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New technologies of fiber manufacture and a demand for unusual fiber
qualities in communication systems have intensified the interest in a
comprehensive theory of multimode fibers with nonuniform index distribu-
tions. This paper deals with a general class of circular symmetric profiles
which comprise the parabolic distribution and the abrupt core-cladding
index step as special cases. We obtain general results of useful stmplicity
for the impulse response, the mode volume, and the near- and far-field
power distributions. We suggest a modified parabolic distribution for best
equalization of mode delay differences. The effective width of the resulting
impulse is more than four times smaller than that produced by the parabolic
profile. Of course, practical manufacturing tolerances are likely to in-
Sluence this distribution. A relation is derived between the maximum index
error and the impulse response.

I. INTRODUCTION

Conventional optical fibers consist of a high-index core surrounded
by a cladding of lower index. The index step between core and cladding
contains the light inside the core and isolates it from the outer fiber
surface, whose quality is usually difficult to control. In a more general
way, inside guidance can be accomplished by any index profile which
decreases from a maximum inside the fiber to a lower (cladding) value.
The specific shape of the profile has an effect on the distribution of the
guided optical power in the fiber and on the overall loss encountered,
but, more importantly, the profile profoundly influences the velocities
of the various propagating modes. A good example is the parabolic
index distribution which was predicted to nearly equalize the group
velocities of the propagating modes.!* The Selfoc fiber which closely
approximates these conditions has indeed since exhibited an extremely
narrow impulse response.®

These effects greatly enhance the chances of multimode fibers to be
used in optical communication systems. On the other hand, a theory
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of the interrelations between index profile, impulse response, and
power distribution is presently only available for the two special cases
of the uniform and the parabolic core index. This paper provides a
more general theory and studies a broad class of index profiles po-
tentially useful in communication applications. The uniform and the
parabolic profile are special cases within this class. ‘

Our concern with multimode fibers for communication applications
allows us to make four simplifying assumptions:

(7) The index profile is eircular symmetric.

(#3) The core diameter measures hundred wavelengths or more and,
hence, a great number of modes can propagate.

(i77) The total index change within the guiding core region is only
a few hundredths, so the propagating modes can be considered
essentially as transverse electromagnetic.®

(7v) Index variations within the distance of a wavelength are
negligible, and the conditions of geometrical optics (or the
zeroth order of the WKB method) apply.

Except for these four restrictions and the requirement of guidance,
the index profile can be of the most general form. It can, for example,
have an index depression in the center and one or several ring-shaped
index maxima.®

For the sake of clarity, this paper is restricted to the simpler type
of profile illustrated in Fig. 1. We assume the index profile will decrease
monotonically from the center and converge into a flat cladding region
which guarantees isolation from the outside surface.
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ﬁbFig' 1—Cross-sectional sketch of cireular symmetric index profile in multimode
er.
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Fig. 2—Wave vector diagram in the propagating region of a multimode fiber.

Apart from the index profile, there are, of course, other influences
which affect the impulse response and the optical power distribution
inside the fiber. Mode excitation, loss differences in the process of
propagation, and coupling among the modes play a part. To isolate
the effect of the index profile, we assume here the ideal case of uniform
loss, absence of coupling, and equal and simultaneous excitation of all
propagating modes at the input. For the computation of the impulse
response, the input is assumed to be an infinitely narrow pulse of unit
energy.

II. MODE DESIGNATION AND MODE COUNT

All guided modes are essentially transverse electromagnetic and,
with some proviso, can be decomposed into linearly polarized pairs.5?
Because of the circular symmetry of the index n, the modes have a
circular periodicity and ean be identified in the conventional way by
an azimuthal order number ». To characterize the radial field distribu-
tion, we need an additional mode number u. The propagation constant
B of a particular mode (u, ») can then be approximately determined
by the WKB method.®* Figures 2 and 3 give a physical description
of these relationships. In Fig. 2, the local wave number

k(r) = 2an(r)/x (1)
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Fig. 3—Sketch defining regions of periodic and aperiodic field characteristics of a
mode of azimuthal order ».

is decomposed into its components in a cylindrical coordinate system
(r, ¢, 2). The unknown radial component becomes

u(r) = [k (r) — p* — v*/r*]h (2

Given 8 and », we can find two radii R, and Rs, at which w(r) vanishes
(see Fig. 3). These radii define a ring-shaped region within which is
real, causing a radial periodicity of the mode field. Outside this region,
the field is aperiodic.

Radially decreasing (or evanescent) field conditions obtain outside,
when the phase inside (approximately) adds up to an integer number
of half periods between R; and R». Consequently, if u designates this
number of half periods,

o= f:’ u(r)dr = f:’ [k (r) — B — »*/r*]dr. @)

We would have obtained the same result by way of the WKB method,
with the only difference that u and »* would be replaced by ¢ + 1 and
»® + 1, These corrections are important in the case of small u or »,
and particularly for the fundamental mode which has y = » = 0. On
the other hand, to obtain a general view of the mode structure, we
can ignore the 3-terms as long as we refrain from discussing individual
low-order modes.

