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Explicit expressions are derived for the phase constant, the specific-
group-delay constant, and the rms width of the impulse response for two-
dimensional or square media having a transverse variation of index of
refraction according to n = ni(1 — ja.z* — La.xm), in which x is the
transverse dimension, a, and a. are constants with |a,| K au, and
(n — n) < 1. Use is made of an approzimation which the author has
previously shown yields significant resulls.

The results are applied to fibers with graded-index variation, clad by an
additional medium of index n = n,(I — A). The ideal index gradient, a
near-parabolic profile, gives delay distortion orders of magnitude less
than for the conventional fiber with a step-change in index at the core-
cladding boundary. However, it is shown thal several forms of 5-percent
error in the ideal gradient yield improvement of the order of 50 compared
with the conventional clad fiber. The delay distortion is shown to be very
sensitive to the exact index distribution in the vicinity of the ideal distribu-
tion but increasingly insensitive to perturbations in the index distribution
as that distribution departs more and more from the ideal.

I. INTRODUCTION
Optical fibers have assumed considerable importance for potential
use as transmission media wherever wire pairs or coaxials are now used.
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We give here some theory related to increasing the information
capacity of such fibers.

Conventional fibers have a core of uniform index of refraction n,
surrounded by a cladding of slightly lower index of refraction. The
cladding serves to isolate the outer fiber surface from the optical field,
which is confined to the core, thus permitting the fiber to be handled
and bundled into cables without affecting the information trans-
mission. More recently, fibers having continuously graded index of
refraction, with maximum on the fiber’s axis and lower values at
increasing radial distances, were proposed and realized in practice.l3
Graded-index fibers have image-focusing properties® and provide
modulated-carrier transmission with less delay distortion than con-
ventional fibers having a step-index change at the core-cladding
boundary.*¢ Recent experimental work verified the potential of low
delay distortion.” Current studies of graded-index fibers from Corning
Glass Works show that total transmission losses under 10dB/kilometer
and low delay distortion (approximately one nanosecond per kilometer)
can be realized simultaneously in graded-index fibers.®® This brings
into focus the need for detailed knowledge about delay distortion
related to the shape of the index gradient in the transverse plane. The
following sections relate to that need. This study was done in parallel
with that of D. Gloge and E. A. J. Mareatili.® The present paper
presents an approximate analysis that may be extended to a wide
variety of index distributions with closed-form solutions for the
important wave-propagation constants.

Section IT summarizes the approximate method of calculation,
yielding in turn the phase constant, the specific-delay constant, and
the impulse response.

Section III gives the solutions for the index distribution,

n = ni(l — ta,z* — a,27), (1)

in which 2z is the radial coordinate, and a. and a, are arbitrary con-
stants with a, > 0, a, > |a,|, and 0.5 @.a* < 1. These conditions
describe fibers of current interest.

Sections IV through VI discuss cases of interest, taken as simplifi-
cations of (1), which describe (7) an ‘‘ideal” index distribution, (%)
variations around the ideal, and (7%7) other distributions which may
result from convenient manufacturing processes.

This paper is concerned with the delay difference between signals
launched simultaneously in the various propagating modes; the fiber-
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output impulse response is derived assuming

(7) all propagating modes are excited equally at the fiber input,
(iz) the fiber structure is uniform along its length, yielding no
mode conversion,
(7127) there are negligible losses or, equivalently, the same loss for
all modes, and
(iv) material dispersion due to variation of the bulk index of
refraction versus wavelength is ignored.

A very few modes very near cutoff are not accounted for; this is be-
lieved to yield negligible error, and the same assumption was made by
Gloge and Mareatili.!?

It is found that the delay distortion of graded-index media is a very
critical function of the index distribution in the vicinity of the near-
parabolic distribution which gives the lowest delay distortion. For
index distributions increasingly far from the ideal, the performance is
less and less sensitive to changes.

