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An analytic model for the steady-state behavior of an overloaded tele-
phone network is given. The model includes trunk and machine congestion,
retrials, ““don’t answer and busy,” and some network management controls.
It 4s significantly cheaper to use than Monte Carlo simulations for moderate
size networks. It compares well with Monte Carlo simulation calculations
of poini-to-point completion probabilities and the expected number of
messages tn progress. It compares less well for sender attachment delay
and probability of time-out calculations in switching machines.

I. INTRODUCTION TO THE PROBLEM

The purpose of this paper is to develop an analytic model of a tele-
phone network which displays the major steady-state behavior of the
network under overload conditions and which is computationally
tractable. Besides being used to predict steady-state network opera-
tion in the presence of overload, such a model should help in the de-
velopment of insight into network operation. Also, with an analytic
model available, optimization theory can be brought to bear on various
problems in network management.

Analytic network modeling seems to have been aimed at the trunk-
ing network design problem in the past. The usual approach was to
assume that switching machines had enough capacity to have no
effect on the traffic through them. Under these conditions, the stream
of call attempts on a trunk group may have its distribution changed
in two ways: the calls have previously been offered to a different trunk
group and overflowed to the present one, or some of the calls in the
stream were removed as a result of blocking on a trunk group in series
with the present one. These cases have been handled by Wilkinson’s
Equivalent Random Method! and Katz's Carried Equivalent Method.?

When a network is overloaded, the effect of machine congestion is
not negligible and must be taken into account. Early work on toll
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machine congestion was done by Helly,® who considered a homogeneous
group of identical machines connected by infinite trunk groups. His
approach suggested the way we treat sender holding time in the
switching machine model. Recently Szybicki® gave a model for an
overloaded local switching machine.

Monte Carlo call-by-call simulations have been used to study net-
work behavior. Recent examples at Bell Laboratories are simulations
by J. A. Kohut® and J. M. McCormick. These simulations have the
advantage of great flexibility. They also give transient response as well
as the steady-state response of the network. Call-by-call simulations
may require many runs, or long runs, to obtain reliable statistics for
a process under study. They tend to be more expensive to run than
analytic models.

II. INTRODUCTION TO A TELEPHONE NETWORK

From a traffic point of view, the network consists of end offices,
switching machines, and trunks. The end offices serve as sources and
destinations of calls. The trunks are message paths through the net-
work. The switching machines are nodes in the network at which the
choice is made of the path to be taken.

To illustrate the important effects in network operation, let us trace
the progress of a typical call through the simple network shown in
Fig. 1. The call enters the network through end office 1. It finds a free
circuit on the trunk group from 1 to 2, attaches to it, and simul-
taneously bids for a sender in switching machine 2. After a short wait, it
is accepted into machine 2. It finds the trunk group from 2 to 4 full, and
attempts to attach to the trunk group from 2 to 3. There is a free circuit
on that trunk group, so the call attaches to it and bids for a sender in
machine 3. This process continues until the call enters end office 5.
If the destination telephone is not busy, it rings. If it is answered,
the attempted call is successful and becomes a message.

This typical call went through three switching machines. The block

1
Fig. 1—Network used to show progress of typical call.
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diagram in Fig. 2 shows the sequence of operations in a Bell System
No. 4A-ETS switching machine.

A call coming into a switching machine enters a queue to wait for a
vacant sender. When a call gets a sender, its destination information is
impulsed to the sender, and the sender it had in the previous machine is
released.

The call then queues for the remaining common control equipment,
indicated here as a decoder-marker combination. This decoder-marker
decides on the machine the call should be routed to next, tests for a
vacant trunk, and sets up the connection, if possible. If there are no
vacant trunks to appropriate subsequent machines, a no-circuit
announcement is given. After a no-circuit announcement, the trunks
on all the links over which the call had progressed are released. If the
call is routed to a subsequent machine, it enters a queue for a sender
in that machine.

The sender in the current machine is oeccupied by the call from the
time it begins processing the call until the call has transmitted its
destination information to the sender which processes the call in the
subsequent machine. If a call waits longer than a fixed time to get
a sender in the subsequent office, it is timed out. If it is timed out,
the call is sent back to the marker-decoder which then connects it to a
no-circuit announcement.

Under normal network operation, very few calls receive a no-circuit
announcement, and fewer still time out while waiting for a sender. By
far the most important causes of a call failing to become a message
are for the called telephone to be busy when the call arrives and for
the called customer to fail to answer the phone when it rings. When
the network is overloaded, the number of no-circuit announcements
increases, and time-outs become more frequent. Not only does the
percentage of failures increase as the network becomes overloaded, but
the number of successful attempts may actually decrease.

