Copyright © 1974 American Telephone and Telegraph Company
Tre BELL SYSTEM TECHNICAL JOURNAL
Vol. 53, No. 1, January 1974
Printed in U.S.A.

Automatic Intercept System:

Development Support Systems

By I. D. BUCK, G. D. CRUDUP, C. W. KEMP,
and G. C. VOGEL

(Manuscript received September 29, 1971)

A series of hardware-software packages has been developed lo aid
the Automatic Intercept System (AIS) development. These packages
involve a PDP-9* support computer connected to the AIS control unit
through specially designed hardware. Described in this paper are a real-
time debugging system, a series of three support computer programs
which aid in the administration of AIS program development, and two
utility programs used in connection with the AIS file subsystem.

I. INTRODUCTION

Development of a real-time system such as the Automatic Inter-
cept System!' requires many support programs. The assembler, loader,
and simulator used by AIS were developed by the No. 2 ESS
Switching System development.? In addition, a real-time debugging
system called “ORACLE” and a series of utility and program ad-
ministration programs have been developed and are the subject of
this paper.

1.1 Real-time debugging

A debugging aid for real-time program development should provide
all the features of nonreal-time debugging aids but in addition be
noninterfering with the system operation. The objectives of giving
all the features of normal debugging aids and being noninterfering
are difficult to meet since most debugging routines suspend program
execution to obtain data concerning the state of the program.

* PDP is a trademark of Digital Equipment Corp., Maynard, Mass.
155

ORACLE, the real-time debugging system, uses a combination of
software, special interface hardware, and a PDP-9 computer to
provide a noninterfering debugging package. ORACLE wuses the
PDP-9 3 support computer to monitor, collect data, and print the
results of AIS operations. Basically, ORACLE provides three things:

(z) Records of the “from’” and ‘““to’” addresses of branch (trans-
fer) instructions executed by the AIS control unit.
(#7) Dumps of the contents of AIS temporary memory (call
store).
(#47) Means by which the printing of the above data can be
activated.

1.2 Program administration

Program administration is the process of controlling, documenting,
and verifying the correctness of a total system program. In the AIS
development, programmers produce separate programs which are
assembled on an IBM 360. The results of many such assemblies
are linked together by a loader program to form an image of the
AIS program store on magnetic tape. This image must be trans-
ferred onto ‘“magnet cards’” which form the AIS memory.* AIS uses
the PMT (permanent magnet twistor) memory. In this memory,
information is stored in small bar magnets attached to an aluminum
card. It is the use of this type of memory in AIS, and the lack of
high-speed input such as magnetic tape or high-speed paper tape,
that has prompted the development of the three program administra-
tion programs (MAGNUS, PSUTY, and OVRWRT).

MAGNUS reads AIS program store data from tape and controls
an MCW (memory card writer)® which records the data on PMT
memory cards. PSUTY (Program Store UTilitY) is used to compare
magnetic tape images of the AIS program store with the actual
contents of the store. It can also generate tape images from the
actual program store contents. OVRWRT (OVeRWRiTe) is an
assembler which produces program patches to the AIS program.
It allows the AIS programmers to rapidly produce changes for fixing
program bugs. OVRWRT translates assembly language statements
into machine language, overlays the assembled code on top of what
already is in the AIS program store, and produces new PMT cards
via the MCW. Each of these programs will be deseribed in detail
in later sections.

156 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

1.3 Disc backup and system parameter initialization

Two programs, DISKUS and PDATA, have been developed to
back up the AIS file data base and to change the parameter data
stored on that file.%’

1.4 AIS—PDP-9 hardware interfaces

Figure 1 shows the three hardware interface circuits used by the
PDP-9 development support programs. The real-time debugging in-
terface provides the means by which AIS program execution is
monitored. It provides a path for passing the contents of AIS call
store into the PDP-9’s memory. The asynchronous communication
register, connected between the PDP-9 I/O bus and the AIS scan
answer bus, provides a path from the PDP-9 to the AIS. Over this
path both commands and data are passed to an AIS program called
CPTSTA. The memory card writer interface connects the PDP-9 to
the memory card writer and is used by MAGNUS and OVRWRT.

