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In a companion paper,' a geometric approach to the study of intersymbol
interference was introduced. In the present paper this approach is applied
to the performance analysis of the Viterbi algorithm mazimum likelihood
detector (MLD) of Forney.>* It is shown that a canonical relationship
exists between the minimum distance, which Forney has shown determines
the performance of the MLD, and the performance and tap-gains of the
decision-feedback equalizer (DFE). Upper and lower bounds on the
minimum distance are derived, as is an ilerative technique for computing
it exactly.

The performances of the MLD, DFE, and zero-forcing equalizer (ZFE)
are compared on the f channel representative of coaxial cables and some
wire pairs. One vmportant conclusion is that, previous statements not-
withstanding,®* even the MLD experiences a substantial penalty in S/N
ratio relative to the isolated pulse bound on this channel of practical
interest.

I. INTRODUCTION

Forney*+ has detailed the Viterbi algorithm version of the maximum
likelihood detector (MLD) of digital sequences in the presence of
intersymbol interference. He asserts that the probability of bit error
of the MLD in additive white Gaussian noise can be bounded at high
S/N ratios in the form

K0 (%) s Pk (%e), M

where K; and K, are constants, @ is the Gaussian distribution
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function,

Q) = % [Fevnay, )

dmin is the minimum distance between any two transmitted signals
(it will be defined more fully in Section 2.2), and ¢? is the noise variance.
For comparison purposes, the probability of error for a matched filter
receiver in the absence of intersymbol interference is

ro=a (), 3)

where R, is the energy of an isolated pulse [(1) reduces to (3) in this
case |.

Forney also asserts that the lower bound of (1) is also a lower bound
on the error probability of any receiver.* Thus, the MLD achieves,
within the multiplicative constant K,/K;, the minimum probability
of error attainable by any receiver at high S/N ratios, and, in a very
fundamental sense, the quantity

min/ o

is a measure of the effective decrease in the S/N ratio (relative to the
detection of an isolated pulse) resulting from intersymbol interference.

The determination of the quantity d,, (known as the ‘‘minimum
distance problem’) is therefore a very important one for, even if the
implementation of the MLD is not contemplated on a particular
channel, d2,, is a measure of the potential performance which can be
obtained using receivers of arbitrary complexity. Unfortunately, on
channels with severe intersymbol interference, the exact analytical
determination of d2,, does not appear feasible because of the nonlinear
nature of the problem.

The minimum distance can be determined numerically by the
“brute force” technique of calculating a sequence of converging upper
bounds. A shortcoming of this method is that it gives no assurance
as to when convergence to the desired accuracy has occurred. In
addition, it gives no insight into the nature of dZ,, and its relationship
to the intersymbol interference or to the performances of other
receivers.

In this paper, we attack the minimum distance problem using a
geometric theory of intersymbol interference developed in companion
papers.’:s A canonical relationship will be shown between da, and the
decision-feedback equalizer (DFE). This relationship will be exploited
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to derive simple lower and upper bounds on @, in terms of the tap-
gains of the DFE transversal filter and the S/N ratio performance of
the DFE. In addition, an iterative procedure will be derived for the
calculation of di,, to any desired accuracy using a sequence of con-
verging upper and lower bounds on d,,. The lower bounds give us a
measure of the degree of convergence and enable us to terminate the
calculation when the desired accuracy is assured.

After consideration of the minimum distance problem in Section II,
the performance of the zero-foreing equalizer (ZFE), DFE, and MLD
is compared on a channel of practical interest in Section II1.

II. PERFORMANCE OF THE MLD

The minimum distance problem will now receive consideration. The
first step is to briefly review the notation of a companion paper.!

2.1 Notation

The reception from a PAM communication channel takes the form

r(t) = X Bih(t — kT) + n (), (4)

where each B; assumes one of a finite number of predetermined values
(the data being transmitted), A (¢) is square-integrable (element of
L,),* and n(t) is white Gaussian noise.

