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Maximum Ukelihood data sequence estimation, implemented by a
dynamic programming algorithm known as the Viterbi algorithm (VA),
ts of considerable interest for data transmission in the presence of severe
intersymbol interference and additive Gaussian noise. Unfortunately, the
required number of receiver operations per data symbol is an exponential
Junction of the duration of the channel impulse response, resulting in
unacceptably large receiver complexity for high-speed PAM data trans-
mission on many channels. '

We propose a linear prefilter to force the overall impulse response of
the channel/prefilter combination to approzimate a desired truncated
impulse response (DIR) of acceptably short duration. Given the duration
of the DIR, the prefilter parameters and the DIR itself can be optimized
adaptively to minimize the mean-square error between the output of the
prefilter and the desired prefilter output, while constraining the energy in
the DIR to be fized.

In this work we show that the minimum mean-square error can be
expressed as the minimum eigenvalue of a certain channel-dependent
matriz, and that the corresponding eigenvector represents the optimum
DIR. An adaptive algorithm is developed and successfully tested. The
stmulations also show that the prefillering scheme, used together with the
VA for two different channel models, compares favorably in performance
with another recently proposed prefiltering scheme. Limiting results for
the case where the prefilter is considered to be of infinite length are obtained;
1t s shown that the optimum DIR of length two must be one of two possible
impulse responses related to the duobinary impulse response. Finally we
obtain limiting results for the case where the transmitting filter is optimized.
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I. INTRODUCTION

Forney' has recently proposed a receiver structure for a communi-
cation system operating over a known time-dispersive channel with
little loss in performance due to intersymbol interference by using
maximum likelihood sequence estimation, or the Viterbi algorithm
(VA).2 This has resulted in much attention being given to practical
methods of applying his results. Magee and Proakis® proposed the use
of the VA directly in conjunction with a channel estimator. This
approach can result in a receiver too complex for practical use because
the complexity of the VA depends exponentially on the duration of the
channel impulse response.

In particular, if the impulse response of the channel has an effective
duration of r seconds and if an L-level PAM system transmits 1/T
data symbols per second, the number of operations per received symbol
is proportional to L7/7. For channels such as voiceband telephone
channels, the bandwidth of which is used efficiently, typical values of
/T may be between about 20 and 200, making direct application of
the VA infeasible.

Thus, it seems clear that effective practical application of the VA
or of related techniques involves a compromise between optimum
performance and receiver complexity. The complexity-limiting ap-
proach we take here is to use a linear prefilter at the receiver to
“condition” the overall sampled impulse response seen by the VA so
that it is significantly different from zero over only a small number of
samples, and any remaining intersymbol interference is considered to
be noise. Additional joint optimization of the transmitting filter is
also treated, but would be much harder to implement in a real system.

The simplest example of a prefilter is a linear equalizer, which yields
an approximate overall impulse response of just one sample. Another
example of prefiltering for a different purpose is the linear portion of a
decision-feedback equalizer; in that case the initial sample of the de-
sired overall impulse response is required to be large relative to the
additive noise.

In any application of prefiltering to approximate a desired impulse
response (DIR), the DIR itself and the prefilter should be chosen to
minimize the error due to noise and to the difference between the DIR
and the actual impulse response that is achieved. The latter error re-
sults from intersymbol interference components outside the interval
accounted for by the DIR samples as well as from errors in approxi-
mating the DIR inside the time-limited interval. This error could be
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eliminated by using a zero-forcing criterion at the cost of additive
noise.

Qureshi and Newhall* have recently proposed a receiver incorporat-
ing prefiltering with the VA. They use a mean-square error (MSE)
criterion to force the overall response of the channel plus the linear
equalizer to approximate a truncated version of the channel pulse re-
sponse. In order to decode, the VA assumes this truncated response,
resulting in much simplified processing. There is no effort made in
Ref. 4 to optimize the desired truncated response. It is the purpose
of this paper to see how this desired response can be chosen to minimize
MSE and to show that this receiver structure can be made adaptive.