Il. REAL-TIME DEBUGGING

Debugging of a system such as AIS is more difficult than that
involved with nonreal-time systems for several reasons:

(7) Real-time operation.

(i) Random input traffic.

(i77) Added reliability requirements that make system malfunc-
tions an added input rather than a reason for stopping the
system.

(iv) Multiprogramming and multiprocessing.

(v) Large, complex programs.

These reasons indicate a need for a debugging aid which monitors
the program execution in the AIS without any disturbance of the
AIS. ORACLE is such a debugging aid. Within the support processor’s
memory a complete image of the AIS call store and a trace of trans-
fers that occur in AIS are recorded. The transfer trace contains up
to 128 “from-to’”’ address pairs. Match circuits monitor the program
address, call store address, and call store information to control the
collecting and printing of call store images and transfer trace data.

2.1 Hardware description

The real-time debugging system uses a wired logie interface con-
trolled by support computer programs to make logical decisions

DEVELOPMENT SUPPORT SYSTEMS 157

~DIRECT MEMORY NO. 2 ESS

;7 ACCESS CHANNEL CONTROL UNIT
L [—— i
CALL
PDP-9 D INTER- I
SUPPORT | M } PROCESSOR = E%?&EGT STORE
COMPUTER | A | BUFFER |
| { '
REAL-TIME -_‘,J MATCH AND i] PROGRAM
DEBUGGING -—7] CONTROL [1o STORE
INTERFACE | CIRCUITS I CONTROL
PDP-9 L_________J
1/0
BUS SCANNER
b« — | — ANSWER
______ BUS
i i
I ASYN-
H‘E’R%‘én | | crronous [7] PERIPHERAL
~+* COMMUN- e UNIT
| ICATION | ADDRESS
| REGISTER | | BUS
|
LINE e ———— . I
PRINTER
—— 1 MEMORY
I | CARD WRITER
1 MEMORY |
T CARD WRITER—
| | INTERFACE | |
| |
[-

Fig. 1—Block diagram of the AIS development support system.

based upon data inputs from AIS and to control the flow of data
from the AIS to PDP-9 memory. Results of the wired logic decisions
initiate program action to tabulate and print the desired output
data from the PDP-9’s core memory.

A Dblock diagram of the real-time debugging hardware is shown
on Fig. 2. Three sets of data leads are utilized from the AIS processor.
They are the PA (program store address), CSA (call store address),
and CSI (call store input) data. The PA leads address the PMT
memory and are used for records of transfer instructions executed
by the AIS control unit. The CSA and CSI leads provide an image
of the AIS call store in PDP-9 core for call store dumps. Eight
matcher circuits (M0-M7) and three registers, CR (control register),
FR (function register), and SR (status register), form the logic
which controls data flow from the AIS to the support computer
through a DMA (direct memory access) channel.

2.1.1 Matcher setup

A user inputs requests to the utility system via the support pro-
cessor TTY or card reader. ORACLE sets up these requests via 10T

158 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

PDP-9 1/0 BUS

10T
MO STATUS REG M7
FUNCTION L e
10T REG s C S C
DUMP
] PA
STOP DMA PDR-9
- CONTROL CORE
START J MATCH = TRUE L0GIC csi VEMORY
MATCH
MO
¢ emo
FF ENABLE
5
l XOR CKT l NS
10T [© Pa, csa, cs| | PROCESSOR
CONTROL
REG
! MATCH REG. NO. O J
10T

Fig. 2—Real-time debugging system: hardware interface between AIS and the
PDP-9.