When we denote k(¢ — kT) as an element of Ls by hy, M (hs, k € I)
is the smallest closed linear subspace of L. containing all finite linear
combinations of elements of the set {hi, k & I}. The projection of a
vector x on M (hi, & € I) is denoted by P[x, M (hi, k € I)]. The for-
ward matched-filter transversal-filter combination of the DFE cor-
responds to the L, inner product of the reception r(¢) with the element

eif £ he — PLhe, M(hm,m > k)] (5)
and is orthogonal to the subspace M (hn, m > k). The quantity

llea |2
Ry '’
where

Ri £ (huy honir) (6)

* We denote by L: the space of square integrable waveforms with inner product

@ = [ z0uoa

and norm |[z|* = {(z,z).
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is the effective decrease in S/N ratio relative to an isolated pulse for
the DFE. Thus, |e||? plays the same role for the DFE as d,, plays
for the MLD.

The sequence of vectors {w; 2 ¢i/|leif ||} is an orthonormal sequence
in L,, and h, has the orthogonal expansion

ho = 3 Cotdmin, (7)

m=0

where the coefficients {Cn} can be determined by the method of
Ref. 1 for channels with either a rational or nonrational spectrum.

In particular, we have
Co = |leg]l. (8)

Of course, it is apparent that (7) is valid only as long as [l&f[| > 0,
which is true if and only if a DFE exists.

2.2 Interpretation of the Minimum Distance

The MLD described by Forney? consists of a combination of a
matched filter followed by a causal or anticausal transversal filter,
the combination of which he calls a “whitened matched filter,”
followed by a dynamic programming algorithm known as the Viterbi
algorithm.? The whitened matched filter forms a sequence of sufficient
statistics for the detection of the data digits and has independent noise
samples at the output. As pointed out by Price, the anticausal
whitened matched filter is identical to the forward linear filter portion
of the DFE.

The signal at the output of the whitened matched filter (or DFE
forward filter) is!

Ty = CEB;, + El CoCmBk_m + Nk, (9)
where n; is a noise sample. The DFE forms the quantity

T]: =T — E CDOmBk—m (10)
m=1

and applies it to a decision threshold to determine the estimated digit
B.. The MLD detector, on the other hand, assumes that the sum in
(9) is truncated to M terms and determines the sequence { B.} so as
to minimize
N M 2
2 e — EO CoCmBrmt - (11)

k=1
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Thus, the two receivers perform similar functions on the same sufficient
statistics 7, the major differences being the greater complexity of the
MLD and the susceptibility of the DFE to decision errors. We will
now demonstrate the less obvious conclusion that the performance of
the MLD is closely related to the DFE as well.

The minimum distance, d2,,, is defined as?

A . N 2
d2p = inf || 3 ek, (12)

o0 n=0
where the infimum is over all error sequences (e, - - -, ey) and all N.*

Each € assumes the value +1, —1, or zero (for simplicity, the binary
case with By = 1 or 0 is considered). Thus, dmi, is the minimum
distance in L, between two signals in the signal set. It is apparent that

dlznln = RO? (13)

since Ry corresponds to e, = 0, n > 0. Thus, d%,,/R,, which is the
S/N ratio penalty, is a number between zero and unity as it should be.

It is apparent in (12) that without loss of generality we can choose
€0 = 1 and write

a2y, = inf (14)

N
hO + Z Enhn
n=1

The sum in (14) is an element of M (hi, k¥ = 1), and the minimization
in (14) is an attempt to find the element of M (hi, & = 1) with manifold
coefficients (41, —1, 0) which is closest (in £, metric) to ho. We know
that the closest element without the restriction in coefficients is the
projection of ho on M(hy, k = 1), P[hy, M(hs, k = 1)]. Thus, in-
tuitively, di,, is determined by how closely the projection can be
approximated by an element with restricted manifold coefficients. To
formalize this intuition, add and subtract the projection from (14) and
utilize (5),

2

d%ﬂn inf

N
ed + PLhoy M (he, k = 1)] + ):,1 €nhin

et 12 + inf Hp[h,,, Mk 2 DI+ X ehal [, (15)

where the fact that e is orthogonal to M (hi, k > 0) has been used
to eliminate the cross-product in (15). The most immediate conse-
quence of (15) is that