For the purpose of a total mode count, let us consider the limits of
u, v, and 8. The requirement of evanescent field conditions in the
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cladding (index 7. in Fig. 1) limit 8 to & minimum value
Be = 2mn,/A. (4)

Modes with smaller 8 find propagating conditions in the cladding and
are no longer bounded by the core profile. Condition (4) defines mode
cutoff. The largest value for » results for 3 = 8. and p = 0, and
alternatively u is largest for 8 = 8. and » = 0. We obtain the total
number of modes M from a summation of (3) over all » from 0 to
Vmax- 1f ¥max 18 & large number, we may consider » a continuous variable
and replace the sum by an integral. In this case,

- [ f() [k (r) — 62 — »%/1"Jidrdv. (5)

The factor 4 in front of the expression allows for the fact that each
combination p, » designates a (degenerate) group of four modes of
different polarization or orientation.’ Figure 4 illustrates the area of
the double integration indicated in (5). A change of order in the
integration leads to

4 fa [roe-ghi
m==2["f (kt — B2 — w/r)idvdr | (6)
m™ Jo 0
where a is the radius at which the index n(r) reaches the cladding
value n.. Integrating (6) with respect to » yields
a 2 a
M= f [K(r) — @Jrdr = (2%) f [n2(r) — m2rdr.  (7)
0 0

For small index differences, the integral represents the volume under
the (circular symmetric) profile plot. It may be worth noting, though,
that the substance of this relation is not limited to circular symmetry.

0 Ri(#) Rz (v)
RADIUS —»—

Fig. 4—Region of double integration in eq. 5.
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Fig. 5—A few of the index profiles defined by n = no[1 — 2A (r/a)=]* for small A.

For later use we write (7) in the somewhat different form

R2(0)
m@) = [ De@) — gidr, ®)

where m(B) denotes the number of modes having a propagation con-
stant larger than 8. The upper limit R.(0) of the integration is the
radius at which k(r) = 8.

Let us now consider a particular class of profiles defined by

n[ 1 — 2A(r/a)* ]} for r<a
n(r) = 9
no[1 — 247} for r>a,

where a is a parameter between 1 and «. Figure 5 illustrates the cases
a = 1,2, 4, 10, and «. All profiles reach a constant cladding value at
r = a. The core profile has a cone shape for & = 1, becomes nearly
parabolic for « = 2, and converges to the case of the step profile for
a = =. Using (1) we introduce (9) into (8) and obtain

k% — A2\ @/a)+l
m (,8) = azﬂkﬁ a—j_fz (W,,E ) ] (10)
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where
ko = 2mn,/\. (11)

For 8 = 8. from (4), the total mode number becomes

M=

< ar2a. (12)
a+ 2
It is proportional to the index difference and the core cross section.
The uniform profile accepts twice as many modes as the parabolic one
and three times more than the cone-shaped one.

III. IMPULSE RESPONSE

Consider all modes to be excited by the same narrow pulse at the
input. Each mode transports an equal amount of energy to the fiber
end. The individual pulses are expected to suffer a certain distortion,
depending on the 8—w characteristic of each mode and dispersion in the
dielectric. We assume, however, that the resultant broadening is small,
or at least not much larger than the group delay differences between
adjacent modes. Because of this effect and other limitations in the
system response, the pulses from individual modes are likely to fuse
into one continuous output pulse called the impulse response. Since
all modes carry the same energy, the power profile of the impulse
response is equal to the mode density per unit time interval. In the
following theory, the continuity of the impulse response results not
from the broadening of the individual mode responses, but from the
assumption that x and » are continuous functions.

The straightforward method of computing the impulse response
starts from (3) to find the propagation constant 8 for each pair, u, ».
The group delay in a fiber of length L is then

m(u, ¥) = L% dﬂé;’ov) ) (13)

where ¢ is the vacuum velocity of light. A simplification of this ap-
proach for the purpose of numerical computations is indicated in the
appendix. Once 7(u, v) is known, the impulse response results from
a count of the combinations g, » which arrive between r and r + dr.
This number plotted versus 7 then constitutes the impulse response.
For the special class of profiles defined by (9), group delay and
impulse response can be computed in a much simpler way. First we
postulate that, in this case, the relation between r and 8 according to
(13) is independent of u and ». If this holds—and we shall prove it
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later with the help of eq. (16)—we can replace 8 by r in (3) and still
perform the same integration over » which led to (8) and, more specifi-
cally, to (10). Solving the result of this integration for 7 yields

_Lm, d [, 2mu+2 al(at?) JRUP |
- [k _ ( " ) (20k2)21 (ot ] 14

This result can easily be verified by solving (10) for 8 and introducing
it into (13). With the help of (10) and the abbreviation

§ = 3(1 — B/k3) , (15)
eq. (14) takes the form

_ Ln,1 — 4/(a+2)
c (1 — 26)}

T (16)
This expression proves indeed to depend on 8 alone (and not explicitly
on m), thus justifying the approach chosen.

