™[(1 + 9)* + sp] )m]
(1+8)?—p—s(l+s+p)pH!
_ 1 oy _(A+s—p—spm)*
1= gt ‘(1 p) T+ s —p — spri)it
1 (1 +s—p — sprti)k
1+s (1+s—p— sprid)et
1 [(A+8)2—p—s(l+s+pp] ] (15)
T+s[(0+38)2—p—s(l+s+pptit

When £ is set equal to 1 in eq. (15), the sum from 2 to k is trivially
zero, and the expression in the last pair of braces collapses to zero;
the transform then reduces to

+

_(=pr g p"
¥(Nus) = ps? ngo (1 — prt1)2

(A+s—p—s8p")(1+5—p— spt?)
X lOg [ {1 - P)[(l + 8)2 - p — 3(1 + 5 + p)pn+1:|] ’
(k=1). (16)
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The final portion of the waiting time distribution needed is
f;(t) = p¢(W = t|Hs.;), j = 0,1, --- , k — 1. Let W; be the waiting
time of a customer who arrives to find the gate open and N + j in the
system. Then W, has the density f;(f), and, letting Ex(¢) denote the

exponential density Ae=,

[ N
fi= 7\+N By nu* f’“+7\+‘;\ﬁ;

. [ T—I-—l Eviwy + —— ; + T By ynu*fima ] )

fk—1= EN,:+ E i "1"% Ve

The reasoning behind these equations is that, if an arriving customer
finds the gate open and j(< k — 1) customers waiting, then either
the next event is an arrival, in which case he waits until that event
plus an additional time distributed as W1, or else the next event isa
departure, in which case he waits until that event, after which either
he is served immediately [with probability 1/(j + 1)] or someone
else is chosen and our customer must wait an additional time dis-
tributed as W,_, [with probability j/(; + 1)]. If, on the other hand,
the arriving customer finds the gate open and k — 1 customers waiting,
then the gate shuts behind him and he waits either 1, 2, ---, or k
service times, each having probability 1/k. Taking Laplace-Stieltjes
transforms of the equations, and denoting the transform of f;(¢) by
¢i(s), we obtain

pid;(Nus) = (1 + p + 8)jpi—1(Nus) — (j — L)¢j-2(Nus) — 1,

j=1,...,k_]_,
1 1\ an
¢r—1(Nus) = s [1 - (m) ]

For any particular k, this set of equations can be solved explicitly by
successive substitution. Finally, using egs. (5), (6), (7), and (8), we
can represent the Laplace-Stieltjes transform of the distribution of
the waiting time W as

k—1 o7
5PV + oy g £ pk ¢;(Nps)

o (), (18)

¢(Nus) =1 —
+

where ¢;(Nus) is given by eq. (17) and ¢(Nus) is given by eq. (14)
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or eq. (15). When £ = 1, eq. (18), with the help of eq. (16), can be
written explicitly as
1 (1 — p)” . P
¢(Nus) = 1 — p—l + iyt 2 EU(T_—pﬂ—H)z
(1+S_P—SP"“)(1+S_P_SP)"+2 _
-log 3 ,  (k=1).
I —p)[(1 +5)?2—p—s(l+ s+ pp ]

IV. MOMENTS OF THE EQUILIBRIUM WAITING TIME

Since the mean waiting time does not depend on the queue dis-
cipline (see Ref. 11), the mean is the same as for a simple queue with
service in order of arrival, i.e.,

7 _ J 1 PN ]
EOV) = 2 poe’ "N = Nutt — o

The second-moment computations are fairly lengthy, finally yielding
2pNn /

W_*) (M (p) + M(p) — p*'M'(1) — p*'M(1)]

4 kpwpt(1 — p) | (k —1)(k — 2) [2 + 2p + 3¢
(Nu)*(1 — p*) 6 1 —pt

2+3p+3p2—.a“] 2+4p+5p2+2p“+p“l

E—1 L , 19

+ )[ (1 —=p)(1 =% +(1—P)(1ﬁp2)(1—pa) )

where M is a function defined by

E(W?) =

M) = — gn.uq, 0) = wa(wma.,-).

The variance of W is obtained by subtracting the square of the mean
of W:
W) = E(WY) 4
Var =K —
( (Vw1 — p)8
For comparison purposes, we also need the second moments for
order-of-arrival service and for random service. When service is in
the order of arrival, we obtain!

E(W?) = E(W|W > 0)P(W > 0) = (—N%- (20)

When service is at random, the second moment can be written as!!