In Section II we formulate the MSE-minimization problem, assum-
ing a fixed number of samples in the DIR and in the impulse response
of the prefilter. The minimum achievable MSE is the minimum eigen-
value of a certain channel-dependent matrix. In Section 111 we indicate
how the prefilter tap coefficients and the samples of the DIR can be
determined adaptively by a gradient algorithm based on the MSE
minimization. Section IV is a study of the limiting situation in which
the tapped delay line prefilter consists of an infinite number of taps
and it is preceded by a matched filter. Compact expressions for the
prefilter impulse response, DIR, and minimum MSE are derived,
which lend further insight. Section V describes the results of computer
simulations of an adaptive prefilter/ VA receiver structure, including
comparison of the receiver with that described in Ref. 4 and with per-
formance lower bounds. Section VI presents performance calculations
for the prefilter/VA system, a decision-feedback equalizer, and a
linear equalizer for a particular channel. Plots of minimum MSE
versus bit rate for each of the three types of receiver structures are
shown. Section VII considers asymptotic transmitter optimization.

II. OPTIMIZATION OF THE RECEIVER

The channel model and the preliminary receiver processing are
shown in Fig. 1. The channel is modeled as a linear continuous filter
with additive white Gaussian noise. It has been shown by Forney!
that the channel can then be followed by a matched filter, symbol
rate sampler, and noise whitening filter with no loss of information.
Alternatively, the reader may assume that the channel is band-
limited and symbol rate sampling can be used with no information loss.

Due to these considerations, the discrete-time model of Fig. 2 was
adopted with the additional assumption that the channel pulse re-
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Fig. 2—Discrete-time channel model.

sponse is time-limited. The noise sequence {n:} is additive, uncor-
related, and Gaussian with variance ¢%. Note that a discrete-time model
with uncorrelated noise samples also results from the commonly used
but nonoptimum expedient of passing the received signal through a
flat Nyquist band-limiting filter prior to sampling.*

The proposed receiver structure is shown in Fig. 3. The received
sequence feeds a linear tapped delay line filter whose function is to
shorten the overall impulse response length. The filter has L(=2M +1)
taps which are chosen in the manner to be described later. The output
of this filter feeds the Viterbi algorithm which detects the information
sequence.

* Although a white noise model was used throughout, the correlated noise case
can be considered in a similar manner.
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Fig. 3—Receiver structure.

The Viterbi algorithm makes decisions on the assumption that the
DIR {qi}#%, is the actual overall channel response. The value of LL
(the length of the DIR) is much less than 2N + 1 (the length of the
actual channel response). LL is chosen to make acceptable the com-
plexity of the Viterbi algorithm while taking a small noise penalty
in the linear preprocessing.* An error signal is formed by feeding the
information sequence estimate through the tapped delay line repre-
senting the desired channel response. This forms the desired truncated
channel received sequence which is then compared with a delayed
version of the actual linear prefilter output to form an error sequence.
It is this error which is to be minimized since it represents a sum of
the additive noise, and the difference between the desired and actual
overall impulse responses.

If the sampled channel impulse response, sequence of information
symbols, and sequence of uncorrelated noise samples are represented
respectively by {hi}2 _o, {11}%_., and {n;}%_., then the kth dis-

* Obviously if LL is allowed to be very large, the DIR can closely approximate a
delayed version of the original channel impulse response, and there is no significant
noise penalty, since the prefilter simply approximates a delay tine.
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crete channel output is
e = ; hidp—; + np. (1)

Then if the vectors P+ = (p_a, -+, Do, -+ par) where + indicates
transpose and Q* = (go, - -, qrz) Tepresent the tap coefficients of the
prefilter and the DIR respectively, the error in the kth interval is

M LL
exr = 2 P — 2 Qi (2)
I=—M l=0

In order to simplify the following equations, it is assumed that the
information sequence is uncorrelated (Ixf; = &;) and that the in-
formation sequence estimate equals the information sequence. Sub-
stituting (1) into (2) and averaging e} we get

& =¢ =PtAP 4 QtQ — 2P+HQ, (3)
where
har - -hayrr
H= |hy ---hrt (4)

hoarehoyyrr

is an L X (LL + 1) matrix and A is an (L X L) channel covariance
matrix with elements a;; = 7i7;.