The factors underlying the decrease in the number of calls carried
by the telephone network as it becomes highly overloaded were al-
ready understood in early work, such as Reference 3. As a call is being
set up, it uses equipment in one switching machine until the next
switching machine on its route accepts the call and receives the
destination of the call from the previous machine. If a switching
machine becomes overloaded, machines adjacent to it will have to
wait longer to have their calls accepted and the destinations passed on.
This causes an increase in the service time for putting a call through
these machines. This in turn may cause the adjacent machines to
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become congested. The time-out mechanism helps to relieve this con-
gestive phenomenon. However, even with time-outs, switching machine
congestion can back up throughout the network. Calls being set up
occupy trunks on the partial route over which they have progressed.
If a large number of calls are attempting on routes which are blocked,
a portion of the capacity of certain links could be used by these in-
effective attempts trying to set up. This would use capacity that
could be utilized by talking calls. These ineffective attempts also use
switching capacity in machines preceding the blockage. Most, blocked
attempts try again; these retrials increase the congestion.

The model to be set up will incorporate the features mentioned
above. Based on those observations, the model must take into account
both trunking congestion and switching machine congestion. Any
call which enters the network will take trunk and machine capacity,
even if it fails. For this reason, its effect on the network depends not
only on whether a call succeeded or failed, but also on how far it
progressed and over which particular route. This information must
also be included in the model.

III. INTRODUCTION TO THE MODEL

Our view of modeling the network is probabilistic. We assume that
for each trunk group there is a probability that an attempt on it will
find a free circuit and for each switching machine there is a probability
that an attempt on it will be accepted before timing out. We further
assume that these acceptance probabilities are independent of the past
history of the attempt.

The model has two conceptually distinct parts. First, the global
problem is, given these acceptance probabilities, to find the various
quantities of interest such as the expected number of messages in
progress between each source-destination pair, the attempt rate on
each trunk group and on each switching machine, and the point-to-
point completion probability. Second, the local problem is, given those
quantities, to find the acceptance probabilities for each switching
machine and each trunk group. The local and global problems to-
gether give a large number of coupled nonlinear equations which de-
scribe the steady-state behavior of the network. These equations
form the model.

For the model to be computationally tractable, the number of equa-
tions involved must be as small as possible. For this reason we have
assumed that each stochastic process in the model can be described
by a single parameter. (For example, the call origination process



1594 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

between a given source-destination pair is assumed to be Poisson.)
Even with this assumption, the number of equations involved is very
large for any reasonable size network.

It must be emphasized that this is a first-generation model for an
overloaded network. While the model does very well at predicting
certain statistics, it is relatively poor at predicting others. A model
using two parameters to describe each stochastic process could be
more accurate than this one. Within the structure of this model, the
switching machine treatment could be improved.

The network model given here is in several ways similar to the
model used in the optimization problem of Reference 6.

IV. GLOBAL ASPECTS OF THE MODEL

This section deals with global, or network, effects caused by local
phenomena. An example of such a global statistic is the mean number
of messages in progress between a source-destination pair, which
depends on various local effects such as the probability a call offered
to each trunk group will be accepted onto it.

Before proceeding further, some definitions are required.

A complete route, B = (a, by, bz - by, ¢), is a list of the switching
machines through which a call may pass in going from the end office
connected to a machine a to the end office connected to machine c.
For example, in Fig. 1 there are two complete routes, (2, 4) and (2, 3, 4),
from end office 1 to end office 5.

A partial route, 7 = (a, by, bz - -bn; ¢) of a complete route R de-
scribes the route occupied by a call in the process of being set up and
its destination. For example, a call on r = (a, by, by, bs; c) started in
the end office attached to switching machine a, passed through
machines a, by, and bs, has entered (or is waiting to enter) machine
bs, and has as its destination the end office connected to machine c.
Define

2z = Expected rate that calls on complete route R = (a, a1- * *az, b)
attach to the trunk group from switching machine b to its
associated end office.

z, = Expected rate that calls on partial route r = (@, a1+ -ae; b)
attach to the trunk group from ;1 to ay.

2, = BExpected rate that calls on partial route r are connected to
senders in switching machine ;.

t, = Expected rate that calls on partial route r time out while
waiting for senders in switching machine a;.
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Fig. 3—Relationship of z., z,, ¢,, and b,.

b, = Expected rate that calls on partial route » which attach to
senders in switching machine a; are blocked because of a
lack of outgoing circuits.

SM; = the sth switching machine.

To make the meaning of these variables more obvious, consider Fig. 3.
Calls on partial route r = (a, 4, j; b) attach to trunk group 7j, and
therefore bid for senders in SM ; at a rate z,. Some of them are accepted,
at a rate z,, into SM; and the remaining ones time out at a rate i,.

Those calls accepted into SM; then attempt to reach end office b by
attaching to link jk, at rate z,,, where r; = (a, i, j, k; b).

If z,, < 2,, some of the calls alternate route over link 77, with rate
T, where rs = (a, 1, j, ¢; b). If 2,, + z,, < z, and there is no further
alternate route available, then some of the calls are blocked with rate

brL2, — (2 + z.,).