B = [l |2 (16)

* In most cases of interest, the infimum will be achieved for finite N.
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We have thus succeeded in proving formally what should be obvious
from considerations of the relative complexity of the two receivers:
The effective S/N ratio of the MLD always exceeds that of the DFE
(and hence ZFE?).* The second consequence of (15) is the formaliza-
tion of our intuition through the assertion that the amount by which
the 8/N ratio of the MLD exceeds that of the DFE is governed by the
coarseness of the best approximation to the projection by the element
with restricted coefficients: The poorer the approximation, the better
the S/N ratio of the MLD.
Writing the projection in the form

PLho, M(hs, k > 0)] = — il @ Fom, (17)

we note that the a; are the tap-gains of the DFE forward transversal
filter, and rewrite (15) as'

A = [leg"]|* + inf

]

Z (fn - ai)hn

n=1

2

(18)

Equation (18) shows the fundamental relationship between the
minimum distance, the effective S/N ratio of the DFE (in the form
of [leg||?), and the tap-gains of the DFE transversal filter. In particular,
we can assert that d2,, = ||eg||? if and only if the tap-gains are all +1,
—1, or zero.

2.3 Bounds on the Minimum Distance

Equation (18) can be used to derive bounds on dZ,, in terms of the
DFE tap-gains. From the identity?*

N N ¢ — at 2
Y (en — aDha||2 = (& — @) |l + X — T hal| , (19)
n=1 = € — O
we immediately get the bounds
¥ . [la—at)|ef]t, k=1
Y (en—ahhal| 2 (20)
n=1

(ﬂ: - aj')zllgnllz, k>1,

*We are tempted to argue that (16) is implied by the assertion in Ref. 2
that the MLD achieves the lowest effective S/N ratio of any receiver. However,
that is not the case, because of the effect of decision errors on the DFE. The effective
S/N ratio of the DFE could be higher than that of the MLD, and yet the DFE could
bave at the same time a higher error probability because of error propagation.

t We have taken the liberty of writing a sum over infinite error sequences, where
it is understood that the infimum is only over error sequences with a finite number
of nonzero terms.

TIn (19) it is assumed that (ex — ai) # 0. When & — af =0, (20) is trivially
satisfied.
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since
N — a+)
Z —
n=1 \€k a )
n#=k

is an element of M (h., m = k). In (20), e, is the ZFE filter defined in
Ref. 1,

eo £ ho — PLho, M (hy & # 0)]. (21)

In addition, if we define Amin(N) and Amax(N) as the minimum and
maximum eigenvalues of the correlation matrix

Ry £ [R,_.] 1=mn =N,

then we can assert that

N
M) 2 (e = ) 5 || 2 (6o = 0

n=1

gmmiﬁ—mam)

A standard Toeplitz form result’ asserts that*

1 .
7 €8s inf R (w)

hm Rmin(l,v)
N-ox

lim Apaxc(NV) -,}, ess sup R(w).
Now

Applying (18), (20), and (22), we get three lower and one upper bound
on d, in terms of the tap coefficients of the DFE,

llect(|* min (e — aif)?

o 2 [lef |2 + 9 eol? min (e — i), k> 1
N
1 ess inf R(w)} lim min % (e, — af)?
T N—ow e, eN n=1
< llef)? + [ess sup B (w)} hm min Z (en — a7 ). (23)
N—ow €1," v n=1

In addition, an upper bound can be obtained by substituting any error
sequence into (18); a reasonable choice is

+1, af < -}
@=14 0, ——<a. < 1. (24)
-1, F>1

Fnr all practlcal purposes, “ess inf”’ and “ess sup’ can be replaced by “min”
and “max,” respectively.