First, the error is minimized with respect to the prefilter by taking
the gradient with respect to the taps {p:} and setting it equal to zero.
The taps {g:} are constrained to be nonzero.

de?
ﬁ—2AP—2HQ—0 (5)
and therefore

P = ATMHQ. (6)

The interpretation—thus far—is that some desired (and truncated)
channel response is chosen; and the linear prefilter taps are chosen to
force the overall response to this with a minimum MSE. The question
of what this desired response should be naturally arises. If a fixed
length is assumed for this desired response, the desired response can
be optimized in the sense of minimizing MSE. Substituting (6) into
(3), one obtains

¢ = QI — H*ATH]Q, (7)

where I is the identity matrix.
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Since €% = 0, this is a positive definite quadratic form in Q which
depends only upon Q and the channel characteristics. This can be
minimized by choosing Q to be the eigenvector with the minimum
eigenvalue of the matrix [/ — H+*A-'H7. The constraint

Q*Q =1 (8)

is necessary to avoid the trivial case of no MSE. The trivial case cor-
responds, of course, to no transmission through the channel.

It should be noted that when the MSE is minimized a reasonable
definition of the signal-to-noise ratio (SNR) seen by the Viterbi
algorithm is maximized. This is true because {¢:} is considered to be
the effective channel pulse response, constrained to unit energy; the
additive noise plus any residual intersymbol interference is the effec-
tive noise seen by the algorithm. Since this noise is equal to the MSE
which has been minimized, the SNR has been maximized.

In summary, to minimize the MSE and thus maximize the SNR
seen by the VA receiver, choose

Qope = eigenvector of [/ — H+*A'H] corresponding to its
minimum eigenvalue, (9)

P = A_IHQOD"AJ (10)

and then
¢ min = min eigenvalue of [ — H+A—-1H]. (11)

III. AN ADAPTIVE ALGORITHM FOR OPTIMUM RECEPTION

In order to make the receiver structure practical, the procedure of
choosing the {p;} and the {g;} must be made adaptive since the channel
pulse response will not usually be known prior to the start of trans-
mission. An algorithm to choose the taps adaptively will now be
described.

Consider the conditions for the optimum operating point of this
receiver to be reached. The condition that the gradient with respect
to P be equal to zero is easily implemented by using the products of
sampled values of quantities in the receiver as noisy estimates of the
required cross correlations, assuming the data sequence is known or
has been correctly estimated by the receiver. Thus,

PUrt) = P — A R(™) (12)

where P (" is the set of tap values at the rth iteration, A, is an adjust-
ment parameter which controls accuracy and speed of convergence,
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R is a vector of the received samples contained in the linear pre-
processing filter, and e, is the error in (2). P+" is thus the new
estimate of the {p;} taps, and when a steady state is reached a noisy
unbiased estimate of these taps is obtained. Note that the value of P
implicitly depends on the value of Q through the e, terms.

The algorithm to obtain the Q taps is not so easily obtained. Consider
the unconstrained gradient with respect to the Q vector. If a noisy
estimate of the required cross correlation is used, then the recursion
for the unconstrained gradient algorithm is

Q(r+1) = Q(f) + Az&,l("), (13)

where I" is a vector of the information symbols contained in the
channel reference filter. If (12) and (13) are followed without a con-
straint at each iteration, then the trivial solution results. The algo-
rithm is therefore modified so that the Q vector is renormalized at
each step. That is,

QU+l = Q) 4 Age, I (14)
Q-('r+l)
(r+1) — .
Qe (ch+1))+((j(r+n) (15)

By following the combined algorithm of (12), (14), and (15), a sta-
tionary point in P will be reached, and the energy in Q will be con-
strained to one.
Now consider the noiseless unconstrained gradient of e* with respect
to Q. Then
o
aQ
Consider P to be in the neighborhood of the correct solution (6) with
respect to Q (that is, P is adjusted more quickly than Q). Then (16)
becomes

= 2Q — 2H*P- (16)

det
aQ

Thus the gradient algorithm, in terms of the actual matrix quantities,
becomes

= 2Q — 2H+A-'HQ. (17)

