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The coupling coefficients of the modes of a parabolic index fiber with
randomly curved axis are derived and are used to compute its excess losses
and impulse response. It is found that bends with a period comparable
to the natural ray oscillation period in the parabolic index medium are
catastrophic. The average radius of curvature R, of a guide composed of
circular sections with an average length of 1 em must not decrease below
approximately R, = 1 m. Mode coupling by random bends has the tend-
ency to reduce the width of the impulse response function. However, this
improvement is accompanied by losses. Reducing the width of the impulse
response for coupled mode operation to half its uncoupled width causes
0.7 dB additional loss, a ten-fold reduction of the pulse width costs 18 dB.

I. INTRODUCTION

Optical fibers with parabolic refractive index profile!? have less
pulse delay distortion than conventional fibers with piecewise con-
stant, discontinuous index distribution.? The width of the impulse
response increases in direct proportion to the length of the fiber. It
is well known that an improvement of the impulse response results if
the modes are coupled among each other.* In the presence of mode
coupling the width of the impulse response inereases only propor-
tionally to the square root of the length of the fiber.

Pulse propagation in multimode parabolic index fibers is studied in
this paper by means of converting the coupled power equations to a
partial differential equation.™~” Random changes of the direction of
the waveguide axis are considered as the coupling mechanism.

The problem is simplified by assuming that the modes of the para-
bolic index fiber are essentially the same as the modes of an infinitely
extended square-law medium. The fiber boundary is included in the
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description by requiring that modes interacting with it suffer high
losses so that an effective cutoff exists. Modes below the cutoff value
propagate as if they were in an infinitely extended medium. At cutoff we
demand that the modes do not carry power. The effect of the wave-
guide wall is thus taken into account as a boundary condition that
has to be satisfied by the solutions of the partial differential equation.

This formalism provides information about the width of the impulse
response function and the losses associated with the coupling mecha-
pism. The achievable improvement in pulse width due to mode coupling
can thus be expressed in terms of the associated loss penalty. We
conclude that mode coupling is capable of improving the already
favorable impulse response of the parabolic index fiber. However,
this improvement of the width of the impulse response is accompanied
by excess losses. The product of the square of the pulse width ratio
(width of the impulse response of coupled modes to the uncoupled
pulse width) times the loss penalty is independent of the waveguide
parameters and the statistics of the axis deformation. There is thus
no hope of reducing the loss penalty of delay distortion improvement
by optimizing the waveguide parameters.

II. MODES AND COUPLING COEFFICIENTS

We use the modes of the infinite square-law medium. The refractive
index distribution is assumed to be of the form

2 2 _7‘2
n =n0(1—2aa)- (1)

The fiber radius is at » = a. However, the modes are assumed to be
unaffected by the fiber boundary if their mode number remains below
a cutoff value. We use linearly polarized modes and obtain for the y
component of the electric field®

3 .
2( 'i"p) H, (vz"—’)Hq (vﬁy—)e—rw
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There is also an electric field component in axial direction. But, for
small refractive index changes, it is negligible. The funetions Hp and
H , are Hermite polynomials of order p and ¢, the radius r is defined by

=2+ ¢ 3)
and the mode radius w is
VZa \}
v = (iz) @



MULTIMODE PARABOLIC INDEX FIBERS 1425

with the free-space propagation constant

k = w \‘éo‘uo. (5)
The propagation constant of the mode is given by the expression®
3 2v23 }
p=nk[1-2B o +q+ )] ©)

The orthogonality of the modes and their normalization follows from
the following equation:

ZEk :T: f__w . Epoliypdxdy = Péppdgy. (7

The asterisk indicates complex conjugation.
The cutoff condition for the guided mode has been derived in Ref. 9.
The permitted maximum values of p and ¢ are defined by the relation

P+ q.= \/;E noka = :l—; (8)

Any deviation of the parabolic index fiber from its perfect geometry
can be expressed by a change of its refractive index distribution.

Changes in the direction of the waveguide axis can be expressed by
the following index distribution:

" = nd [1 ~2 3@ - sy + yﬂ]- (9)

We consider waveguides bends in only one plane for simplicity. The
results thus obtained can easily be extended to the general case. The
appropriate coupling coefficient for this type of index change is 101

_ weg ® [ on? .