(input/output transfer) instructions to the match register and con-
trol registers in the utility hardware. When a match register is
enabled, its contents are continuously matched against the PA leads
by an exclusive “OR” circuit. If a match oceurs, a bit corresponding
to the matcher number is set in the SR, the mateh eircuit is disabled
by clearing its associated enable bit in the CR, and action is taken
by the DMA control logic to start or stop the data flow to the sup-
port computer's memory.

2.1.2 Registers

The CR contains two bits per mateh circuit to enable each matcher
cireuit either conditionally or unconditionally. When a match circuit
fires, its enable bit is cleared to prevent any further action by that
matcher. The FR contains three bits per match circuit. These three
bits determine what action will be taken by the DMA control logic,
on the data flow, when a matcher fires. The ‘“start’” bit starts the
flow of transfer addresses to be stored in the PDP-9. The ‘“stop”
bit stops the storing of transfer addresses. “Dump” stops the data

DEVELOPMENT SUPPORT SYSTEMS 159

flow on the CSI leads which provides a call store image. The SR
contains one bit for each matcher. These bits are set when the cor-
responding matcher “fires.” Matcher firing also causes a program
interrupt in the support computer to signal ORACLE that some
action should be taken. The status register may be read by the
program via an IOT instruction.

2.1.3 Direct memory access conirol

The DMA control logic derives all the control signals for strobing
matchers and controls the storing of transfer trace and call store
data in memory. Decision logic is located here to start and stop
data flow dependent upon a matcher firing and the contents of the
FR bits for that matcher.

2.1.4 Special maich functions

Matchers 0-6 compare the data loaded in their match register
against the PA leads from the AIS control unit. Mateh circuit 0
(MO0) is unique in that it may be set up by program to conditionally
enable one or more of the remaining match circuits. Until MO fires,
the conditionally enabled matchers are disabled. Matcher 7 compares
its data against the CSA leads. This matcher provides all the func-
tions of matehers 0-6, and in addition performs a bit matching fune-
tion. Matcher 7 is divided into three major hardware sections:

(7) CSA match register,
(#7) CSI match register, and
(#77) CSI mask register.

Two modes of operation may be used with this configuration. If the
CSA match register is loaded with an address and the mask register
is zero, then the matcher acts as a CSA matcher. If the CSA and
CSI are loaded with information and the mask register is set to all
ones, the match looks for an exact match on the CSA and all the
bits of the CSI. A zero mask bit is a ‘“‘don’t care.” With this eir-
cuitry, the reading or writing of specified data at a given call store
address can initiate utility functions.

2.2 Control program

2.2.1 General organization

Figure 3 is a functional diagram of the real-time debugging soft-
ware. Primary control is from the PDP-9 console TTY with data
coming from the card reader. An input deck, shown in the upper

160 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

left of Fig. 3, contains a description of what data are to be collected
and when they are to be printed out. The input program has respon-
sibility for checking the syntax of the UCL (utility control language)
statements on each input card and translating them into a sequence
of numerical codes in the table LCTAB. At the end of each card
the input program passes control to the matcher setup program
which checks for consistency between all cards processed so far,
builds an image of the hardware registers, and stores data concerning
each matcher in the MCB (matcher control block) table. An end
of file in the input deck causes the matcher setup program to load
the hardware registers and turn the hardware on with a final “GO”
command. The “firing’’ of one or more of the matchers causes a
PDP-9 program interrupt, passing control to the utility function
execution program which collects hardware status information from
the interface circuits and causes data to be printed out based on
the number of the matcher that fired and the contents of the cor-
responding MCB. The overall operation is explained by the following
example.

Y PDP-9
INPUT INPUT MESSAGES r—=PROGRAM
— ——
DECK PROGRAM HARDWARE INTERRUPT
| STATUS

| INFORMATION
: TTY
1 L LOGICAL "ll MESSAGES
| | CARD TABLE | =
TA
i L lee]
|
! LINE
uTILITY PRINTER
Y MES FUNCTI
MATCHER SETUP | ['Y MESSAGES (RUNCTION | | ouTpuT
PROGRAM e
p——e HARDWARE SETUP PROGRAM
COMMANDS
TP 1
PROGRAM MATCHER 1
BLOCK —’{CONTROL BLOCKS p—————anef
L {MCB} 1
! —I DATA
L |TABLE
DATA PATH

————— CONTROL PATH

Fig. 3—Real-time debugging system: functional software diagram.