The global aspect of the network relates the z,’s, 2.’s, b,’s, and i,’s
for all partial routes in the network. The following assumptions are
made:

(#) The model assumes that every type of call attempting to enter
switching machine ¢ has the same probability, P;, of being
accepted. Therefore

&y = Pfx, (1)
for each partial route r entering SM.

(z2) It further assumes that every type of call attempting to attach
to trunk group, 7j, has the same probability P;; of attachment.
The resulting equations are given below as (2) for the case
with no network management control. Appendix A contains

the equations that result when network management, controls
are included.
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B If a call from a to b in SM; has a preferred route over link
77 and a second most preferred route over link 1k, then

z,, = P32,
z,, = Pu(z, — z.), @)
etc., where
r = (a,;b)
r1 = (a,7,7;b)
re = (a,i,k;b).

(#45) It is assumed that any call successfully attached to the trunk
group leading to its destination end office, b, has a probability
PA, of being answered and therefore becoming a complete
call. This probability depends on the destination. Therefore,

zr = PA Pz, (3)
where

R = (a,i.‘jlklb)

r = (a,z,],k,b;b).

(i) The stream of original calls attempting to go from a to b is
Poisson with mean A... Calls that do not complete retry with
probability PR. The expected long run attempt rate for calls
from a to b is

Aa.b = )\a,b + PR(An.b - ca.b))

where C,,» = > T, is the completion rate for all calls
Rfromatobd

from a to b. That is,

)\a,b_PR Z 312.

Aap = Ratob 4)
1 — PR
On the link from end office a to its switching machine, SM,,
Tiasty = PﬁAa.b- (5)

Clearly, with assumptions ()-(#), all the rates involved can be
found from the P’s. A method for finding the P’s in terms of the
z,’s and z,’s is discussed in the next section.
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V. LOCAL ASPECTS OF THE MODEL

The assumptions made in Section IV for the global portion of the
model place few constraints on the local part, requiring only certain
acceptance probabilities, P;, to satisfy those assumptions.

5.1 Toll Machine Model

The toll machines to be modeled are No. 4A-ETS switching ma-
chines. The statistics of interest in the model are the acceptance
probabilities, P, mentioned in the last section, and the expected wait-
ing time, T\, for a call to get a sender. For relatively light loads, these
statistics behave as though the machines selected the next call to be
served on a first-come, first-served basis.” When the machines are
overloaded, they behave as though calls were selected at random for
service.’

We calculate the expected waiting time based on the former when
loads are light and on the latter when they are heavy. The switch
from the first to the second method is made where the curves of waiting
time versus load cross.

In the light-load case the assumptions are

(z) The stream of calls attempting to enter each switching ma-
chine is a Poisson stream with mean X,.
(¢7) The time a sender is held in SM; by a call is an exponentially
distributed random variable with mean 1/p;.
(#1z) All toll machines have the same time-out interval, 7.
(tv) The queuing discipline is first-come, first-served.

The problem of finding the probability, P;, of acceptance of calls
into SM; under these assumptions has been solved.? The result is

P;

1 — {eT(Naui—Xi) 1 — A
B(Nn Rinun‘_l) A — N'i#’-'
A

+ )\l' - Ne.‘.ﬂi

-1
} . for X Nou: (6)

1 -1
Pf—l—[ﬁm“f} » o for he= N

where

N,; = the number of senders in machine 7

n/ml
B(n,a) = ar/ n the Erlang B function.

n G-”

i=o 7!



1598 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

Under these assumptions Reference 9 also gives the expected waiting
time to get a server. The result is

N eTWapi=2d) — [N s+ NT(Naui — M) ]
r _ : i 1 i
T (1 P)) (N — N)? ’
for N #= Nou: (7)
), = (1 — P)T (1 + *;T) , for A= N

In the heavy load case, assumption (7v) is replaced with
(#v)’ The queuing discipline is random.

An asymptotic expression for waiting time under this assumption is

T, =T(1 — Py2), N> Nai (8)
Fitting eqs. (7) and (8) together

4, N = N
T, = 9

min{T{tm T:a.'}l A > N-,Ui-
To find P; and T.,, all that is needed are T, \;, and g1, T is given and
A = E Zr (10)

reli

where
I, = {r|r = (a,01---7;b) for some a, b and a;---}.

To find u;!, consider Fig. 4. Calls on partial route r bid for a sender
and connector in SM; at rate z,. All calls waiting to enter SM; have
an expected waiting time, T'w,. Calls on partial route r are accepted
into SM; at rate z,. It takes T'¢ seconds to connect an incoming trunk
to a sender.