1528 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

These five bounds can be useful in estimating the penalty in S/N
ratio for the MLD. They all require the existence of a DFE and
require that the projection can be written as the convergent sum of
(17).* The second and third bounds of (23) are an improvement on
(16) only when the increasingly stringent requirements that a ZFE
exist (|les] > 0) and R(w) be uniformly bounded away from zero
(almost everywhere) are imposed. The requirement of the upper
bound of (23) that R(w) be uniformly upper bounded (almost every-
where) will generally be satisfied in practice. All the bounds require
a pointwise minimization over error sequences, a task much simpler
than minimizing (12) directly.

As a simple application of these bounds, consider the exponential
autocorrelation

R.=Als,  0<A4<L. (25)
Then we have's?
1, 0<4=4%
Buo =
2(1 — A), <A<l
leoll* = (1 — 4%)/(1 + 42) (26)
el = 1 - 42
af = — A, at = 0, k> 1.
The first and third bounds of (23) become
1 — A4 0<A4A=4%
don Z (27)
(1 — A%)(2 4+ A2 — 24), <A<l
1—-24%(1+4), O0<A=}
A (28)
201 — A1+ A/ +4), <A<l
and the upper bound of (23) becomes
243
L+ —5, 0<4=3
G = (29)

2(1 — 42, 3<A<L1.
These bounds are plotted in Fig. 1. The upper bound of (24) is equal
to d2,; and is not plotted.

*If the projection of hy on P(hs, & = 1) cannot be written in the form of (17),
the bounds of (22) to (24) can be fixed up by considering the projection on P (h,
1 £ k £ N) and taking limits as N — «. The tap-gains will then be a function of N,
and the process will be more difficult.
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Fig. 1—Bounds on 42, for an exponential autocorrelation.

The bounds just determined have the disadvantages that () they
require calculation of the DFE tap coefficients and (¢) they do not
give precise results on d,,. The exact value of d2,;, can be determined
numerically by the direct minimization of (12); by letting N —
while exhaustively minimizing over error sequences, we get a sequence
of upper bounds on d%,, which approach d%, monotonically. The
obvious difficulty with this method is that the number of error se-
quences which must be checked grows as 3¥, and the computational
effort soon becomes unreasonable. What happens in practice is that
the true minimum is achieved for a finite (and small) N. However,
unless we have some method of determining when the true minimum
is reached, there must always remain a degree of uncertainty as to
whether the true minimum has been reached.

Our approach to this computational problem will be to derive a
sequence of lower bounds on d2,, which also approach d%,, monotoni-
cally. We can then halt the process at a value of N where the upper and
lower bounds are close enough to ensure knowledge of dZ,, within the
desired accuracy. To this end, we will utilize the orthogonal expansion
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of (7). Substituting (7) into the sum of (12),

Zn Eﬂhﬂ = i €n i men+m

n=0 n=0 m=0
= mZED BnlWn, (30)
where
Bn = 3 exCose (31)
&=

Then, because the {w.} are orthonormal,

2 )

= 2 B (32)

n=0

0

z Eﬂh’ﬂ

n =0

It appears that we may have made life more difficult for ourselves,
because even when we substitute a finite sum on the left of (32) we
must still evaluate an infinite sum on the right. However, note that
since the terms in the sum are positive,

2 N

z 2 b (33)

=0

Z énhﬂ.

n=0

where the sum on the right is always finite and is in terms of a finite
length error sequence (eo, - - -, en). Hence,

2 min 3 B (34)

€, +,en n=0

=1

and, furthermore, the right side of (34) approaches the left side
monotonically as N — .

The minimization of (34) is no more or less difficult to perform than
that of the direct minimization of (12). It does require the existence
of a DFE and evaluation of the coefficients {C,.}. A reasonable pro-
cedure is, at each stage of N, to minimize the right side of (34) to
obtain a lower bound on d%,, and substitute the minimizing sequence
into (12) to obtain the upper bound* on d%,,. When the lower and
upper bounds are sufficiently close, the process can be terminated.