E(WY) = 2PN 2

Nl =2 5 (21)
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Observe that the second moments depend on N only through the
factor px/(Nu)?, assuming the value of p is fixed. This is true also
for the second moment in eq. (19), since each of the M-terms con-
tains a factor (Np)~. It is therefore convenient to consider the ratio
of E(W?) for the gated system [eq. (19)] to the second moment for
the order-of-arrival system [eq. (20)], i.e.,

me%—ﬂgfll[M%%+Mm—w“MM)—MWHH]
ko1 (1 — p)* [ (k — 1)(k — 2) [ 2 + 2p + 3¢
+ 2(1 — p%) g 6 [ 1 — p ]
) 2+3p+3p—p 24 4p+ 502+ 20 + p* |
+a-n| % ﬂl*m]+U—MU—ﬁU—ﬂ](w

Because this ratio is independent of N, it provides a useful tool for
examining the effect of the value of k on the second moment of the
waiting time W. Thus we shall be interested in determining its
properties.

The function R(k, p) has been plotted in Fig. 3 on the interval
0 < p < 1 for a variety of values of k. We observe that R(k, p) is
bounded from below by unity, increases as k increases, and is bounded
from above by 2/(2 — p), the ratio of eq. (21) and eq. (20), which
corresponds to k = . This general behavior is, of course, just what
we expected a priori. In order to demonstrate analytically that

L= ROy 0 =50, (23)
we first introduce the inequality
1 7+2 = j +2 2
j=071)"'rk—1- (24)

The left half of this inequality is demonstrated by considering what
happens when an arriving customer finds j others waiting, but no
more arrivals are permitted to enter the system: the customer’s
expected waiting time will decrease to (j + 2)/2Np, since the customer
will have to wait either 1, 2, ---, or j + 1 service times, each with
probability (7 4+ 1)7% The right half of the inequality is demonstrated
by considering what happens when there is no gate at all to block
future arrivals when a threshold k is reached: the mean waiting time
E(W | Hj.;) would then increase to the corresponding mean in a system
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employing purely random service. In a random service system, a
customer who arrives to find j others waiting has an expected delay of
1 j+2 2

N,u. 2 2—-p’

j=0,1,-",k‘—l,

a fact which is derived in the appendix.
Using the left half of eq. (24), we can substitute (j + 2)/2Nu for
E(W|H,;.;) in R(k, p) and combine terms, obtaining

Rk, p) =1
ko*+1 (1 — p) %2 4 3k = p)(1 = o) k(1 — p)?
12(1 — p*) 1+p)A+p+p) 1+p+e|’
from which it is obvious that R (k, p) = 1. Similarly, using the right

half of eq. (24), we can substitute (j + 2)/Nu(2 — p) in R(k, p).
Combining terms, we obtain

2 kp*(1 — p) k(1 — p)*(2 + 3p?)
Bk, o) =5—, = (2—p)(1—pk){ B0+ + 5
L HL = )@ 2458 £ Y | 2+ o+ 105 + 850 + 3yt

4(1 4+ p)(1 + p + o) 6(1 4+ p)(1 + p + p?) '



1418 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1973

from which it is clear that R(k, p) = 2/(2 — p). Thus, eq. (23) is
established.

Perhaps the most striking feature of Fig. 3 is that all the curves
approach the same value, 7/6, as p — 1. It is easy to demonstrate,
by using eq. (22), that this must occur. Since the conditional means
E(W|H;.;) remain bounded as p — 1, M(p) — M(1) and both are
finite. Thus the first term of R(k, p) approaches zero as p — 1. In the
second term, the factor (1 — p)* in front causes all but the last term
in braces to approach zero. Thus,

kot 2+4p+5p2+2p3+p4_7

R(k, 1) = lim : =
(1) =i o F ) A+ a0 +atsm 6

In order to gain some insight as to why the curves meet at a common
point at p = 1, we will find it helpful to consider a supplementary
variable, the fraction of time the system spends in the gating mode.
When the system is in equilibrium, this is simply the probability that
an arriving customer finds the gate closed, and is given by eq. (6):

kp*

P (system is in gating mode) = T— 5% P

This quantity has been plotted in Fig. 4 as a funetion of p, for the
arbitrarily chosen value N = 7. It can easily be seen (and is intuitively
obvious) that when p is very close to 1, the system spends almost all
its time in the gating mode. But when the system is in the gating mode,
the system’s operation is independent of the value of k; it is only
when the gate is open that the threshold value k can have any effect.
Thus, as p approaches 1, the system becomes independent of k; so we
can expect the curves in Fig. 3 to be independent of k at p = 1.

Another feature of the curves in Fig. 3 is that the slope at zero for
k = 2 is the same as the slope of 2/(2 — p); but the slope for k = 1
is zero. The reason for this becomes clear when we realize that when
k = 1, order-of-arrival service is guaranteed until there are N + 3
customers in the system, while k& = 2 makes it possible for passing to
oceur as soon as there are N + 2 customers in the system. For small
p, N + 3 in the system is much less likely than N + 2.