DEVELOPMENT SUPPORT SYSTEMS 161

2.2.2 Example
Consider the input UCL statement

//START MATCH MO0, PA=30000, STARTT, ENAB (M1, M7)

//SYMB. A MATCH M1,PA=17,DUMP (250, 500)

//SYMB. B MATCH M7,BIT (360, 40), ENDTT

/*

The first statement says ‘‘set matcher MO to 30000 and, when a
match occurs, start the transfer trace hardware and enable matcher
M1 and M7.” Because of the ENAB(M1, M7) function on MO,
matchers M1 and M7 will not be “turned on” until after matcher
MO has “fired.” Statement number 2 specifies that matcher M1 be
set up for a program address match at 17 and when the match occurs,
a dump of the AIS call store image between 250 and 500 will be
printed. Matcher 7 specifies a match when 40 is written into or read
from location 360. When M7 ““fires”” the transfer trace data are printed
due to the ENDTT (END Transfer Trace) function. The /* ter-
minates the matcher setup phase of the debugging system.

Figure 4 shows the output that results from the sample input
statements. Lines 1-4 are the input statements. Line 5 indicates
that the matcher with the symbol START has fired and the SEQ#
= 01 says that it was the first matcher to fire. At line 6 we see that
the matcher labeled SYMB. B has fired and that a transfer trace
will follow. The PA field indicates the program address which caused
the bit mateh to occur and the sequence number indicates that this
was the second matcher to fire. Lines 7-24 are the transfer trace
data. Line 25 states that the matcher labeled SYMB. A has fired
and that a call store dump will follow. Line 37 shows that groups
of all zero words are compressed into a single line.

Ill. PROGRAM ADMINISTRATION AND FILE UTILITY SYSTEM

The program administration and file utility system comprises
software and hardware to provide such functions as changing AIS
file parameters, comparing AIS PMT store contents with store
images on magnetic tape, and the actual writing of PMT cards from
magnetic tape via the memory card writer.

3.1 Hardware description

The program administration hardware is shown on Fig. 5. Two
registers are necessary for the functions described. The MCW output
register passes information from the PDP-9 to the MCW upon
request to magnetize AIS PMT cards. The ACR (asynchronous com-

162 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

LINE 1.... //START MATCH MQ,PA=3280Q,STARTT,ENAB(ML,H7)
//5YMB,A MATCH M1,PAwi7,DUHP(258,508)
//SYHB,B MATCH M7,BIT(368,40),ENDTT

LINE 4.... /»
LINE 5.... START SEQws 21
LINE 6.... SYMB,B TRA TRACE PAm 232240 SEQH= B2
FROM ADDRESS
TO ADDRESS
LINE 7.... 23eee! 833764

833766 @33779
833772 eleaa2
@iegns ndae27
32031 838833
932235 aleiael
230101 833653
833666 @3e1n2
239103 @delL7
83ni21 pleisa
@3a164 @3als!
930172 niB202
adn214 832556
0832566 832561
232565 832576
832577 832215
930215 @3az17
LINE 24...039240 @d2421