* Note that any sequence substituted into (12) yields an upper bound on d2;,
and the one which minimizes (34) is as good as any. On the other hand, only the
sequence which minimizes (34) yields a valid lower bound, so it must be minimized.
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The minimization of (34) can be assisted slightly by dynamic
programming. Defining

fronlen oy end) = min 3 g (33)
we note that T
min 3 6} = min [fw_a(e) + 5] (36)
with a recursion relation for fy_m (e, - - -, em_1),
N
IN—my1(er, » -+, €ns) = e..._rll.l-i-r.l.m n=§—1 [iH

N
min | min g1+ i |
Em—1 EMm---eN R=m

= min [fy_n(er - em) + i) (37)
Because there is no possibility of using forward dynamic programming
in this case, the savings in computation for this method is not too
spectacular. Each . must still be evaluated for 3¥ error sequences;
the savings is in eliminating the need for summing 82 for most of the
combinations of 3¥ error scquences.

We note in passing that using the FFT algorithm to reduce the
computational effort in the convolutional sum of (31) is a possibility.
However, the 3¥ sequences for which it must be evaluated becomes a
limiting factor long before the savings of that method becomes
substantial.

In the foregoing discussion, the existence of a DFE has been re-
quired [that is, [|eg || > 0 or equivalently log R () is integrable, where
R(w) is the equivalent power spectrum of the channel']. When log R ()
is not integrable (as when it vanishes on an interval), there does not
appear to exist an expansion of the type (31) to (32). What can be
done is to use the Gram-Schmidt expansion of the form

B}

hm = (hm: wk>wh (38)

k=

L

where w, is the orthonormal sequence obtained from {k;} by the usual
Gram-Schmidt orthonogalization procedure. This expansion merely
requires that {A:} be linearly independent, which is guaranteed by the
existence of an interval on which R (w) does not vanish.! From (38), it
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follows that

Z €mhm = Z €m i (hm: wk}wk
k=0

m=0 m=0
= 3 B (39)

£=0
Bi= 3 enlhim we). (40)

m=

The key point is that the summation in (40) is infinite, so that evalua-
tion of the lower bound of (34) is now necessarily over infinite error
sequences. The finite sum in (31) results from the form of the expan-
gion (7) in which A, is expanded in terms of all future w;’s, and this
expansion is in turn dependent on h. not being an element of
M (hy, & > n). Thus, when a DFE does not exist there appears to be
no alternative to evaluating a sequence of upper bounds to di, ob-
tained by a finite sum approximation without the benefit of lower
bounds to measure the degree of convergence.

III. THE PERFORMANCE OF THREE RECEIVERS ON THE W/}. CHANNEL

Results of a calculation of the performance of the MLD, DFE, and
ZFE will now be reported for the Vf channel, for which the attenuation
in decibels increases as the square root of frequency. The vf channel
is a good approximation to coaxial cable, as well as to some cables
consisting of wire pairs, and for this reason it is of great practical
interest.

Many present high-speed digital transmission systems use some
form of linear equalization, and their performance will be reasonably
well approximated by that of the ZFE. Thus, the comparison between
the ZFE and the MLD gives us an indication of the size of the gap in
performance between common transmission systems in use today and
what could theoretically be achieved by much more complex receiver
designs.* The comparison with the DFE is much less interesting, be-
cause the susceptibility of the DFE to decision errors is not included
in the present analysis and, as will be shown shortly, is of such a
magnitude on the Vf channel as to essentially invalidate the perfor-
mance estimate we calculate.

* This comparison is, of course, very idealized. The only impairment we consider
is additive Gaussian noise.
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Fig. 2—Performance of three receivers on the v channel.

The power spectrum of the v channel is given by
|H(w)|? = 2rK?Rye—2KV, (41)

where H(w) is the frequency response of the channel and K is a
parameter proportional to the line length. The usual convention is to
designate the loss at the half-baud rate (v = =/7T),

2

[H(0)?

Y A
K= \/;20 log e (43)

The effective penalties in S/N ratio relative to the isolated pulse
bound can be calculated for the ZFE and DFE using the methods of
Ref. 1, and for the MLD using the methods developed in Section
I1. The result is shown in Fig. 2 for the range of v of practical interest.
Most high-speed transmission systems in use today have a v less than

v = — 10log (dB), (42)

in which case
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about 65 dB because of limitations in the maximum gain which can
be incorporated into a repeater without excessive coupling of the
output back into the input.

