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I. INTRODUCTION

The equivalent random method! (aso see Ref. 2) is widely used to
approximate the blocking probabilities for non-Poisson traffic streams.
Although much numerical experience and some analysis (e.g., Ref. 3)
suggests that the method is usually reliable for superpositions of over-
flows, the reason for its accuraey (or errors) deserves further attention.

The equivalent random method first determines the mean M and
variance V of the number of the trunks that would be occupied if the
traffic were offered to an infinite trunk group. Then an overflow process
with the same M and V is offered to the finite trunk group and its
blocking calculated.! This blocking is taken as the approximation for
the blocking seen by the original traffic.

In this Brief, we derive the range of the blocking probabilities which
may be experienced by renewal streams characterized by the same M
and V. Since this range may be rather wide, it follows that the success
of equivalent random method cannot be explained solely by the con-
straints put on blockings by fixing M and V. Rather, one should factor
in the special structure of the processes. Furthermore, it is seen that
one cannot use an arbitrary renewal process to represent another pro-
cess with the same mean and variance.

* A version of this Brief was presented at the Seventh International Teletraffic
Congress, Stockholm, June 1973,
T That is, the blocking is calculated for the specific renewal process which is the

overflow process from a Poisson input. Conceivably, other types of renewal processes
could be used.
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II. IMPLICATIONS OF THE EQUIVALENT RANDOM METHOD

Consider a nonlattice renewal process, with distribution function
F(t) for the interarrival times, offered to a group of N trunks. The
holding times are mutually independent exponential random variables
with unity mean (or the mean is the time unit). Blocked calls are cleared
and the system is in equilibrium. Define

m = f: 1dF (1), (1)

6(z) = fo * =dF (b). 2)

Then it is known that the blocking probability is

oo (1) 50+

NY[1—o1)] - 1= o))
* (N) S8 -$() 3)

(see, e.g., Ref. 4, Chap. 4). Observe that B depends on N values of
¢(3), 1 =1, -+, N, and that it is an increasing function of these ¢ (7).
We shall show how the equivalent random method constrains these
#(3) by obtaining upper and lower bounds on them which, in turn, give
upper and lower bounds on B.

The description of the equivalent random method in the Introduc-
tion leads to the question of how well M and ¥ characterize a traffic.
It turns out that they imply much more than is apparent at first glance.
For our renewal input, we have the following relationships:

M =m, (4)

1
v-m| L - M] 5

[ =%w ®)
(see, e.g., Ref. 4, Chap. 3*). Thus, (M, V) uniquely determines
(m, ¢(1)) and vice versa. Specifically,

VIM -1+ M

#(1) = S (6)

Hence, the equivalent random method fixes ¢ (1) which is particularly
important in (3). Moreover, fixing ¥ and M puts important constraints
on the other ¢(2), ¢ = 2, - -+, N, which, in turn, further constrains B.

* Also, see Ref. 5, p. 331/5, for an interesting characterization of peakedness.
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Fig. 1-—Constraints on ¢ (z) for z > 1.

Figure 1 shows how (m, ¢(1)) constrains ¢(z) for > 1. The parame-
ters py, ps, b will be given in (16)—(18). All such ¢ (z) must lie within the
shaded area. The upper bound is a least upper bound and the lower
bound, a greatest lower bound. Also shown in Fig. 1 is a wedge for
z > 1 which respresents simpler, cruder bounds for ¢(z) which follow
immediately from the decreasing convex nature of ¢(z).