Once a sender is connected, it requires 7' » seconds to pulse the digits
into that sender. It then waits Twa seconds for a translation device.
The time to translate the digits, look for an available trunk on an
acceptable route, and connect to that trunk is taken as a constant,
T seconds. If no circuit is available, a call is attached to a no-circuit
announcement. Otherwise it is attached to a trunk connected to some
switching machine, say SM;. The call, and the sender in SM;, wait
for a sender and connector in SM ;. If the call is accepted into SMj, it
takes T¢ seconds to connect to the next sender and another Tp to
pulse its digits into that sender. If the call hasn’t been accepted by T
seconds, it times out, and must return to the common control equip-
ment to be connected to a no-circuit announcement.
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The expected time a sender is held by any call accepted into SM; is

ul' = (Tp+ Twu + Tu)
+ (Expected waiting time for calls leaving SM;)
+ (Twau + Tau)(Probability a call leaving SM; times out)
+ (T» + T¢)(Probability a call leaving SM; is accepted
into the next machine).
More explicitly,

Z ijra’lr
pit = [TP + Twa + TM] + [ﬁ.‘z—zr—]
rel;
1 — Z-Zr+ Z__xﬂ
+£TWM + TM] TE0: Z :;EU-
reli
Z_ Zr + Z—, IR
+H[Te + Te]| =—— = |, (D)
reli
where
jr = oy
when

r = (a,ou- T Qg b)

and 0; and 0; are sets of partial and complete routes, respectively,
defined by

0; = {r|r = (a,a1- - -t,e¢; b) for some a, b, ez - -}

0;

{R|R = (a,1- - -1,b) for some a, b, a1+ - }.

The only symbol in (11) remaining to be explained is Twa, the
expected time spent waiting for a decoder-marker. The decoder-
markers are modeled as a finite source queue. The assumptions are

() There are N, exponential servers.
(#) The queuing discipline is first-come, first-served.
(44i) Each N, sender in the switching machine either is waiting for
or receiving marker service or is generating its next marker
bid with an exponential interarrival time of mean 1/v.

This finite source queuing model has been analyzed in Reference 10.
The result, in a convenient computational form thanks to D. Jagerman,
is

g _ Tu_No— My — A[1 = BN, — N — 1, 4)] (12)
M Na Y2 NQ(Ny — Nuw)™?’
1+ BN, — Nn—1,4) .
i=1 (vT'w)?
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where the subscripts corresponding to the switching machine have
been suppressed and

Nn
A=1r,
NO =N(N —1)- (N —i+1)
N(—:’) l

TNNFD - WNFi—-1)
To compute Twy, it is necessary to know 7, which depends on the
mean rate, m, at which calls arrive at the marker-decoder queue

m= 3 z,+ Xt (13)

r&li RE0:
Making use of Little’s Theorem! and the definitions of m and v,
_ m )
YT N, = (T + Tom)

Equations (13) and (14) have a unique solution for all rates, m,
which can be handled by the machines.

(14)

5.2 Comments on the Switching Machine Model

The interaction of switching machines in the real network is known
to be an important cause of congestion. That interaction is included
in this model by the waiting time of senders in one machine affecting
the holding time of senders in adjacent machines.

This model has some features that appear to be ad hoc. The assump-
tions, however, are computationally convenient and give results
similar to gross machine behavior. The network model has been
structured to accept expanded machine models if they are required.

Section VII, on validation, includes a discussion of the accuracy of
this switching machine model.

5.3 Trunk Group Model

The probability that an attempt will be accepted on a trunk group
is found by assuming that the arrival process is Poisson. The required
result is the Erlang B function, which depends only on the mean
number of calls which would be on the trunk group if it were infinite
and the actual number of trunks.

To find P5; on the trunk group between 7 and j, we need the following
definitions :

N7 = number of trunks between SM; and SM ;.
E7; = expected number of calls on the trunk group between 7 and j.
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F3; = expected number of calls that would be on the trunk group
if N were infinite.

nr = expected number of messages on complete route &.

S, = expected number of calls on partial route » being processed
in SM; where r = (a---£; b).

W, = expected number of calls on partial route r waiting to enter
SM; where r = (a---¢; b).

= mean holding time for a message.

Then
E;—jz 2_ﬂn+ Z_Sr+ kar
R over ij T over ij r over ij
= -! Z _xR
V R over ij
+ T {Twi ¥ 2+ (Te+Te+Twu+Tu) L 2
all TCy rel; r€ly
r over ij r over i
+ (Twa + Ta) 2 _t. (15)
rEL |

To find Fg, simply notice that P3; is a linear factor of every z,, 2.,
and ¢, in eq. (15). Given all the P’s except Py, choose any positive
value for Py, say Pyj, use egs. (1) through (15) to find E+;, the value
of E; corresponding to P7;. Then

F=%_- (16)
5
Finally
Py =1 — B(Ng, Fa), (a7

where B is the Erlang B function.

It is unlikely that the arrival process at each trunk group in the
network is Poisson. In fact, much of the recent trunking analysis has
been directed toward non-Poisson processes. However, the Poisson
assumption is a reasonable one to make in a mean value model. The
accuracy of the overall model will be discussed in Section VII.