T'or fixed percentage error in fabrication of the index distribution,
the delay distortion is linearly dependent on A, the fractional index
difference between core center and the edge of the guiding region
where the index becomes

n = n(l — A). (2)

This is true even near the ideal index distribution, where previous
work assuming no fabrication error indicated the delay distortion
varied as A%

Il. OUTLINE OF THEORY

The approach taken here is based on Ref. 5, which gives an approxi-
mate method for deriving the phase constant and other relevant
quantities for wave propagation in the generalized media.

We write the index »n as a function of the transverse coordinate z,

n=mnll+ flx)] (3)

with | f(x)| < 1. For guiding media, f(z) is predominantly negative;
x = 0 at the central axis. Here we assume f(x) is independent of the
longitudinal coordinate. In accordance with Ref. 5 we derive a param-
eter a,, which measures the transverse field width, using

f(a.) =—0.1515 ( m+ 2.5 )2 ( Ao )2- (4)

2.5 ANy
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Thus the phase constant 8 is given by, from Ref. 5,
2l 1/ h Y 2l
A= Ao Il 32(n!al)(m+l)] ®)
The normal mode field may be considered composed of plane-wave

components traveling at an angle o to the longitudinal axis; from

Ref. 5,
_Nm+1)
N1 4(13

a (6)
in which m is the mode number. The mth-order mode has (m + 1)
extrema in the transverse cross section. The maximum angle that
such plane-wave components can have is set by the fractional index
difference A [defined in (2)]; any components with « larger than

Amax = V2A (7

exceed the critical angle for total internal reflection and are unguided.
Thus egs. (7) and (6) taken together establish a maximum modal
index Mmax, With (m + 1)max transverse extreme, controlled by a,
and A.
The specific group delay is
_ds

T = E H (8)
where w = 2rf is the angular frequency. The range of values r can
assume run from the value with m = 0 to Tmax which is

Tmax = TI (m4+Dmax* (9)

It is convenient to compare the specific group delay for the guided
mode 7 to that for an infinite medium of index n; using

n
L= (T - ) (10)
The work of Ref. 5 related specifically to two-dimensional wave-
guides. We extend this here to three-dimensional guides in Cartesian
coordinates. We note the relation between the propagation constants

has the form
e85 = 61+ B4 + B, (11)

where e, is the dielectric constant, 8, is the free-space phase constant,
and B, 8.1, and f.» are the longitudinal and transverse wave numbers
respectively. In our case, 8.1 and .. are small compared to 8.. The
value of 8; depends only on the sum of the squares of the two transverse
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wave numbers 2, + B2%; further, for a square guide of width 2a. we
can write

B:12a, = (ma + 1), (12)
Bz22a, = (mp + 1)m. (13)

Thus the total modal designation is
p=(m+1) = V(ma + 1)? + (ms + 1) (14)

for the square guide. This replaces (m + 1) in the two-dimensional
guide. The maximum (m + 1)max can be reached with a variety of
field distributions given by various values of m, and m; in (14).

To compute the impulse response we first note in solutions for
specific group delay = from (8) that all combinations of modes having
the same m or p in (14) have the same specific group delay. Hence
the fiber output at a given delay associated with p will be P(p), for
equal power into the fiber in each mode, where

P(p) = 5 dp (15)

and p is given by (14). The fiber impulse response as a function of
time £ is
-1

di

dp

Output = P(t) = —Péf) = 12'9

The relation between  and p is obtained from (10) and (8). The range
of t over which (16) is valid is found by inserting the minimum and
maximum values that p may assume,

Pmin = .‘Jé; (17)
Pmax = (m + 1)mnx- (18)

For many purposes the value of {min corresponding t0 pmin may be
taken as zero since pmax >3 Pmin; thus

lmin =~ 0, (19)
lmax = (Tmax - E)' (20)

c

(16)