Q(H-l) =Q0" — 1A 6—3_2
272 5Q0

Q) — $A,(2Q) — 2H*ATHQ™)
= AH+*ATHQ® + Q(1 — Ag) (18)

and then Q¢+ ig renormalized to form Q¢+V. Now note that if
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A, = 1 this corresponds exactly to the method of Vianello and Stodola?
for determining the maximum eigenvalue and corresponding eigen-
vector of H+*A—-'H. Since the maximum eigenvalue of HtA-1H cor-
responds to the minimum eigenvalue of (I — H+*A—'H) this technique
will converge to the minimum MSE. This method will fail only when
the starting vector Q@ is exactly orthogonal to the desired solution.
Since the algorithm actually used (14)—(15) deals with noisy estimates
rather than the exact expressions, the noise will prevent the case of
the algorithm becoming stuck on a vector orthogonal to the solution.

In the practical case it is not possible to choose As to be one because
when the noisy estimates are used the algorithm will amplify the
noise and diverge. Actually, A, will be much smaller than one. Again
looking at (18), one can see that a steady state is reached when Q
becomes nonrotating with respect to the transformation. This occurs
when Q is the maximum eigenvalue of H¥*A—'H (i.e., the maximum
eigenvalue will dominate as in the method of Vianello and Stodola).
Thus, the unique solution for Q has been obtained.

IV. LIMITING RESULTS

We now study the limiting situation where the prefilter is allowed
to be any general linear filter with impulse response p(t), while the
desired impulse response {qn]EL, is still finite. In addition we assume
that the additive noise on the channel is white, with double-sided
power spectral density N,/2.

In this case we wish to minimize the mean square of the sampled
error

w0 LL
€ = . p(r)r(kT - T)dT - 1}:'9 q:I;‘_g y (19)
where

r(kT — 1) = 5 h(T —IT — )L+ n(kT — 1) (20)

l=m—w

is the received signal.
The MSE is then

F= 3 f_: '[_Z p(r)p(r)R(T — w)RAT — 7a)drdrs

=—m

% LL ©
+ 5 [ e —2 5 o [T p(mhar — D

LL
+ 5 @)
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Using a simple calculus of variations argument to minimize MSE
with respect to the prefilter impulse response p(f), we get the following
integral equation defining the optimum p(f).

_N’u LL L)
—2-p(t) = Ig qh(IT — t) — z > ST — 1), (22)

where

8, = f_: p(NRAT — r)dr (23)

is the overall sampled impulse response of the channel and prefilter.
Note that we would hope for 0 =1 < LL, S; = q; and for I < 0 and
1> LL, Si=0.

Equation (22) tells us that the optimum prefilter structure is a
matched filter with impulse response h(—t), followed by an infinite-
length tapped delay line whose tap gains {p:} are given by (22) and
(23).

N, ©
g P=a 2 Pidmt, (24a)

where
om = f” h(mT — 7)h(—7)dr = ¢n (24b)

is the channel’s sampled covariance function, and where we later
require that {q;} is nonzero only for 0 < ! £ LL. We remark that the
development so far is analogous to that of Berger and Tufts® for the
case LL = 0. Equation (24) may be solved in terms of z-transforms.
Defining

oo

Y qmz™

m=—cx

q(z)

p(z) = Zw Pmz™

me=—

6@ = > dn"

m=—o0

we can take z-transforms of both sides of (24) and solve for p(2).

pa) = — 1@ (25)

where we have used the fact that ¢(z) = ¢(z™) since the sequence
[#:} is symmetric about I = o.



ADAPTIVE CHANNEL MEMORY TRUNCATION 1551

Using (25) we get the z-transform of the autocovariance sequence
of the {ex}, when the tap coefficients {p,}*. are chosen to minimize
the mean-squared error. Defining E,, = exerrmand E(z)=%2___  E.zm
we have

—1
B = Ve a@aE)

2 o) +

(26)

We now minimize e = E, with respect to the desired impulse response
samples {g.}7%,, under an appropriate energy constraint. Taking the
inverse transform of E(z) we have

/T
B, =1 f E(eT)du
—n/T

NoT fﬂ'IT Iq(ejuT)lﬂ d

T g (e Ty + N?