One interesting feature of Fig. 2 is that even the MLD has a sub-
stantial S/N ratio penalty (15 dB) on the v channel. Thus, Forney’s
statement? that on most channels intersymbol interference does not
have to lead to a significant degradation in performance does not apply
to channels with very severe intersymbol interference, such as are
commonly used in high-speed transmission systems.

The value of d2,,, valid for Fig. 2, as well as many other examples
considered by this author and Forney,* is

mn = 2(Ro — Ry), (44)

where R; is the autocorrelation of the received pulse.* An approxima-
tion to (44) valid for large v is derived in Appendix A and plotted in
Fig. 2 as a dotted line. Approximations to the S/N ratio penalty of
the ZFE and DFE are also derived in Appendix A and plotted in Fig.
2. An intuitive interpretation of eq. (44) is given in Appendix B.

As an illustration of the speed of convergence of (34), the sequence
of upper and lower bounds is illustrated in Fig. 3 for a v f channel with
v = 60 dB. These bounds are within 1 dB for N = 1 and 0.5 dB for
N = 3. Thus, convergence is very rapid, even for severe intersymbol
interference.

A word of caution is in order with respect to the curve for the DFE
in Fig. 2. This curve does not take into account the effect of decision
errors on the performance of the receiver. The DFE subtracts, prior to
the decision threshold on data digit By, the quantity

Y buBim, (45)
m=1
where B;_, is the receiver’s previous decision on By_,, and b, is the
tap-gain of the DFE feedback filter. The resulting quantity which is
applied to the threshold is!

bBi 4+ 3 bu(Bim — Bim) + nu, (46)

m=1

where n; is a noise sample. Whenever the b,’s are large with respect
to be, a single decision error will likely cause many more errors. The

* This corresponds to the error sequence (1, —1, 0, 0, ---) or, in the notation of
Forney, (1 — D).
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Fig. 3—Convergence of lower and upper bounds on d;, (VS channel with v = 60 dB).

coefficients of (46), given by (9), are tabulated in Table I for several
values of «.

Needless to say, the situation is hopeless for the large v; the effect
of a single decision error will be major and will last for a long time.
Even for v = 20, the reduction in noise margin resulting from a pre-

TaBLE I—Corrricients or THE DFE FEEDBACK FILTER (b))

m b
v =20 vy =40 v = 60
0 1 1 1
1 0.61 14 2.2
2 0.36 1.3 2.8
3 0.25 1.1 2.9
4 0.18 0.94 2.9
5 0.14 0.80 2.8
10 0.06 0.42 1.9
47 0.006 0.06 0.38
174 0.001 0.009 0.06
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vious decision error will be significant for five or ten subsequent
decisions. We must conclude, then, that Fig. 2 will not be representa-
tive of the true performance of the DFE, and further that the DFE
may not be a suitable receiver for the Vf channel®.

In terms of repeater spacing and baud rate, Fig. 1 can be interpreted
in two ways. If the ZFE is replaced by an MLD, the same level of
performance can be maintained while either increasing the repeater
spacing with a constant baud rate or increasing the baud rate with
the same repeater spacing. To illustrate this, consider the example of a
ZFE operating at a given level of performance on a V£ channel with
v = 40 dB. Then v can be increased to 60 dB at the same effective
S/N ratio. This corresponds to a 50-percent increase in repeater spac-
ing at a constant baud rate (since vy goes up linearly with the repeater
spacing). However, since the repeater spacing has increased, the trans-
mitted power must also be increased by 3.5 dB to maintain a constant
isolated pulse energy at the receiver.

If the repeater spacing is held constant, an increase in baud rate by a
factor of (1.5)% or 125 percent, will also result in a 50-percent increase
in 7. Here too, the average (but not peak) transmitted power is in-
creased by 3.5 dB.