LINE 25... SYHMB.A CS OUMP SEQ4a B3
CALL STORE ADDRESS X
DATA FOR CALL STORE
/ ADDRESS X THROUGH X + 7
LINE 25__,/aauzsavaaﬁﬁas APP4Ad 202847 202E0A AARRRD AAPEPRA PRAARAA apagae
20026@ P45636 AMMAAY AnurE? Q18712 QBBRLD AMPRRR BABRAR 200088
@0@a7p 135573 ApAGAA 8e12eM A1W71@ 0@p323 805102 @deeva na5ity
@203ep M77731 AvAlag @Bi2dd A11262 BP@323 ARS116 apeped neA717
00318 P4S636 AWAAAA BAL2MN MRARAA@ ABR323 ARS116 AAERR2 AA3317
QaR320 Y45636 BOAAAR BRAWAZ2 ALA710 B700PS AU1414 @7BRAS PD1622
2080330 045636 AAA49A AR1248 @LBS15 800323 AR5102 AROAUE ABSIL7
298340 136773 A@70A3 BA120@ @1A37A ee@led ApM40d 200AN2 BBSIL7
PEE35A W64363 AAA1AR WI4675 Q10377 DARARA] APA4AA RADANG BANBB7

PRA36A 134430 240@30 14536 13373 QBAAAN AR75A0 AAV221 p@eb2R
BEB37E MEAARR MABAAA AB5345 QO4@7¢ AAAA20 QDA42@ AAAAVA PpB46R

LINE 37... ©0@40@ =~ QAB467 = B
20P470 RAGREM AEP00Q AAARR0 ONABEE AAAAEA QVIAAD ALRARE \77777
LINE 39... ©eesae = @A@507 = @

Fig. 4—Sample output of the real-time debugging system.

munication register) provides a data link from the support computer
to the AIS processor.

3.1.1 Asynchronous communication register

The ACR is connected to the AIS scan answer bus and is loaded
from the PDP-9 I/0 bus by an TOT instruction. A program (CPTSTA)
running in the AIS processor scans the ACR for both instructions
and data. If control bits ENV and ASW both equal 1, then the 16
data bits are passed over the scan answer bus to the control unit.
CPTSTA issues a data acknowledge to clear the ENV and ASW

DEVELOPMENT SUPPORT SYSTEMS 163

PDP-8 I/0 BUS

10T
10T 10T CONTROL
E|E 2 MEMORY CARD WRITER ENV | ASW ASYNCHRONOUS
NIN|g OUTPUT REG FF | FF | COMMUNICATION REG
1o 3 22 DATA BITS c sle s 16 DATA BITS
N T
w ‘g STATUS
R REG |
< F w
g
0 g &
w o -
= =
@ w [=] 5]
< =) = 7]
=4 gl « v
w w o Q hl
| & -3 t&
E & < o
MEMORY o 2
CARD = o CALL
WRITER 110 STORE
, CONTROL
rd
SCAN ~ PROGRAM
ANSWER PROGRAM| sTORE
BUS CONTROL
NO. 2 ESS

CONTROL UNIT
Fig. 5—Asynchronous communication register and memory card writer interfaces.

flip-flops. This indicates to the PDP-9 program that the transfer is
complete and new data may be sent.

3.1.2 Memory card writer

The MCW is an electromechanical device capable of magnetizing
PMT cards for AIS memories. One PMT card consists of 64 rows
of small bar magnet with 44 magnets per row. A write head is driven
over the PMT card, writing one row at a time. An internal 44-bit
register stores the information for each row. As the write head ap-
proaches each row of bar magnets, a word request is sent to the
SR which in turn creates an interrupt to the control program
(MAGNUS). MAGNUS responds with a 44-bit data message via
the MCW output register. The process continues until all 64 rows
are written on the PMT card.

3.1.3 MCW output register

Upon receiving a word request from the SR, the MCW output
register is loaded with its data and enables. The 44-bit data register

164 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

in the MCW is loaded by two paralled 22-bit transfers from the
MCW output register. Two enables, ENO and ENI, are used to
steer each 22-bit word transfer into the proper position in the MCW
input register.

If either a mechanical or electrical malfunction occurs during the
writing of a PMT card, a WDF (word delivery failure) is sent to
the SR. A program interrupt signals the support computer program
that an error has occurred.