@, (27)

where
q(e;f@T) - qn + qlein + e + qLLeJ'wLLT'

Defining the LL + 1 dimensional vector Q*+ = (g, q1, - - - qry) we
can rewrite (27) as a quadratic form

E, = Q+RQ: (28)

where R is a square matrix of dimension (LL + 1) whose i—~jth element
is

NUT fr.'T eielG—NT

ri; = dw-
Lo ""qs(ei“T)Jr%

(29)

Note that ¢(e#7) is the discrete Fourier transform of an autocovari-
ance sequence, and hence is an even, real, positive function of w. Thus
rij = 7y 18 a real function of |i — j|, and so R is a positive definite
symmetric Toeplitz matrix.

Minimization of E, under the energy constraint [Q|? =1 is then
accomplished by making Q that normalized eigenvector of R cor-
responding to its minimum eigenvalue. The matrix R is evidently the
limiting case of the matrix 7 — H+A—'H for the finite-tap receiver
[displayed in expressions (7) through (11)]. Then

€ = Amin(R). (30)
To recapitulate, the minimum is taken over the set of tap-coefficients

{Paln=—= and {g.}FZ, under the constraint Y25, @2 = 1,
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which can be expressed as

=T
o [ lale o = 1.

x/T
Thus, from (27) we have the lower bound

Nmia(B) = Bo = i 2 ¢ - v (6D
aup (e +75¢)

—w/TSwSn/T

Now ¢(e#7) is the discrete Fourier transform of the sequence {¢.}
defined in terms of the channel’s impulse response by (24b). Thus, if
the channel’s transfer function is denoted by

H(w) = L " h(t)e-Tdt

2nw
H (w + T"_)
The term ¢(e#*T) can be interpreted as the channel’s “folded” power
spectrum.”

When LL + 1, the number of components in the desired impulse
response {qa.}%%,, is relatively small, say less than 10, the minimum
eigenvalue and corresponding eigenvector of £ can be evaluated with-
out difficulty. For much longer values of LL, the lower bound (31)
which is easily computed using (32) may be quite tight. A particular
case of interest is where LL = 1. Then R has the form

R — [ro n]
™ To

2

$(ehT) = % >

n=—«x

(32)

and
€oin = Amin(R) = min(r, + 14,70 — 71),
where
N.T [T COSZ%
ro+r1=§Lf —de (33)
T —x/T tﬁ(ﬂj"’r) +_§_o
and
N.T =IT sinzg
Fo — 1y = 30 f deo- (34)
2r J_

/T d)(ej“T) + _‘Nz_ﬂ
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The normalized eigenvectors (optimum (g,,q1)) corresponding to the
eigenvalues 7, + r; and r, — r; are respectively (1/vZ, 1/v2) and
(1/¥2, —1/¥2).

Thus, we have the curious result that the optimum desired impulse
response of length two is one of only two possible forms, depending
only on whether the channel’s folded power spectrum is such that
(33) or (34) is smaller. For example, if the channel’s folded power
spectrum has a single minimum near the band edge, » = /T, the
best choice for (g,,g1) would be (1/v2, 1/vZ) since cos? («T)/2 has a
zero at the band edge. However, if the channel’s folded power spectrum
has a single minimum near zero frequency, the best choice for (go,q1)
would be (1/v2, —1/¥2), since sin? (wT)/2 is zero at w = 0. These
two cases are illustrated in Fig. 4.