VI. SOLVING THE EQUATIONS

In the last two sections the model was given as a set of equations,
(1) through (17). Most reasonable uses of the model require simul-
taneous solution of the equations and then computation of quantities
of interest from this solution.



OVERLOAD MODEL 1603

Fig. 5—Network used in point-to-point comparison run.

Solving these equations, at reasonable cost, is essential to the use-
fulness of the model. As given in Sections IV and V, there are a very
large number of equations, both nonlinear and coupled. In the network
shown in Fig. 5 are about 50,000 equations and variables. Fortunately,
the P’s and T.’s calculated in Section V form a fundamental set of
variables from which everything else can be calculated. There are 91
of these variables for the network in Fig. 5. In another network of
interest there are 240 of these variables.

The approach taken to solving the equations is iterative. Given a set
of P’s and T’s, all other variables of Section IV are calculated. Then
a new set of P’s and T,’s are calculated. If the new set and the old
set are the same, a solution has been found. More precisely, let y be a
vector whose components are the P’s and T,’s, then the equations of
the model specify a function, F(y), which gives the new value of P’s
and T'’s. In this framework solving the model equation is equivalent
to solving

F(y) = y. (18)

To make the solution of (18) easier, the components were normalized
to the interval [0, 1]. The components corresponding to P’s are
necessarily in this interval. The components corresponding to T'.'s
were forced to be in the interval by replacing T, by T.,/T. The re-
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sulting function F maps [0, 1]" into itself, where n is the number of
trunk groups plus twice the number of toll machines. The function is
continuous so (18) has a solution by Brouwer’s Fixed Point Theorem.!?
The question of uniqueness of the solution will be discussed later.

For this model to be a useful tool for network analysis, it is necessary
to solve (18) inexpensively. There are two basic problems to be over-
come. First, F is so complicated that, for reasonable size networks, its
derivative is unavailable. This means that any method which requires
F’ cannot be used. Second, in these same networks a single evaluation
of F costs on the order of $0.50. The cost of estimating F’ by n evalua-
tions of F depends on 7, the dimension of y. For the network in Fig.
5 it would cost about $45 for a single estimate of F”.

In order to solve (18) economically, an algorithm which doesn’t
require F’ or estimates of it was devised. The algorithm adapts the
step size on the basis of the last ten evaluations of F.

The algorithm is as follows:

(2) Initialize y[0, 1]* and set 7 = 0.
(i) If ||Fy* — v < ¢, stop.
(#77) Otherwise,
& JIUIEqu-I 1 + 'SJ'
yt =y +a(Fy - ¥Y),
where
I, = {j|janinteger = 0,722 j = ¢ — 10}
50 =1
5, = I(Fy? — yi)— (Fy** — g7
’ ly/ — y=l ’
(7v) Repeat (¢z) with¢ = 7 + 1.

7 >0.

A computer program was written to evaluate F(y), i.e., egs. (1)
through (17), and to implement the algorithm for solving (18). Our
experience with the program has been that the algorithm usually
reaches a satisfactory solution in less than n/2 steps. The cost of the
program depends on the network size and on the value of various calling
parameters. However, the cost for the network shown in Fig. 5 was
usually around $10, with some runs as high as $40. For a larger net-
work with 240 variables, the cost was usually around $20.

An important point to mention is that F is not a contraction map-
ping. This means that the existence of a unique solution cannot be
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)— )
() U/
x
A
Ng = 14 A = 1CALL/SEC
T, = 25SEC PR =0
T = 30SEC PA =1

Fig. 6—Example network which has two quasi-stationary solutions.

guaranteed. In fact, in one example, two solutions to (18) were found.
The question immediately arises, “Are both of these solutions physi-
cally meaningful?”’ The answer is “Apparently, ves.” The existence
of two stable operating regimes for the toll network has been suggested
before.? The argument for their existence is as follows: If large queues
form before switching machines, other machines will have their hold-
ing times greatly increased and will be able to switch only a fraction
of their usual capacity. All other calls will time out. That means, if
somehow the queues become large, they might stay large and the net-
work completion rate would be very low, while under the same system
parameters if the queues ever became small, they would stay small
and the network completion rate would be much larger.

To test this argument, J. A. Kohut’s Monte Carlo Simulation® of
the network shown in Fig. 6 was run. A brief description of this simu-
lation is given in Appendix B. The system started empty and was run
for one hour of simulated time, reaching a quasi-stationary condition
within the first 10 minutes. Then the offered load was doubled for 10
minutes, causing large queues to form. After that, the simulation was
run for one more hour at the original traffic level. Again it reached a
quasi-stationary state within 10 minutes. The results are given in
Table I. The results show conclusively, for this simulated network,
that two quasi-stationary operating regimes exist. For comparison,
the results from the analytic model are also included in Table I.