3.2 Program store utility program

PSUTY (Program Store UTilitY) program uses the AIS—PDP-9
interface to matech AIS program store contents with program store
images on magnetic tape and to create program store images on
tape. PSUTY determines which function to perform from the user’s
TTY messages. On match functions between tape and the AIS
program store, mismatches are listed on the line printer. The tape
creation and tape copy functions indicate their completion via a TTY
message.

PSUTY communicates with the AIS via the ACR and the DMA
channel. The AIS program CPTSTA contains the AIS software
necessary to interface with PSUTY. Requests for the contents of
a program store card are sent to the AIS via the ACR. CPTSTA
reads the contents of the specified plane into the AIS call store. As these
data are written in call store, they are also written into the PDP-9's
memory via the DMA channel. When this operation is complete,
CPTSTA clears the ENV and ASW bits in the ACR which tells
PSUTY to begin processing the requested program store data. This
process is repeated until all AIS program store data have been
processed.

3.3 PMT card magnetization

MAGNUS magnetizes AIS PMT cards from program store images
on magnetic tape. MAGNUS is a conversational mode program in
which the user can request specific store modules or single planes
for magnetization. When the specified data have been found on the
magnetic tape input file, the program arranges the data for output
and types a message on the TTY. The user may then magnetize
the PMT card(s). Error routines are included in MAGNUS which
allow automatic restart in the case of a word delivery failure.

MAGNUS communicates with the MCW via the memory card
writer interface. MAGNTUS reads enough data from magnetic tape

DEVELOPMENT SUPPORT SYSTEMS 165

to magnetize one PMT card. When the MCW is ready to start
magnetizing the card it sends a WR (word request) signal through
the interface circuit to the status register. MAGNUS answers the
WR by sending 44 bits of data through the MCW output register.
The MCW uses the 44 data bits to magnetize one row of magnets
on the PMT card. A series of 64 such signals and answers occurs to
magnetize one plane.

3.4 Laboratory change assembler

The laboratory change assembler, OVRWRT, is used to assemble
and insert program changes into the AIS program store. OVRWRT
(Fig. 6) is a conventional two-pass assembler with a magnetizing
routine added. Eventually laboratory program changes must be in-
corporated into the program source files using the EDITOR program
and reassembled by the SWAP assembler.? Therefore, OVRWRT
has been designed to accept both assembly language statements
which are compatible with SWAP and control statements required
by the EDITOR program.

3.4.1 Special pseudo-operations

Since a program change in one part of a program may use in-
formation such as symbol definitions derived from other parts of
the program, it is necessary to provide special pseudo-operations
for supplying this information. Special pseudo-operations begin with
a percent sign (%). The most basic of the special pseudo-operations
is 9%SET. It is generally used to define symbols for use in a program

r—- a
I
COMMAND | PMT IMAGE |
Y AND ERROR | AL
MESSAGES 1 !

L__

| 1l

/__‘;
OVERWRITE
DECK MAGNE-
PASS | PASS 2 TIZING
ROUTINE
D PROGRAM f—l _ [_l 1 l
BLOCK
| SYMBOL | ASSEMBLY MEMORY
== | TABLE | LISTING CARD
i | DATA Lo L WRITER
L | TABLE (Mcw)

Fig. 6—Laboratory change assembler: functional software diagram.

166 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

patch which otherwise would be undefined. For example, the following
statement would assign the value 12345 to the symbol TAG.

TAG 9SET 12345

Symbols may be redefined by 9%SET. The corresponding regular
pseudo-operations (no percent sign) may also be used. However,
special pseudo-operations are ignored by the EDITOR program
while the regular ones are not. This scheme automatically eliminates
inserting unnecessary statements in the user’s source program.