Kopopo = iPBry—Bre) ) [_m 55 Enbrodrdy.  (10)
Bends of the waveguide axis couple even modes to their immediate
odd neighbors and odd modes to their immediate even neighbors.
Only the following coupling coefficients are different from zero:

df
nokwa dz . nokwA
Kporra = oy @BP _zﬁw=z”°a§’ Vpfz).  (11)

Because we restricted the waveguide curvature to the x — z plane
there is no coupling between the modes with different values of ¢.
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All coupling coefficients with different g values vanish. The derivative
of f(z) was replaced by the function itself with the help of the relation
L df

B — B dz

This replacement is permissible since it is the spatial frequency 8 — 8’
of f(z) that is responsible for the coupling process.

— if(2). (12)

III. COUPLED POWER EQUATIONS
Pulse propagation in multimode optical fibers can be described by
the following set of coupled equations for the average power P,
carried by the modes:’
aP, , 1 4P,

oz v, ot

N
= - C!#P,. + Zl hpv(PU - Pr-l)' (13)

The single label » indicates both p and ¢. The power coupling coeffici-
ents h,, are defined by ¢

hw = Ry = IKW’PF(IS." - 'B’) (14)

The coupling coefficient (11) enters the power coupling coefficients

via the definition )
K, = K. f(z). (15)

The power spectrum F(8, — B,) is defined by the equation

F(6) = Q %J f: f(2)e—0dz 2). (16)

The symbol ( ) indicates an ensemble average.

Coupling between the modes of the parabolic index fiber is an ideal
application for a diffusion theory of the power coupling process.”
Since only nearest neighbors couple directly to each other, power
redistributes itself by jumping from mode to mode in the same way
as particles diffuse through real space. If the mode number is very
large we can consider the set of discrete modes as a quasi-continuum
and change the equation system (13) into a partial differential equation.
To accomplish this transformation we consider the following expres-
sion using Ay, = Ryt

N
Z hpv(Pv - P#) = hu+1.n(PF+1 - Pn) - hu.#—l(P# - P“,ﬂ. (17)

we=1
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Considering x as a continuous variable u = 8 we use the approximation

h#+1,,.(Pu+1 - u) u »—1 ( b u—l)

[h(a+ A6) (a{:)w — h(6) (‘Z—P) ]

= (a0p 2 (h—). (18)

lI

With A8 = 1 we can write (13) as a partial differential equation

1aP d aP
i ap+ﬁ(h67). (19)
The propagation constant (6) can be approximated as follows:
B=nok—?(9+9+l) (20)

with p = 8. The difference of the propagation constants of adjacent
modes,

AB = B(6 + A6) — B() = — Y - % (21)

is independent of 6. The power spectrum entering (14) contributes to

the coupling process only at one fixed spatial frequency and is in-

dependent of the variable 0. The power coupling coefficient (14) can

be expressed with the help of (4), (11), and (21) as follows (p = 6):

VZnok A
a3

h(6) = F(Q)6. (22)

With (22) the partial differential equation (19) assumes the form

1aP _ a*P
with
\/jﬂukzi F(Q)
(13

K = (24)

We assume that the attenuation coefficient « in (19) is constant and
describe the high loss, that we must attribute to modes interacting
with the waveguide boundary, by means of the boundary condition

P(z,t,6) =0 for 6= 8. (25)
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The cutoff value § = 8. follows from (8):

g =@ mkeVE

c w2 q = \/2. q
The slope dP/88 determines the rate of power diffusion. Since no

power can be lost at # = 0 we must also require

aP
S5=0 at 0=0. (27)

(26)

IV. STEADY-STATE POWER LOSS

We begin the discussion of the solutions of (23) by neglecting the
fact that each guided mode has a slightly different group velocity and
consider »(f) = const. We construct a solution of (23) by introducing
the trial solution

Pz, t, 8) = e~ te+a:G(6). (28)

Substitution of (28) into (23) yields the ordinary differential equation
G  dG | o

8397+E§+KG_0' (29)

The normalized solutions of this equation that satisfy the boundary

conditions (25) and (27) are
Jolu \/i )
1 Y\ Ve, (30)

Gy(@) = Wc ﬂJl(u,)
with
=2,
u 74 0. (31)

The parameters u, are determined as the roots of the equation
Jo(w,) = 0. (32)

The functions G,(6) are mutually orthogonal.
[
L G, (6)G,(0)d6 = b, (33)

The general solution of the power equation (23) is obtained as the
superposition of the trial solutions

Pzt 0) = e i e,y (e, (34)

=1

The expansion coefficient ¢, ean be determined from the power dis-
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tribution at z = 0 with the help of the orthogonality condition (33),

0
¢, = f G, ()P (0, ¢, 6)do. (35)
(]
The eigenvalues o, are obtained from (31) and (32),
Ku?
o= g (36)