It is possible for this network to be operating in the uncongested
regime, receive an unusually large number of calls during some short
time interval, and go into the congested regime. In the congested
regime, if an unusually small number of calls arrived for a period of
time, the system could go into the uncongested regime. It seems
reasonable, and the simulation run helps confirm it, that the mean
time before spontaneously leaving one of the regimes is quite long.
This is the reason for using the term quasi-stationary.
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TasLE I—ExaMpPLE SHOWING TWo
QUASI-STATIONARY SOLUTIONS

1 Mean Attempts | Mean Time-outs Mean Waiting
Mode (per 5 min. (per 5 min.) Time (in sec.)
Simulation
10 to 60 min. 602 =9 0 0.17 £ 0.02
80 to 130 min. 605 + 8 454 + 11 21.5 +0.2
Analytic
Solution 1 600 10— 0.22
Solution 2 600 459 22.7

The existence of two quasi-stationary operating regimes apparently
has implications for network management. If the network is congested,
it may not be due to high calling rates but only due to high sender
queues. A control which clears out these queues may be enough to
decongest the network. Short sender timing which is currently used
in the network is such a control.

VII. MODEL VALIDATION

The model discussed in previous sections contains many important
network features. The machine model includes the stochastic arrival
of attempts, office work times depending on waiting for adjacent
offices, and time-outs. The trunk model includes stochastic arrivals
and holding times, with the mean holding times dependent on how
far the calls progressed toward becoming messages.

In the final analysis, the model stands or falls by how well it pre-
dicts the operation of a real network under overload. While from a
validation viewpoint this could best be done by comparing the model
with a real situation, there are two good reasons not to do so. First,
the data collection problem would be extremely difficult and pro-
hibitively expensive. Second, getting meaningful comparisons would
require allowing the network to operate in an unacceptable mode. In
addition, any real network would include things not modeled here,
such as other types of switching machines and additional network
management controls.

An alternative is to compare the model with a Monte Carlo simu-
lation which is currently being used to evaluate network controls.
While this comparison cannot evaluate the modeling of effects treated
similarly in both models, it does help evaluate the modeling of effects
treated differently. We compare our model with Kohut's simulation.
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It also contains a simplified machine model, but does not include our
simplifying assumptions on how senders wait for senders, that all
arrival processes are Poisson, or that machine holding times are ex-
ponentially distributed. These assumptions are perhaps the most
suspect in our model.

Two kinds of comparison between the two models were carried out.
The first compares gross behavior over a very large range of offered
loads. The second looks at more detailed statistics under a reasonable
overload. In both cases, the results are similar.

The first type of comparison was carried out on the network in Fig.
7. The two models were given exactly the same data on machine sizes,
pulsing times, trunk group sizes, etc. A series of runs was made with
the only change between runs being the calling rates. The first run
used a nominal set of calling rates, the second used twice the nominal
calling rates, the third used three times the nominal calling rates, ete.
For each run, the Monte Carlo simulation was run until, on the basis
of the retrial rates, it appeared to be in steady state. It was then run
for another one or two simulated hours to estimate the expected num-
ber of messages in progress in the network in steady state. The sample
variance was used to estimate the 68 percent confidence interval for
the mean. The analytical model was then used to find the expected
number of messages in progress for each offered load. Figure 8 shows
the curve generated by the analytic model as well as the Monte Carlo
simulation’s estimates of the corresponding means and confidence
intervals,

In Fig. 9, exactly the same runs were made as in Fig. 8, except that
switching machines timed out after 5 seconds in Fig. 8 and after 30
seconds in Fig. 9. Monte Carlo runs for more than double the nominal
calling rates were not made in the 30-second case, since the simulation
was not intended to handle the very large queues that would develop.

From Figs. 8 and 9, it appears that the models predict the same
behavior for the expected number of messages in progress over a very
large range of calling rates. The numerical values given by the two

Fig. 7—Network used in massive overload comparison runs.
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Fig. 8—Carried vs offered load, time-out = 5 seconds.

models also seem to agree well. At three times the nominal calling rate,
the two means differ by less than 4 percent in Fig. 8.

The previous examples were generated for the network in Fig. 7.
The second type of comparison was made between the Monte Carlo
simulation and the analytic model on the network in Fig. 5. This
network configuration was used in early network management simu-
lation studies. While it is similar in structure to the toll network, it
has one less level of hierarchy.

In order to get reliable statistics, the Monte Carlo simulation was
run for three simulated hours. The network appeared to have reached
equilibrium by the end of the first hour. Statistics were printed out at
10-minute intervals for the next two hours, and these were used to
estimate completion probabilities, expected sender attachment delay,
and the probability a call would time out in each switching machine.

Table II shows the comparison of the expected sender attachment
delay and probability of time-out given by each model for each of the
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17 switching machines. For the Monte Carlo run, estimates of the
standard deviation in the estimates are also given. It can be seen that
the analytic model tends to give larger numbers for both quantities
than does the Monte Carlo simulation.