3.4.2 System macros for program paiching

Program changes requiring the addition or removal of instructions
rather than substitution are generally made using system macros.
The use of system macros facilitates the subsequent job of editing
the program source files. Three system macros, PATCH, TAKEOUT,
and WIPEOUT, are used for program patching. The PATCH macro
is used for program changes requiring additional instructions to be
added in the middle of the program. This is accomplished by over-
writing a full word in the program with a transfer (branch instruc-
tion) to an unused area in program store. The overwritten instruction
as well as the instructions to be added may then be written in the
unused area followed by a transfer back to the main body of the
program. The following lines show an example of the patch macro:

NAME PCHORG 5000
NAME PATCH 1
KH ZGL
GRXLR
HLR
GGR
NAME PCHEND

Expansion of this sample can be found in the assembly listing of
Fig. 7. TAKEOUT and WIPEOUT are degenerate forms of the
PATCH macro and are used to remove blocks of instruction.
TAKEOUT overlays the unwanted instructions with NOP (no
operation) instructions while WIPEOUT inserts code which will
cause an error condition if an attempt is made to execute it.

3.4.3 The assembly listing

Figure 7 shows an assembly listing produced by OVRWRT. Since
input statements are free-field format, the fields are aligned in the

DEVELOPMENT SUPPORT SYSTEMS 167

EDITOR CONTROL STATEMENT

TA BIT 11 428
4 ORG 5333
ADGFESS_\ Op cobe NAME FCHORG 5@80
‘005333 1711 205080~ GEN+ TRA 205000
NAME PATCH 1
eese@@ 1 15 26 KH 6L
e05800R 37 32 GRXLR
205001 02 25 HLR THEMAHKS FIELD
@e5001R @2 3ap GGR GET CIPR ND
NAME PCHEND
985802 1 11 205334 GENe TRA 225334
@85334 1 22 @ 17 RGR 15
COMMENT CARD # COMBINE TS NO AND CIPR NO
P@5334R 85 36 ORLSG
RIGHT HALF WORD———* IR 248,251

ORG 3p665@
ONPT %SET 306731

LEFT HALF WOFID—\ PUEXBB XSET 16
Je6658 1 85 @6 XDR3 MATCH GR AND LR
38665@R 32 @eP GENw INNOP
386651 1 @4 13 XLF2 TCNS XFLS VARIABLE FIELD
306651R 32 @@P GENe INNOP
FULL WORD396652 @11 186731 TRA ONPT
INSTRUCTION — / XFLS “———— INSTRUCTION FIELD
306653 1 21 eees16 LLR PUEXBB
IR 589,591
INSERTED NOP # ORG 387102
LOCATION SYMBOL NONL XSET 3@7162
Ja7ie2 1 @5 p6 XORS
307102R 14 23P AFIL NONL
307123 @ 04 22 TCNS NONL CSTATE NOT DOS
ERL2
FLAGS — 307103R 32 @eP GEN=* INNOP
u 307124 1 0) 1 L] . RED AUECDD
TAKEOUT 4
387105 @ 11 107107 GENs TRA 1@71e7) MACRO
3p7106 o 32 ea GEN® INNOP EXPANSION
307106R 32 @@0P GENw INNOP
J HEND
PARITY BIT (IF 1)

Fig. 7—Example program listing produced by OVRWRT.

listing for greater readability. Assembly errors are indicated by
flagging the appropriate statement. Machine language code is pre-
gented in one of several field octal formats depending on the in-
struction classification. Instructions generated by OVRWRT are
labeled as such and are listed with both the machine language and
assembly language representations. Comments are printed as they
appear on the input statements. When a program change has been
inserted, the assembly listing is used for program documentation.

3.5 Disc utility programs

The AIS dise utility programs (DISKUS and PDATA) use the
AIS—PDP-9 interface circuits to record, restore, and match the
contents of the AIS disc file to dise file images on magnetic tapes.®
These two programs are development tools. DISKUS is used to
create backup copies of the AIS intercept number data base. PDATA
was developed to record and change the AIS parameter data which

168 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

are recorded on the AIS disc. In the testing of AIS programs it is
necessary to change the configuration of the AIS laboratory model
and to change the parameter data accordingly.