To obtain the impulse response, we can now introduce (16) into
(10) and differentiate with respect to r. Although this is not difficult
to do, it leads to rather unwieldy expressions. We shall therefore merely
consider some special cases of interest. To normalize the impulse
response for total unit energy, we divide (10) by (12) and obtain

5\ et
i = (z) ' (n

Furthermore, since 8 can at most assume the value A (for 8 = B.)
and is therefore small compared to unity within the scope of our theory,
we develop (16) into a power series in terms of é and obtain

Ln, 3a — 2 8

c (1+ +25+ +2 E)
We relate r to the total propagation time Ln,/c and introduce a new
time reference, which ignores the delay common to all modes. Hence,

_ T 3a — 24
L= 1 1= 6+a+22

Ln, + 2
In this time frame, the fundamental mode arrives at { = 0.
As long as a is not too close to 2, the linear term in (19) dominates.
Therefore,

(18)

T =

(19)

a_!__gt except for a2
8= (20)

V2t for a = 2.
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Insert this into (17) and differentiate with respect to ¢ to obtain the
impulse response

@la)+1
at2 a+g—1 [t|21e except for ars2
1 dm @ a—24
M@ (21)
2
Al for a =2

As § varies from 0 to A, the time ¢ changes from 0 to

a—2
g A except for o 22
T = (22)
A?
5 for a = 2.

Outside of this time interval, the impulse response is zero. Figure 6
shows plots of (21) for the profiles sketched in Fig. 5. A change from
a = ® to a = 10, which implies a relatively small change in the

profile, narrows the impulse response by 3. The response becomes
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Fig. 6—Impulse response of multimode fibers having the profiles of Fig. 5.
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extremely narrow for a2 2, then broadens again, as « decreases
further. For a < 2, the high-order modes overtake the fundamental
and arrive earlier.

In the vicinity of @ = 2, where both terms of (19) contribute, the
impulse response is a rather complicated function. The most interest-
ing of these cases is the one for which the impulse response has the
narrowest possible width. This optimum condition arises for

Qopt = 2 - 2A y (23)
which yields
= 1(82 — A3). (24)

In this case, the modes of highest and lowest order both arrive at the
same time ¢ = 0; all other modes are faster, the fastest one being
determined by § = A/2. It arrives at
AZ

t=— 3 (25)
Equation (24) has two solutions for 8. Hence, (17) yields two values
for the same ¢, indicating that two mode groups, a high and a lower
order, contribute to the impulse response at every particular instant
in time. By introducing & into (17), differentiating with respect to ¢,
and then adding the two contributions, we find the impulse response

-4
LB -

This function is plotted in Fig. 7. It peaks at ¢t = — A?/8 and decreases

towards ¢ = 0. Because of the normalization introduced in (19), the
absolute temporal width is

Lin, A?

c 8

(27)

The time slot in which a pulse of this kind can be transmitted is
narrower than that, because 70 percent of the power is concentrated
in the first half of the interval (27).

A practical implementation must, of course, allow for a certain
tolerance or error in the profile, as a result of which the total width
of the impulse response is likely to exceed (27). To obtain some in-
dication of the pulse broadening as a result of this index deviation, we
assume that the erroneous profile is still of the type (9), but has

@ = Qopt + da. (28)
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Fig. 7—Impulse response in the case of optimal profile shape.

The maximum index deviation from the optimum profile then appears
approximately at

r = ae} (29)
and has the value
oA
2e ’

where e is the base of the natural logarithm. As a result of this profile
error, the normalized width of the impulse response becomes

3(A + 3|da|) (31)

AN max = da

(30)

or, in absolute terms,

Ln, e 2
5o (8 + 7 dnawsl ) (82

Consider a guide with a maximum index n, = 1.5 and an index
variation A = 2 percent. If the profile is optimal, mode delay should
produce an effective broadening of only 0.25 ns/km. An index devia-
tion of 10~* from the optimal profile increases the broadening to
0.53 ns/km.