To estimate the completion ratio for each point-to-point pair, the
total number of attempts and completions were recorded for each pair
for the last two simulated hours of the Monte Carlo run. The estimate
of the completion ratio from source  to destination j is
Cij
I}

Ci; = number of completions from ¢ to j

(?R;,- =

A;; = number of attempts from 7 to j.

This estimate of the completion ratio was used since it has a smaller
variance than would result if the completion ratio was calculated for
each 10-minute interval and then averaged. The corresponding com-



1610 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

TaBLE II—ComPARISON oF ANALYTIC AND MoNTE CARLO
MopiL RESULTS FOrR SWITCHING MACHINES

Lo Attachment Delay (in sec.) Probability of Time-out
Switching
Machine
Analytic Monte Carlo Analytic Monte Carlo
1 0.33 0.19 £ 0.03 0.008 0.008 + 0.002
2 0.12 0.08 &= 0.01 0.002 0.002 £ 0.001
3 0.30 0.20 & 0.03 0.016 0.012 + 0.002
4 0.25 0.16 == 0.03 0.013 0.007 =+ 0.002
5 0.29 0.21 = 0.03 0.015 0.012 = 0.002
6 0.18 0.12 & 0.02 0.008 0.007 = 0.002
7 0.10 0.04 = 0.02 0.004 0.001 = 0.001
8 0.79 0.31 £ 0.03 0.011 0.009 =+ 0.002
9 0.49 0.19 &= 0.03 0.016 0.007 x 0.002
10 0.15 0.07 £+ 0.01 0.005 0.003 = 0.001
11 3.04 2.03 £+ 0.07 0.219 0.163 = 0.009
12 1.83 0.90 % 0.06 0.085 0.054 =+ 0.006
13 0.46 0.32 £ 0.04 0.027 0.020 + 0.003
14 0.17 0.07 £ 0.02 0.008 0.002 = 0.001
15 0.18 0.12 % 0.02 0.008 0.007 = 0.002
16 0.19 0.08 = 0.01 0.009 0.003 =+ 0.001
17 0.12 0.04 £ 0.01 0.005 0.002 == 0.001

pletion ratio calculated by the analytic model will be denoted CE.;.
To compare CR;; with CRy;, it is necessary to have an estimate of the
standard deviation of CR;;. This estimate was made as follows: If the
actual completion ratio really is CR;; and if the probabilities of com-
pletion are independent for successive 7j attempts, then given the
number of ¢j attempts, the number of j completions is a binomial
random variable. Therefore, CR;; has mean and standard deviation

E[C‘Ru] = CR.'J;

_ [CR;;(1 — CRyj)
%= AT A,

respectively. The assumption that successive completion probabilities
are independent is not unreasonable, since in this network the trunk
groups between a typical ¢j pair will have an average of 10 to 50
message completions between successive 4 attempts.

To conveniently compare CR;; and CR;;, consider the standardized
random variable
o CRi; — CRy;.

£ij (19)

Figure 10 has a histogram of the £;;'s for 72 arbitrarily chosen 4j pairs.
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In the pairs plotted, 68 percent of the £;;’s were in [ —1, 1], 92 percent
were in [ —2, 2], and 100 percent were in [—3, 37. This is consistent
with the above assumptions. If they were correct, the expected percent-
ages would be approximately 68, 95, and 99.7 percent, respectively.

To get a quantitative estimate of the difference in the completion
ratios given by the two models, we require an estimate of E[¢;;]. To
get such an estimate, treat the £;’s as independent, identically dis-
tributed random variables. Then, using the 72-pair sample to estimate
E[£i;] and the standard deviation of that estimate gives

E[t:;] = 0.026 = 0.143. (20)

This is consistent with Z[£;;] = 0. However, using the estimated
mean allows us to estimate the relative error, e;;, between the two
models.

s [ CRy; — CR‘-,-].
€ij = E[ CR:; (21)
From (19),
o aiBlEG]
€ij = T CRi; (22)

Using E[£i;] = 0.026, e;; was calculated for all 72 point-to-point pairs.
All the calculated values were in (0.0017, 0.0051) and the average was
0.0033. This gives the estimated relative difference in the completion
ratios calculated from the two models as 0.33 percent. This error is
negligible for practical purposes.

100% (99.7%!

92% (95%)

68% (6B%)

-3 -2 -1 0 1

¥

Fig. 10—Relative frequency of &;’s for 72 point-to-point pairs.
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From the examples given in this section, it seems reasonable to
conclude that

(i) The two models agree well when computing network quantities
such as point-to-point completion ratios and the expected
number of messages in progress.

(#7) They show somewhat less agreement in local phenomena such
as the sender attachment delay and probability of time-out in
individual machines.