The ratio in eq. (22) is convenient because it is independent of N.
The variance of a distribution, however, is also frequently of interest.
It is clear from Fig. 3 that the second moments, and therefore the
variances, increase with increasing k. There is, therefore, a similar
family of curves, one family for each value of N, obtained by computing
the ratio of the variance with threshold k to the variance with order-of-
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Fig. 4—Equilibrium probability that gate is closed (N = 7).

arrival service. In Fig. 5 we have plotted some of these curves, again
for N = 7. It is obvious that these curves have the same general
shape as those in Fig. 3. The main differences are (7) that the ratio of
the variances when &k = o (random service) goes to 3 as p — 1, while
the ratio of the second moments when k = =« goes to 2, and (#Z) that
the ratios of the variances for k < « go to 8/6 as p — 1, while the
ratios of the second moments go to 7/6. These facts are easily verified
analytically by letting p — 1 in the actual expressions for the ratios.

Since the second moments (and variances) increase as a function of
k, there arises the question of why one might consider a threshold
value k greater than 1. Clearly, if the queuing systems were otherwise
equivalent, one would prefer k = 1 to any larger value of k. But it is
equally possible that a queuing system would be more costly to operate
when it is in the gating mode, since more bookkeeping is necessary :
each waiting customer must be classified as “inside” or “outside”
the waiting room, and these labels must be changed when the gate
operates. One would then prefer a system in which the gate were used
as little as possible (large k), consistent with an acceptable quality
of service. The resulting tradeoff between cost and quality of service
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can be resolved only by examination of the particular application at
hand.

V. CONCLUDING REMARKS

In summary, our main result is the specification of the distribution
of the equilibrium waiting time of an arbitrary customer in a queuing
system whose service discipline is a compromise between service in
order of arrival and random service. Our model contains a parameter,
k, which determines how ‘“‘close’ the discipline is to order-of-arrival
service or to random service. We have seen that the variance of the
waiting time is bounded from below by the variance for order-of-
arrival service, and that as k increases, the variance increases, ap-
proaching the variance of the waiting time when random service is
employed. We also found a convenient quantity, R(k, p), which is
independent of the number of servers, and which, together with Fig. 3,
allowed us to examine the effect of the threshold k on the waiting time.
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Figure 3 shows how, for fixed & > 1, the service changes from “nearly
random’ to “‘not quite order-of-arrival” with increasing load, and how
this transition occurs at higher loads as & increases.

There are, of course, other variables which ecan be derived from the
system we have described ; for example, in studies of equipment life,
it might be useful to know the distribution of the number of gate-
closings that occur in an interval of length ¢. It did not seem worth-
while to pursue such questions in the present study, which deals with
gating from the viewpoint of traffic performance.

APPENDIX

Suppose we have an M/M/N queuing system employing random
service, with arrival rate A and mean holding time ', The mean wait-
ing time to the point of entering service of an arbitrary customer in
such a system is
- Py
- Nu(l = p)®
where p = A/Nu < 1 and py is the known equilibrium probability
that there are exactly N customers in the system. We wish to deter-
mine the mean waiting time, m;, of a customer who arrives to find
N 4 j other customers in the system. The m,’s satisfy

_ 1 N oo Ne g
RPN R wny LS ey |

The rationale for this equation is that a customer must wait at least
until the next change of state; the mean of this initial delay is
(N 4+ Np)~t If the change of state is caused by an arrival [which
occurs with probability /(A 4+ Ng)], then the customer will have to
wait an additional period of time whose mean is m ;1. If, on the other
hand, the change of state is caused by a departure [which occurs with
probability Nu/(A + Nu)], then with probability j/(j + 1) our
customer will not be chosen from the group of j + 1 customers, and
he will have to wait an additional period of time whose mean is m;_;.
We now introduce the function

m

mi,  j=0. (25)

m;

o
H(z) = ¥ mjd.
=0
This series converges for a# = p, since the mean waiting time of an
arbitrary customer is

m = pyH(p) = ﬁ' (26)
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Multiplying eq. (25) by (1 + p)(j + 1)z7 and summing on j, we can
obtain a first-order differential equation:

14+p—2 N =
T-n@_pnl®

The solution to this equation is

1—2z 1/(1—p) 2 —
H($)=C(l_x)'(x—p) TN =2 -0

Using eq. (26) as the boundary condition, we see that C must be zero
in order that H(x) remain finite as x — p. Thus

1

! 1 .
H'(2) + Na @ — 2@ = )

= 2 — 2: .
Nu(l — 2)%2 — p)
The power series expansion of this funetion is found to be
= |+ 2 :
H = _JTa 7,
@=Lva-—n"

7=0

H(z)

therefore, the means we desire are given by
my— T2
7 Nu(2—p)
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