To derive the lower bound, let y = e¥in

Ely| = BV=|yl=, z>1, (7)
with ¢ the renewal interarrival time.
We obtain
E=(e7t) = E(e™) (8)
or, in other words,
[e(1)]* = ¢(), (9)

so that ¢(z) must lie above the indicated curve for z > 1 in Fig. 1.
To show that this is a sharp lower bound, let

dF (t) = [p:d(t — a) + pb(t — b)Jdt. (10)
(p1, @, pe, b) must satisfy

m+p =1, (11)
p1a + pb = m, (12)
e + pe? = ¢(1). (13)
By letting b get large and p; — 1, we can show that
b () = pre==* + pae==t — pre== — [(1) ] (14)

The sharp lower bound for ¢(z) may also be derived using Theorem
2.1 on p. 472 of Ref. 6 (see Remark 2.3, p. 474). Use of this theorem*

* The problem to which we applied this theorem is to find sharp upper and lower
bounds for fi"e~=dF (t) subject to /i°dF (1) =1, fi"tdF (t)=m, and f; e 'dF (t)=¢(1),
a number fixed by (6).
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also leads to the following sharp upper bound for ¢ (z) :
$(z) £ dm(z) = 1+ pee®? (15)
with (pi, ps, b) satisfying

-md=e?)
b=F5m (16)
P (17)
We thus obtain that the true B satisfies
BL é B é Bu, (19)
where
(V)i
BL'[1+(1) s T
N\[1l—¢(1)]--[1—e¢¥D]]
+ (N) L [tg(l:)I]lN([NH)Iz] ( ]} , (20)
= NY1=¢a(D) .
B = {H_(l) ) T

N\ 1 — éu(D] - [1 — $u@)]]
+(N) om(1)om () ] (21)

The blocking probability obtained by the equivalent random method,
B., also satisfies (19) so that a bound on the error for the method is

max {By — Ber, Ber — BL}.

III. INTERPRETATION OF EXTREMAL SOLUTIONS

Some feeling for these bounds can be obtained by considering the
maximum and minimum blocking probabilities attainable when only
the mean interarrival time m is constrained (the equivalent random V
is unspecified). It is shown in Ref. 7 that the minimum blocking is
achieved when arrivals are regular with a separation of m. Our inf may
be viewed as approaching that of regular arrivals but with a different
mean [the impulse at b in (10) keeps the equivalent random M and V
satisfied ]. Observe that By is the blocking probability seen by a renewal
input with constant interarrival times with mean m, determined from

e ™ = ¢(1). (22)
It is shown in Ref. 7 that with a given m, blocking probabilities



ACCURACY OF EQUIVALENT RANDOM METHOD 1677

1.0

0.6~
0.4

0.2
0.1} —
0.06 :
0.04f—
0.02}—
0.01 —

0.006
0.004—

0.002—

8

er
Lt | Lol |
1 2 3 4 56 8 10 20 30 40 5060 80 100 200 300

0.001

Fig. 2—B,, Ber, By for V/M = 1.

arbitrarily close to unity may be obtained by having F(t) consist of a
step at ¢ sufficiently small and another small step at ¢ sufficiently large.
This causes most of the arrivals to come tripping on each other’s
heels. Our maximum blocking may be viewed as trying to approach this
but constrained by V to keep the second step at a finite ¢.

IV. EXAMPLES AND DISCUSSION

Some bounds are shown in Figs. 2 through 4. These results do not
necessarily imply that the equivalent random method is commonly
subject to errors of such magnitude. In practice, the method is usually
applied to superpositions of overflows and these are a special class of
processes, generally not renewal.* Nevertheless, the relatively large
differences between the inf and sup blockings suggest that the ap-
parent success of the equivalent random method for superpositions of
overflows cannot be explained solely by the constraints put on block-
ings by fixing M and V. Rather, explanation of this accuracy should
factor in the special structure of such processes. (It may be of interest
to extend the results of this Brief to take special structures into ac-
count.) Furthermore, it is seen that one cannot use an arbitrary re-

* Teletraffic interest need not be confined to simple superposition of overflows from
trunk groups; e.g., switching center congestion can alter a traffic.
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Fig. 3—B., Ber, By for V/M = 2.

newal process to represent another process with the same mean and
variance.

As an aside, observe that if V/M > 1, the blocking B is bounded
away from zero no matter how small M is. That is, (6) implies that
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Fig. 4By, Ber. Br.for V/M = 4.
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By of (20) for fixed V/M cannot get below B evaluated with
o(1) =1 — (M/V).
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