It is interesting to point out that the two possible optimum desired
impulse responses (1/vZ, 1/v2) and (1/v2, —1/v2Z) are reminiscent
of duobinary and partial response impulse responses.®

V. PERFORMANCE OVER SIMULATED CHANNELS

In order to observe performance obtainable from this receiver struc-
ture, the arbitrary discrete time channels shown in Fig. 5 were used.
Figure 6 shows the results of the simulations performed with the
receiver developed here and that of Qureshi and Newhall on these
channels. Underlined in Fig. 5 are the desired response used for the

CHANNEL'S FOLDED OPTIMUM DIR POWER SPECTRUM
POWER SPECTRUM :
i | la,. a,] |ag+aeieT |2
I
' b b :
i a1 Al
CASE 1 | | V2 V2 I [
| | 0 T | 1‘
1 ! F |
- 0 T o 0 _,-—,_
- T T T
I | L
V2 ' |
| ! !
| | | |
CASE 2 | 5 = | |
\ | | |
[ J \ |
T 0 m e R 3 0 z
T T 7z T T

Fig. 4—Optimum desired impulse response of length two.
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CHANNEL B

Fig. 5—Sampled channel impulse responses used in the simulation.

Qureshi and Newhall receiver. As can be seen from the performance
curves, the Qureshi and Newhall receiver performs about as well as
our receiver for Channel A and much worse for Channel B. The
difference in performance is presumably due to the use of different
criteria to choose the desired response. In the case of Channel B, the
channel passes virtually no de, yet the DIR from truncating the
channel response does pass de. This causes considerable noise enhance-
ment by the Qureshi and Newhall linear prefilter.

Figure 6 also shows the matched filter lower bound, the lower bound
on performance derived by Forney,’ and a lower estimate which is
used to predict actual optimum reference receiver performance. This
lower estimate is obtained by computing the MSE and minimum
coding distance of the DIR. Thus, it is assumed that the MSE is un-
correlated and Gaussian in this approximation.

o~ 1 d?
P(e) >Kerfc(§‘f%), (35)

where K is a constant depending on the error structure of the channel,
and dnin is the minimum FEueclidian distance between all possible
pairs of noiseless sequences with differing first information symbols
emerging from the prefilter.® This lower estimate is found without
considering the fact that the noise is correlated. If a more accurate
estimate of performance is desired, the results of Qureshi and Newhall*
can be used to consider the effects of noise correlation.

The simulations were run with a 31-tap prefilter whose taps were
adjusted with A = 0.001, and a 5-tap desired overall response length
with the adjustment parameter equal to 0.01. In the case of the Qureshi
and Newhall receiver, the prefilter was adjusted with A = 0.001 and
the channel was estimated with a filter with adjustment parameter
equal to 0.01. As the curves show, the receiver structure given here

* The performance loss due to the adjustment parameters has not been evaluated;
however, simulation results indicate that this loss is very small.
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assures that a good choice of a DIR is made which is not always the
same as the truncated channel impulse response.

VI. COMPARISON WITH OTHER SYSTEMS—AN EXAMPLE

Based on the results in Section II, performance calculations were
made for baseband PAM transmission on the channel whose frequency
response is shown in Fig. 7. The results shown in Fig. 8 were made with

the following assumptions:

(7) A matched filter preceded the receiver.
(¥) There was a 31-tap prefilter.
(#27) There was a 5-tap desired impulse response.
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Fig. 7—Channel amplitude characteristic.

(iv) Although the noise may be correlated, at the input to the
Viterbi algorithm, it has a negligible effect on performance.

Of the assumptions made, only the one about the noise correlation
might not be realistic. Work is currently being done to deal with the
correlated noise problem. In any case, it is not expected that it would
affect performance more than a few dB and it clearly would not affect
the place in the performance curve at which the performance begins
to degrade seriously.

The curves representing the linear and decision-feedback equalizers,
provided by J. Salz, show the MSE versus rate for additive white
Gaussian noise with N,/2 = 0.0001. In the linear and decision-feed-
back cases the MSE may be roughly related to performance in terms
of probability of error.*¢1 The curve for the prefilter/ VA combination,
labeled “VA equalizer,” is a plot of (MSE/d%,) versus rate, where
dmin is the minimum distance for the DIR. This is done because the
attainable system performance is not determined by MSE alone, but
rather by MSE/d2, as in expression (35). Direct minimization of this
ratio by analytical or numerical means has not been accomplished.
Note however that the minimum value dni. can attain (over all

*The analysis for decision-feedback equalization ignores the effect of decision
errors on the MSE.
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Fig. 8—Indication of attainable performance for three receiver structures.

channels with equal-energy impulse responses) is limited by the dura-
tion of the DIR which is chosen.!