IV. NEAR- AND FAR-FIELD POWER DISTRIBUTION

We take again into account the fact that the core cross section mea-
sures many wavelengths in diameter. If this cross section is illuminated
by an incoherent source (exciting all modes uniformly), the power



1574 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

incident per unit solid angle at any point in the cross section is con-
stant. To compute the power accepted by the fiber, we merely have to
know the solid angle of acceptance at any point. We find this angle
from the wave vector diagram of Fig. 2, which yields

cos 8(r) = B/k(r). (33)

The maximum angle 8, results for 8 = 8.; hence,

= Be _ e,
cos B.(r) = TOREI0 (34)
Using this relation, we can define a local numerical aperture at the fiber
front face

A(r) = n(r) sin 0,(r) = [n3(r) — nZ]h (35)
The power accepted at r is then
_ A*r) _ ni(r) — i
p(r) = p(0) A50) p(0) 720) — 2 (36)

If all modes propagate equally attenuated and without coupling, the

08

06 -
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P Fig. 8—Power distribution in the core of multimode fibers having the profiles of
ig. 5.
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same power distribution should hold for the fiber end face. The class
of profiles described by (9) has

A(r) = no(2A)Y[1 — (r/a)]¢ (37)

p(r) = p(O)[1 — (r/a)*]. (38)

The agreement between the profile plots (Fig. 5) and the near-field

power plots (Fig. 8) is not a coincidence, but holds in general as long
as the total index variation is small.

Under the conditions assumed here, every incremental area of the

core cross section at the fiber end uniformly illuminates its cone of

acceptance. For this reason, all those areas that have a numerical
aperture

and

A(r) = sin 8 (39)

contribute equally to the far-field power at 0. For the class of profiles

described by (9), the areas contributing to 6 are within a circle whose

radius is obtained by solving (37) for r. Consequently,
__ sin®@ )2“'

P(8) = P(0) (1 sin* §

2n2A (40)
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is the far-field power distribution. Figure 9 shows a plot of (40) for
the profiles of Fig. 5. The uniform illumination for &« = = changes
to a parabolic distribution for @ = 2. All plots must be understood as
the average power expected under the idealized conditions mentioned
earlier. Monochromatic mode excitation results in mode interference
phenomena and a local fine structure, which ecan greatly modify the
average distribution considered here.

V. CONCLUBIONS

By assuming somewhat idealized conditions for mode excitation,
coupling, and loss in a multimode fiber, we can isolate the influence
of the index profile upon mode volume, near- and far-field power dis-
tribution, group delay, and impulse response. Surprisingly simple
relations exist for a special class of profiles which comprises most
multimode fibers of interest. Particular attention is given to a near-
parabolic profile which accomplishes optimal delay equalization of all
modes. If the (relative) index difference between center and periphery
of this profile is A, mode delay broadens the impulse response by a
fraction A2/8 of the total propagation time. This amounts to about
0.25 ns/km for A = 2 percent. On the other hand, an index deviation of
10~* from the optimal profile increases the broadening to 0.53 ns/km.

APPENDIX
Some Further Relations for the Group Velocity

The numerical evaluation of 8 as a function of u, », and %, and its
subsequent differentiation to obtain 7 are usually tedious and time-
consuming. A substantial simplification results from a direct computa-
tion of = by applying the operation

Ln, ou/ ok,
T (41)
to (3). The result is
Ry
L [, r@m@dr/ue)
=== . (42)
‘ Bdr/u(r)
By

To understand the physical significance of this relation, consider a
ray propagating along the fiber core of Fig. 2 in such a way that it has
the direction of £(r) at r. A line element along this ray is

ds = (dr? + ride? + dz2)} (43)
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and therefore

ISy

= ——= and - =

s k(r) dz B
u(r) dr — u(r) (44)

&

The condition u(r) = dr = 0 at R, and R, indicates a reflection (turn-
around) of the ray. The ray performs periodic undulations between
R, and R;, simultaneously moving sideways in a helical fashion. By
introducing (44) into (42), we obtain

= Lf ;Lds/c, (45)
2

where ¢ denotes integration over a full period of the ray. The de-
nominator describes the axial length of one ray period, and the nu-
merator the propagation time along the ray within this length.
Multiplied by the fiber length, this ratio yields the total group delay.
This result emphasizes the equivalence between ray theory and the
zeroth-order WKB approach followed in this paper.

Within this order of approximation, the only quantities that depend
on the wavelength are the mode numbers. Normalization of these
numbers and subsequent transition to continuous variables eliminates
the wavelength entirely ; group velocity and impulse response are then
independent of wavelength. More specifically, if we write

p = plak, and o = v/ak, (46)
and

n=n,l—2d)7]}, (47)
eq. (3) assumes the form
=L ] 125 — 2d — (oa/r)Tidr (48)
p = ra R o y

and (42) becomes

/ (1 — 20)dr/[26 — 2d — (oa/r)]

Ry

= Lo (1 _ gy .
c 2
f dr/[26 — 2d — (sa/r)*]t

Ry

T

(49)

These two equations are sufficient to calculate group velocity and
impulse response in the case of large mode numbers.
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