The eigenvalues increase with the increasing values of the roots u,.
It is thus apparent that only the first term in the series (34) needs to
be considered for large values of z. The steady-state power distribu-
tion is thus deseribed by the equation

Pz t, 8) = cieeto:Gi(§) for z— o, (37)

After an initial transient has decayed, the power distribution (versus
mode number 6) assumes the steady state (37). The power loss in the
steady state is the sum of the constant loss @, that was assumed to be
the same for every mode, plus the loss value #; that stems from mode
coupling due to waveguide curvature. With

uy; = 2.405 (38)
we obtain the steady-state curvature loss from (24), (26), and (36),
2.045 - nok Al
— — F(Q).
T nkaVa ) @) (39)
Vo)

Because of our assumption that the waveguide is curved only in one
plane the steady state losses depend on the mode number ¢. For small
values of ¢ we find low curvature loss

2.89A
gl = al

F(Q) for ¢g=0. (40)

With increasing values of ¢ the losses increase until they reach in-
finitely high values.

In any actual cases it is unrealistic to assume that the waveguide
would be bent in only one plane. Bends in the perpendicular plane
couple modes with different ¢ values. The total steady-state loss is
thus a weighted average of the losses (39). The weight factor is the
number of modes for each value of ¢. According to (8) we have

p=N(g) = \/25 noka — (41)
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different modes for each value of q. The average loss that results from
coupling all the modes by random bends in both planes is thus (see
appendix)

noka AIZ
eV (g = 238 F (@) (42)

1= nuka)zA f

Comparison with the loss coefficient (40) for the mode group with
g = 0 shows that the total fiber loss (42) is just twice as large. The
loss coefficient (40) is representative of a slab waveguide. The actual
loss of the round fiber can thus be deduced from the slab waveguide
model. That the loss coefficient of the fiber is twice as large as the slab
waveguide loss might be expected, since F(Q) stands for the ampli-
tude of the power spectrum for bends in only one plane. The fiber is
assumed to be bent in both planes with equal power spectra. The
effect of both bends add, doubling the loss coefficient.

In a fiber cable the fibers may (or may not) be twisted around each
other. Such twists could introduce an almost sinusoidal deformation of
the fiber axis. The length A of the period of sinusoidal deformations
that should be avoided follows from (21), A = 2x/%Q. For numerical
estimates we are using a fiber with radius ¢ = 4.85 X 10~* em and
A = 0.014. The critical period for this fiber is A = 0.18 cm. If such a
period should be built into the fiber by the method of cable construc-
tion we can estimate the losses that would be caused by a given ampli-
tude. F(9) has the dimension of cm? It can be interpreted as the ratio
of the square of the amplitude of the sinusoidal deformation and the
spatial bandwidth that may be caused by random phase changes.
With Q@ = 34.5 cm~' let us assume a spatial bandwidth of AQ = 3
em—!. An excess loss of & = 10 dB/km = 2.3 X 10~% em~! would re-
quire F(Q) = 1.57 X 10~ cm?®. The square of the amplitude A is
given by the product of F(Q) with the spatial bandwidth. We thus
obtain the amplitude of the sinusoidal deformation of the fiber axis
that causes an excess loss of 10 dB/km: 4 = [F(Q)AQ] = 6.9
X 107 em = 69 A. Sinusoidal axis deformations at the critical wave-
length are thus seen to be extremely dangerous.

V. LOSSES FOR A STATISTICAL MODEL

Even though it is only one spatial frequency of the power spectrum
F(B, — B,) that determines the steady state loss (42), it is hard to
guess the amplitude F(Q) that might be expected at this spatial fre-
quency 2. In order to gain insight into the expected steady-state
curvature losses it is necessary to consider statistical models. We
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consider a model consisting of waveguide sections with constant
curvature whose magnitude and sign varies randomly.
The power spectrum can be written as follows:

F(@) = %(‘ f " f@)eivda 2)
ey

The step from the function f(z) to its second derivative involved two
partial integrations. The end points of the integration range do not
contribute if we assume that the randomly disturbed guide is con-
nected to two perfectly straight waveguide sections so that f(z) and its
first two derivatives vanish at z = 0 and at z = L.

For waveguides that are only slightly bent we can consider the second
derivative of f(z) as the eurvature function 1/R.(z). We denote with
C(u) the autocorrelation function of the curvature function,

)= romeTs) )

It is well known that the power spectrum of a function is equal to the
Fourier transform of its autocorrelation function.”” We may thus write

1 [= .
Fo) = o, f_ " Cwevdu. (45)
The autocorrelation function of waveguide sections with piecewise

constant curvature and fixed length D is

D — |u|
cwy=41—D ¢ =D

0 |u| > D.