As can be seen from the curves, this receiver structure can be ex-
pected to perform well while using only binary signaling over a much
greater range of transmitted data rates than the linear and decision-
feedback receivers. This result occurred despite the fact that the
linear and decision-feedback computations were made for infinite
filters while the prefilter was finite. It is the more relaxed criterion for
our system compared to the decision-feedback criterion which results
in lower MSE and thus better performance. Nevertheless the results
are considered preliminary until a better understanding of the effect
of noise correlation is achieved.

VII. TRANSMITTER OPTIMIZATION

The ‘“‘channel’s” frequency response H(w) actually includes the
transmitting filter, i.e.,

H(w) = C(w)G(w), (36)

where C(w) is the frequency response of the transmission channel
alone, and G(w) is the frequency response of the transmitting filter,
which we have hitherto assumed fixed. In a practical data communi-
cation system, a ‘‘reasonable” transmitting filter would likely be
fixed to avoid having to provide an extra feedback channel for adjust-
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ing the transmitter parameters, and because of the complexity of the
transmitter optimization argument itself for general channels.®

Nevertheless, the performance attainable with transmitter optimi-
zation is of theoretical interest. In this section we obtain expressions
for the optimum transmitter filter G(w) and the resulting minimum
MSE under a transmitted power constraint. For simplicity, we assume
a “well behaved” channel C(w) for which | C(w)| is monotone decreas-
ing, and for which |C(w)| /N, is sufficiently large in the range { —=/T),
x/T} that the optimum transmitter uses the entire Nyquist band
|w| £ =/T. Treatment of more general channel characteristics is more
complicated, but can be carried out as in Ref. 6.

The minimum MSE for a fixed transmitting filter G'(w) and DIR {q:}
is given by eq. (27) and by the channel’s folded power spectrum,
which from (32) and (36) can be written

@ 2 2
The constraint that the transmitted power be fixed at Pr can be
written
1 ~/T 2rn 2
Y AS> G(w - T) dw = Pr- (38)

A necessary condition for minimizing the MSE, given by (27),
subject to the power constraint (38), is obtained using a simple vari-
ational argument: for —7/T < w < #/T and every integer m, either
G(w — 2em/T) = 0 or G(w — 2rm/T) # 0 and

1 = 2mn 2rn\ |2 | N,
T,= C(“"—T*) G(“’_T"") t3
=x[g(e#T)]

_ o(w—g’%’f)‘, (39)

where A is a Lagrange multiplier whose value will be determined from
the constraint (38). Furthermore, for any » such that C(w) =0,
G(w) = 0.

For any frequency w, there will be only one integer m for which
G(w — 2rm/T) # 0, since the left-hand side of (39) does not depend
on m and the right-hand side does. Indeed, if |C(w)| is monotone
decreasing, then best use is made of the transmitter power if G(w) = 0
for |w| > =/T. Thus we can rewrite (39) as

2

HC@ (6@ + 57 = Agen] @)
for C(w) # 0 and |w| < =- (40)
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For simplicity, we assume that Pr and the ratio |C(w)|/N, are
sufficiently large that (40) can be satisfied for all [w| < =/T. [Other-
wise G(w) would be zero® beyond a certain frequency w, < x/T.]
Then the amplitude frequency response of the optimum transmitting
filter is given by

1 . _Ma@)| N -
7l Gn@="e@r “ac@r il =g
=0 for w > —; (41)

The Lagrange multiplier A is determined by (41) and the power
constraint (38). Substitution of the expression for |Gop.| into expres-
sion (27) for the MSE gives

MSE = oy —TIT——-lc(W)J w , (41a)
where
/T
Prt g o
= - - (41b)

f"T [g(e?T)]
—or [Clw)]

It is interesting to look now at the frequency response of the optimum
receiver prefilter

7 1Pr@I = 3 1C@* Gun@)]? D], (42)

corresponding to the optimum transmitter filter. The left side of (42)
follows from the cascade of the channel and transmitter and the appro-
priate matched filter, followed by the discrete filter {p;}. Substitution
of expressions (41) for |Gopi(w)| and (25) for p(e#7) results in

L o= L [Ma@sn| N,
TIPR(“’)l _hzT[ | C(w)] 2[C(w)|?