3.5.1 Reading and writing AIS discs

Communication between the PDP-9 and the AIS disc proceeds
via the DMA channel and the ACR. To initiate a transfer of a block
of AIS disc data to the support computer, the ACR is loaded with
a function code. When the flag bits ENV and ASW are zeroed, the ACR
is loaded with the desired disc address. The AIS program (CPTSTA)
locates the disc data and transfers them through the DMA channel
into the PDP-9’s memory. Communication from the PDP-9 to the
AIS disc is established by loading the ACR with another function
code. When the code is accepted, the ACR is loaded with the disc
address, and then, sequentially, with the 80 data words to be written
in the specified dise block.

3.5.2 Disc backup and loading

DISKUS provides AIS disc file backup and restoration of the file
data. A complete disc image is stored on a set of 16 low-density
magnetic tapes. The user has a choice of three operations: copying
the disc contents onto the tapes, restoring the dise from the tapes,
or matching the contents of the disc against the tapes. Each of the
16 tapes is assigned a specific portion of the disc. The user has the
option of using any one or all of the tapes for each of the three
operations.

3.5.3 System parameter initialization

System parameter initialization on the AIS disc is accomplished by
PDATA. A maximum of 16 different sets of AIS system parameters
may be recorded on one DECtape. PDATA users have the option of:
copying current system parameters on tape, changing AIS configura-
tion via a previously recorded set of system parameters, or matching
current system parameters to a previously recorded set. Each set
of system parameters recorded is accompanied by a description
record and a unique name. System parameters occupy & fixed loca-
tion on the AIS dise.

IV. SUMMARY

Each of the systems described has had a profound impact on the
AIS development project. The real-time debugging system and the

DEVELOPMENT SUPPORT SYSTEMS 169

laboratory change assembler were at first met with skepticism as to
the need for such systems, or with at least a wait-and-see attitude. After
the systems were introduced, the AIS programmers became heavily
dependent on ORACLE and OVRWRT. If the support computer is
down because of a hardware failure, the programmers would rather
wait for it to be fixed than return to the debugging and program
patching methods previously used.

PSUTY and MAGNUS have greatly helped the program adminis-
tration of AIS. PSUTY reduced the time required to compare AIS
program load images from the IBM 360 to the actual program in
the AIS machine from several hours to a matter of minutes. The
authors strongly feel that every large real-time system should have
a series of utility systems such as the ones described and that no
proposal for a real-time system development is complete without an
outline of what development support systems will be needed.

REFERENCES

1. C.J. Byrne, W. A. Winckelmann, and R. M. Wolfe, “Automatic Intercept System:
Organization and Objectives,” B.S.T.J., this issue, pp. 1-18.

. M. E. Barton, N. M. Haller, and G. W. Ricker, ‘[No. 2 ESS] Service Programs,”’

B.S.T.J, 48, No. 8 (October 1969), pp. 2865-2896.

. PDP-9 User Handbook, Maynard, Mass., Digital Equipment Corp.

. T. E. Browne, T. M. Quinn, W. N. Toy, and J. E. Yates, ‘[No. 2 ESS] Control

Unit System,” B.S.T.J., 48, No. 8 (October 1969), pp. 2619-2668.
C. F. Ault, L. E. Gallaher, T. 8. Greenwood, and D. C. Koehler, “No. 1 ESS
Program Store,” B.S.T.J., 43, No. 5 (September 1964), pp. 2097-2146.

. J. W. Hopkins, P. D. Hunter, R. E. Macﬁol, J. J. DiSalvo, and R. J. Piereth,
“Automatic Intercept System: File Subsystem,” B.S.T.J., this issue, pp.
107-132.

. H. Cohen, D. E. Confalone, B. D. Wagner, and W. W. Wood, “Automatic Inter-
cept System : Operational Programs,” B.S.T.J., this issue, pp. 19-69.

= = U N

-3

170 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1974