(46)

The parameter «? is the variance (square of the rms value) of the curva-
ture 1/R,. Substitution of (46) into (45) results in

F = — cos D). (47)

2

K
DQs (a
An average over this expression, that allows us to consider D as an
averaged quantity, leaves us with

F@) = oo, (48)



1432  THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1973

From (21), (42), and (48) we obtain the following expression for the
steady-state loss of our statistical waveguide model:
1.4x%?
m = =R
o DA2 (49)
As a numerical example, we consider a parabolic index waveguide
with the following parameters:

A = 1 um, free-space wavelength (k = 6.28 X 104 em™) |

a = 4.85 X 10~% cm, waveguide radius

ne, = 1.56

A =0.014 . (B0)
w = 7.69 X 10~* ¢cm, mode radius

2 _63

w

With these data we have (x in em™, D in em)
® =017 < em (51)
a = . D .

We may now ask for the rms value of the curvature that is required
to cause a steady-state loss of 2.3 X 10~% em~! = 10 dB/km with an
average length of the waveguide sections of D = 1 ecm. We find from
(51) x = 0.0116 em~! or 1/x = 86 cm. Our result tells us that a wave-
guide composed of individual sections of constant curvature of average
length D = 1 em with R, &2 1 m radius of curvature has 10 dB/km
additional loss. For our derivation we assumed that the high-order
modes suffer very high losses since their fields reach into the vicinity
of the waveguide wall. Whether the interaction with the outer wave-
guide boundary causes high losses depends on the construction of the
waveguide. If the outer surface is rough or coated with an absorbing
material to reduce crosstalk, the losses are high and our estimate
applies.

VI. PULSE DELAY DISTORTION

It was shown in Ref. 5 that the width of the impulse response of a
multimode fiber with coupled modes is given by the equation

At = 4VpL. (52)

L is the length of the waveguide and p is the second-order perturbation
of the eigenvalue o, defined by (36). For the discrete case we write
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G,(0) = G, and obtain p in the form?

Ty — 01

The average group velocity v, actually does not contribute to (53)
on account of the orthogonality of the vectors G®). With the assump-
tion of a continuum of modes we obtain instead of (53)

—— [ ﬁc (v—(lgj - i—) G:(ﬂ)Gv(G)d(*T } (54)

The inverse group velocity is obtained by approximating (6),

)

=2

ok~ 22 g — Lty (55)

and taking the derivative. With v, = ¢/n, we obtain (with p = 6 and
¢ = light veloeity in vacuum)

1 1 1d 0
@ el e e T D (6)

The term with ¢? does not contribute to the following integral because
of the orthogonality relation (33):

/oaﬂ (?(15 - i*) G1(0)G, (0)do
- e D ’8‘[1 - M] + 9}' (57)

cnok®a® (U2 — u (ud — uj)?

Each mode group with a given value of ¢ has a different spread of
the group velocities of its uncoupled modes. However, we have seen
that the waveguide losses could be obtained from the simpler slab
waveguide model. This simplification is expected to apply also to the
pulse distortion problem. The slab model is obtained by setting ¢ = 0.
The spread of inverse group velocities is largest for ¢ = 0 since the
allowed 4 range is largest in this case. However, even though the spread
of the group velocities is reduced for increasing values of g, the mode
groups with different ¢ values arrive at different times. This delay
distortion is reduced by coupling of the different mode groups by
means of waveguide bends in the perpendicular plane (perpendicular
to the plane coupling the modes with different p values). The mode
group with ¢ = 0 can be excited by shining light into the fiber that
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is collimated in one plane but spreads in the plane of the bends in
such a way that all modes with ¢ = 0 and p values in the range
0 < p < nka(A/2)! are excited. The bends in one plane do not
cause coupling to modes with different g values but reduce the delay
distortion of the modes with different p values. From this physical
picture we see that the delay distortion problem is reduced to studying
delay distortion in a slab waveguide. Bends of the fiber in the perpen-
dicular plane couple the modes with different ¢ but fixed p values.
Their velocity spread is the same as that considered in the first problem.
We thus expect to obtain the correct result by considering the delay
distortion reduction for the mode group with ¢ = 0.
With ¢ = 0 we obtain from (26) and (57)

ﬁc (Wla) - % ) G1(6)G,(8)d6
- M [1 - uﬁ]' (58)

c (ul —ud)? (u} — ui)?
Using (24), (36), (54), and (58) we have
128n2atA3 { = wui [1 _12(u) + ul) ]2 }
(2 — uf)®