Thus the transmitting filter and receiving prefilter frequency re-
sponses are identical in the Nyquist band except for constant factors
(clearly, the transmitting and receiving filters’ phase characteristics
can be chosen arbitrarily). This equal sharing of the filtering load
between the transmitter and receiver is a well-known result for
optimum linear communication systems (see pp. 118-121 of Ref. 7).

It is also of interest to evaluate the power spectrum of the error
sequence that the Viterbi algorithm assumes to be additive uncorre-

] for o] < 7. (43)
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lated Gaussian noise samples. From expressions (26) and (40), this is
given by

o N lglen)]?
B = 5 g T C@)]
N, g(e”T) .
—‘Ex |C(w)| for!wf éT' (44)

Thus, the extent that the amplitude frequency response of the
chosen DIR approximates that of the channel in the Nyquist band
determines how close the power spectrum FE(e?T) is to being flat,
and hence, to what extent successive errors are uncorrelated.

From (41a) and (41b) we obtain an expression for the MSE for a
given DIR after the transmitting and receiving filters have been
optimized.

N,T
.2 (Q)
MSE = N T 1 ] (458')
Prt g —/T |C(w)|2dw
where
[T |g(e®T)|
«(Q) = f—m [C(w)] do
LL LL ]
T { 2 X qzqme"‘”“”‘”]
- f =0 =0 deo- (45b)
—T [C(w)]

Minimization of the MSE expression with respect to the DIR Q
under the constraint | Q|2 = 1 is then equivalent to minimization of
«(Q) under this constraint. Necessary conditions for the optimum
Q* = (qo, *+* qrz) are then

LL
s = 2 gmp-n(Q),  1=0,--- LL, (46a)

where
x|T eﬂwT

n(Q = [ ;do  (46b)

/T |C(w) |[ LZL Iib q‘_qi(i—k)ml' ]
i=0 k=0

and where p is a Lagrange multiplier. Again the optimum DIR Q
is the solution of an eigenvalue problem, this time nonlinear. It is easy
to verify that the optimum DIR of length two is again either of the
two ‘““duobinary’” impulse responses shown in Fig. 4. In that case the
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minimum achievable MSE is given by (45a) and (45b) as

M[/‘”T [1 & cos wT ]t dw]z
dm | Jowir [C(w)] .
N, T 1 ’ (47)

Prt g | e lc@p ®

MSE =

the 4+ or — being chosen to minimize (47).

VIII. CONCLUSIONS

We have presented a scheme of linear prefiltering to optimally
“condition” the impulse response of a channel to approximate an
impulse response of limited duration for which maximum likelihood
estimation of the data sequence is implementable in practice. This
scheme in conjunction with the VA can be adaptive, to deal with un-
known or slowly time-varying channels. In the simulations its per-
formance compared favorably with the similarly motivated scheme of
Ref. 4.

The optimization criterion we used—minimization of the MSE with
respect to the prefilter taps and the DIR, with the energy, duration,
and relative delay of the DIR being fixed—is admittedly somewhat
ad hoc. If the sequence of errors {e;) emerging from the prefilter is still
assumed to be stationary Gaussian, with zero mean and covariance
{En}, then it can be shown that the error rate of a VA which assumes
correlated noise is minimized if a certain weighted minimum distance
is maximized, namely

min dtA—d,

des’
where the s’ is the set of all possible vectors representing error events
and A is a covariance matrix whose dimension equals that of
d{A;; = Ey;j}. The above quantity is clearly difficult to maximize,
and even if it could be done, the non-Gaussianness of the error se-
quence would render the solution suspect.

Nevertheless, the performance estimates for the sample channel
reported in Section VI make the use of the VA is conjunction with
prefiltering appear attractive for high-speed data transmission relative
to other schemes. Further studies should be done on the correlatedness
of the error sequence and the minimum distance properties of the
desired impulse responses. *

*S. Fredricsson presented a paper dealing with this subject at the International
Symposium on Information Theory, Israel, June 1973.
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