The conclusion of these results is that there is a fairly large gap be-
tween the performance of linear equalizers and the theoretical limit
on the V7 channel. It is probably fair to say, however, that practical
constraints on repeater complexity, speed of operation, and gain makes
the attainment of a substantial portion of this potential improvement
on high-speed transmission systems very difficult, at least for the
present. Such is not the case for low-speed applications, such as voice-
band data, where the implementation of the MLD can be contemplated
on the basis of existing technology.

IV. CONCLUSIONS

In this paper, the minimum distance measure has been interpreted
geometrically, related to equalization (the decision-feedback equalizer
in particular), and bounded in several ways. A practical numerical
technique has been developed for calculating the minimum distance
without considering unnecessarily long error sequences.

* Tomlinson® has invented a method of avoiding the error propagation problem by
subtracting out interference from past data digits in the transmitter.

T The received pulse energy is proportional to y73, so that the peak and average
transmitted power must be increased gy 20 log(60/40) = 3.5 dB.
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Numerical results for the v channel reveal that the penalty in S/N
ratio relative to the isolated pulse bound for the MLD can be sub-
stantial for this channel, and that the gap in performance between the
MLD and linear equalization is also substantial. The latter suggests
that further attempts at finding receivers without the complexity of
the Viterbi algorithm MLD but which nevertheless improve on the
performance of linear equalization might well be fruitful. The decision-
feedback equalizer does not appear to fit this bill because of its serious
error propagation problem when confronted with intersymbol inter-
ference as severe as that found on the \/_f channel.

APPENDIX A

Autocorrelation of the Y f Channel
From (41), the autocorrelation is

Re=1 f“ | H(w)|? cos («kT)dw
w Jo
4K, [ 2K i
== fu Z exp ( T :c) cos (kx?)dz. (47)

Integrating by parts with © = exp (— %1% x) and dv = z cos (kz?)dx,

we get

4K*R, = 2K .
Ry = Ty '/‘0 exp (— ﬁx) sin z%dz ,

which is given in terms of the Fresnel Integral,®
w30 (=) oo (i)
#[3=5(ia2) ] (i)} 69
C(z) = LI coS (;—; yz) dy

S(z) = ]:sin (gyz) dy .

An accurate approximation to R, valid for large v is easily obtained
from (47) by substituting the first two terms of a Taylor series for

where



1538 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

cos 72,
R = B8R, jmx (1 - = ) e Prdr
0
B
where
2K
8= 17
Hence
120
2(Ry — Ry) = o
and
— 10 log 2(1‘3_01;@ =~ 40log v — 56.2. (50)
0

Approximations to ||eo]|? and ||eg||? can also be derived by assuming
that H(w) = 0, |w| > #/T, or equivalently that |H(w)|? = R(w).
The resulting S/N ratio penalties are

— 10 log ||eo||2/Ro = v + 25.15 — 30 log v (51)

— 10 log |leg"[|>/Ro =2 %y + 15.76 — 20 log « . (52)
Equations (50) to (52) are plotted in Fig. 2 as dotted lines.
APPENDIX B

Interpretation of Equation (44)

It is straightforward to show that whenever

R,
o = 0.5 (53)

we have
A2 = 2(Ry — R1) = R (54)
Noting that
Ry = (ho, 1) = ||kl ||ha]| cos 6
= Rycos 8,

where 0 is the angle between ho and hi, eq. (53) becomes
6 < 60°. (55)

The geometric interpretation of (55) is shown in Fig. 4, where it is
seen that (54) is satisfied until 8 = 60°, when the triangles become
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-hg

o

Fig. 4—Geometric interpretation of eq. (44).

equilateral. Aslong as (55) is satisfied, hy — h; is a shorter vector than
ha.

In the case of the Vf channel, Ry/R, is very close to unity. Thus,
ho — hyis a very short vector. Although it will certainly not always be
the case, a plausible explanation for the fact that longer error sequences
do not yet yield a shorter vector is that the addition of other translates
of hx (such as =+h,;) adds further components in other dimensions.
Presuming that it does not reduce the component in the hy — h; plane,
it can then only increase the length of the total vector.
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