VIII. CONCLUDING REMARKS

This paper presented an analytic model of the response of a tele-
phone network to overloads. The model agrees well with a currently
used simulation for network quantities such as point-to-point com-
pletion ratios and the expected number of calls in progress in the
network. It is much cheaper to use, with typical costs being $20
versus $200. The model only gives quasi-stationary results. To get
the transient response, a Monte Carlo simulation must be used.

The overall model structure permits changes in the model of in-
dividual components. Expanding the No. 4A switching machine
model, including other types of switching machines, and including
additional network management controls might be useful.
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APPENDIX A
Introducing Some Network Management Controls into the Model

For ease of exposition, eqs. (2) omitted network management
controls. These equations must be modified to include network
management controls corresponding to switching machine code
blocking on the basis of destination, skip routing, cancellation of
alternate routing from a trunk group, and cancellation of alternate
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routing to a trunk group. To see how these controls are included, let

r = (a,i;d)
= (ar"'-‘j; d)
re = (a,5,k; d).

Partial route r enters switching machine 7. Partial route r, is the pre-
ferred route out of machine 7 toward the destination d. Partial route
72 is the alternative to route r,. Also let

NCB;s = one minus the fraction of calls code blocked in switching
machine 7 because they have destination d

NCF;; = one minus the fraction of calls cancelled because they
attempt to alternate route from trunk group 7j

NCT;: = one minus the fraction of calls cancelled because they
attempt to alternate route to trunk group ik

NSK,; = one minus the fraction of calls which skip over trunk
group ¢k when alternate routing.

In terms of these symbols, the replacements for egs. (2) are

Ty = PijerCBt'd (2’)
Ty = P{kNSK,';;[NOT;};NCF,‘;(Z,-NCBM - 3:,-[)}.

The interpretation of the equations is as follows: The ecalls entering
SM; on route » which are not code blocked are offered to trunk group
tj. They are accepted with probability P;;. The quantity in parentheses
corresponds to calls which are neither code blocked nor accepted into
route r;. The quantity in brackets corresponds to calls which are not
cancelled because of alternate routing controls. Of those calls, the
ones which do not skip trunk group 7k and do find a free trunk enter
route ;. Those calls which do skip trunk group ¢k or find it full will be
offered to the next alternate route, if one exists.

APPENDIX B
A Brief Description of the Monte Carlo Simulation in Reference 5

The Monte Carlo simulation in Reference 5 is a call-by-call simulation
in the sense that it generates calls individually and processes them
through the simulated network as individual entities. That is, each
run of the simulation of Reference 5 produces a realization of the under-
lying stochastic process as opposed to the model presented here which
analytically arrives at statistics for that process. The remainder of this
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appendix describes the assumptions and treatments used in the
simulation.

The underlying traffic between each source-destination pair is a
Poisson stream. Any attempt which reaches its destination end office
has a fixed probability of failing because of a “don’t answer” or “busy”’
condition. Any attempt which fails to become a message, for any
reason, will retry with a fixed probability. If a failed attempt will
retry, the time until retrial is chosen from an exponential distribution.
The conversation length for each successful attempt is also chosen
from an exponential distribution.

An attempt which arrives at a trunk group can seize a trunk only
if one is free at that time. Once a trunk is seized, it is held while the
attempt progresses through the network. If the attempt fails, the
trunk is released at the time of failure. If the attempt becomes a
message, the trunk is also held for the duration of the conversation.

The simulation contains several switching machine models, only
one of which was used in the comparisons in this paper. It consists of
two groups of parallel servers: the first models the senders, while the
second models the common control responsible for translation, trunk
testing, and switching. We will refer to the first group as the senders
and the second as the markers. ‘

An attempt bids for a sender, if one is seized, then a constant delay
is introduced to represent receiving digits. If a sender is not seized
within a specified time, the attempt abandons the queue. After a
sender has received the digits, a bid is made for a marker. If one is
available, it is seized and held for a constant holding time. If one is
not available, the sender will wait for a marker. During the marker
operation, a test is made for a free trunk. If no trunk is available, the
call is immediately blocked and the sender and all prior seized trunks
are released. In the simulation, it is assumed that announcements and
reorder tone do not extend the holding time of blocked attempts.

After the marker holding time, the sender bids for an attachment
to a sender at a distant machine. This bid will result in either an
attachment of a sender or an intersender time-out. In the former case,
the sender is held for an additional constant length of time which
simulates outpulsing the digits. In the latter case, no out-pulsing
oceurs, but an additional marker usage is required to route the attempt
to an announcement.

The queuing discipline for senders and markers is random. When a
piece of common control becomes free, a bid is selected at random
from the bids waiting. The simulated switch of an attempt through a
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switching machine may encounter delay in four different ways. An
attempt will be delayed during the sender and marker service times
and may be delayed by waiting for these pieces of equipment if they
are not available at the time of the bid. The service time delays are
fixed, so these delays are equal for all attempts. However, the delays
caused by queuing are random and are dependent upon how long an
attempt must wait for equipment to become free.
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