PR |2 @ - W2 — W)
_ _ naathAd
2.26 X 10~ 2P (59)
The width of the impulse response follows from (52),
noat L \}
At = 0.06 — (m) (60)

From Ref. 9 we obtain the width of the impulse response for uncoupled
modes

nol %

At = 20 (61)

The improvement that is caused by mode coupling is the ratio of the
widths of these two impulse responses

At 0.2

ar - [F@LAT (62)

R:

For the statistical model of a sequence of circularly bent waveguide
sections we obtain with (48) and (21)

_ 0244 (%)i 63)

K@
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We may ask for the average radius of curvature that is required to
cause a ten-fold improvement of the width of the impulse response
due to mode coupling. Using L = 1 km and an average length of the
bent sections of D = 1 em and the numbers in (50) we obtain for
RE = 0.1, xk = 0.022 em™ or an average radius of curvature R = 1/«
= 45 em. This relatively small radius of curvature may cause very
substantial excess loss according to the loss example in Section V.

In order to relate the excess loss to the delay distortion improvement,
we consider the loss penalty that must be paid for a given amount of
improvement in the width of the impulse response. Both the loss
formula (40) and the improvement factor R, (62), contain the power
spectrum of the distortion function f(z). By taking the square of R
and multiplying it with the loss per length L, ¢1L, we obtain'

R, L = 0.042 = 0.18 dB. (64)

This important formula is independent of any of the waveguide
parameters and of the statistics of the axis deformation. This means
that the loss penalty, ¢,L, for parabolic index fibers depends only on
the delay distortion improvement that one wants to achieve. For
R =1 we have a loss of ¢,L = 0.18 dB. Clearly, the range of ap-
plicability of (64) is exceeded in this case since B = 1 means that
there is no improvement at all. For B = 0.5 we pay a loss penalty of
0.7 dB, R = 0.1 increases the loss to 18 dB. The already favorable
delay distortion of the parabolic index fiber can be improved by
intentional curvature of the waveguide axis.

VII. DISCUSSION

We have studied the performance of the parabolic index fiber with
randomly curved axis. The curvature of the waveguide axis has the
tendency to force a light beam inside of the fiber towards the fiber
boundary. In terms of wave optics this means that the wave field
begins to interact with the boundary of the fiber. If this boundary
is perfectly smooth no particular harm may be done except that the
impulse response of the fiber is likely to deteriorate. However, the
interfaces between two dielectric regions tend to be rough. Surface
roughness leads to scattering losses. We have thus assumed that the
interaction of the mode fields with the fiber boundary causes signif-
icant losses to high-order modes. On this basis we were able to calculate
the fiber loss caused by random bends of the waveguide axis. For
bends that approach a sinusoidal shape, with a period comparable to

T We use o1 of (40) instead of ) of (42) since R was computed for ¢ = 0,
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the ray oscillation period in the parabolic index medium, the excess
losses are extremely high. Bending of the waveguide axis with a period
equal to the ray oscillation period must be avoided. For a statistical
model, based on the assumption that the waveguide is composed of a
sequence of circularly bent sections with random length and random
radius of curvature, the waveguide losses have been predicted. We
conclude that average radii of curvature of approximately 1 m can be
allowed if an excess loss of 10 dB/km can be tolerated. The waveguide
sections were assumed to have an average length of 1 em.

It is possible to reduce the width of the impulse response of a
parabolic index fiber by coupling its modes by random bends of the
fiber axis. The impulse response of parabolic index fibers is already
quite favorable compared to the impulse response of the conventional
optical fiber with a discontinuous but piecewise constant index dis-
tribution. Our analysis shows that additional reduction of pulse delay
distortion is accompanied by losses. A reduction of the pulse width
to half its uncoupled width increases the loss by 0.7 dB, a ten-fold
pulse width reduction increases the fiber loss by 18 dB.
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APPENDIX

The averaging process used to obtain (42) can be justified as follows.
Each mode group characterized by the mode number g comprising

all modes with
0<p< (\/gnaka—q)

has the loss coefficient o1(g). By definition this can be written

_ AP(q)
o1(q) = W

AP(q) is the power lost from the mode group per unit length and P
is the power carried by these modes. If we assume, for simplicity, that
each mode carries the power P we can write P(q) = N(g)P so that we

have
AP(q)

a1(g) = NP’

with N(g) indicating the number of modes in the group. The total
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loss is

_ TAPl) T a@N@
L) - TN

Replacing the sum by an integral yields formula (42).
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