The effect on transmission system performance is approximately the
same for various shapes of the impulse response if the rms width is
the same ;2 this applies in the region where the fiber impulse response
degrades the system signal-power requirements by only 1 or 2 dB. We
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find the desired second moment using

tmax
A= f P)d, 1)
0
1 tmax
T = f 1P (1)dt, (22)
0
1 tmax
o= 2P ()dt — T (23)
0

Il. A GENERAL SOLUTION
We now give the results for the index distribution according to
eq. (1). The guide has width 2a. We specify that at x = a, f(z) = —A,
leading to eq. (2) and
_2(1 —9)A
==,
284
==

(24)

u

(25)

r

in which & may be either positive or negative but |8| << 1. Using eq.
(4), we find a,,

1
a’

2 2/ (u+2) 2
MAy } 2(1,-’!31 (26)

03036’4)\3 n2a 7 (ut2) '
4)2 1%u
(1 + 2)0.303b4\2 { 030352 }

This leads immediately to 3,

,6 _ 2'.""”.-1 W(m- + 1)2
) 4/ (u+2)
Mo 16(0.1515) e (m + 2.5)

2.5

[(]_ — §)A:|2Hu+2) o (u—2)/ (u+2)
X aq2u! (ut2) n_l

(0.1515)/ (u+2) (g, 4 1)2A (wt2—n) [ (w2l §
(u + 2) (m —2|—52.5 )tzu+4—zr}r<u+zJ (1 — g)rl gt
Ao \ @r—u—2)/ (u+2)
X (J) , (27

ni

— 2.592 X

and to the number of propagating modes N,
N = % (0.7757)21% (naka)?A, (28)
in which & = 27/Xxy. The maximum modal index has two useful forms,
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derived from (6) and (7),

(m + 1)

na
(m + 2.5)44+ o

2uf (ut2)
= 32(0.02424)2f(u+2)( N ) Av/(wid)  (29)

0

Mmax = 5.657 (0.7757)1/ (';ﬁ ) Al (30)
0
The specific group delay from (8) is
_m (u—2)  cvayugny (m 1P (m A 2.5)4 W+
P= T (g A e e gy
8 (m 41?2 (m+ 2553 ,
+ QA (1 — §)r/(ut2) (m + 1)2_?;'; (m + 2_5) (2ut+a—2r) [ (ut2) | ? (31)
where @ is
2r —u — 2)
= rlw ™ 7 77,
Q = 2.578(0.7757) (w F 2¢ (32)
We can simplify = for m > 1 to
M (u —2) _ syt [ M )“”uﬂ’
T= Il + W+ 2) A(l 4) —
6 m 2r (ut2) \
+ QA (1 — §)r/w+D (mmx) } (33)

Using (21), (22), and (23) we find the impulse response is

7r(u -+ 2) (2u+2”um2mn.x
4u(u — 2}(u+2)p‘uA(u+2),'u(1 _ 5)2)‘1;}

1r('lt _|_ 2) (2+r+2u)l'uQ6mﬁmx .
4n2(n — 2)(2+r+u”u(1 — 6)(r+2),'ﬂA{r+2),’n (34)

P(t) [ums = &1 {

— t(r+2-—u),’u l

and the rms width of the impulse response is

_?‘1.1 1 (u+2) b .
"_?A(“*z)(su+2_(2u+2)2) (35)

for the case where @, = 0. The minimum allowed value of ¢ in (34) is

mA (u — 2) 2 (m + 2.5)5

c (w4 2) 257 (m+ )i

Equation (29) can be used to eliminate the last factor in (36). For
the first term of (34), representing the major response due to a,z* in
(1), the maximum value of ¢ is

(36)

tmin o~

_mA (u—2) :
tmux(u) - ¢ ('H. + 2) (3’7)
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For the second term of (34), representing the perturbing term a,z"
in (1), the maximum value of £ is

nlA )

bmex(n) = == [T =gy (38)

Equation (34) is not valid for » = 2; for the later case the impulse
response is
™

— 4y, 1/2 @r—d)/r
P(t)|yma = — t&1Ir 4096(1 — 5) 3 |

y 3977(41.254) @7 2(2r — 4)3A (39)

IV. THE NEAR-PARABOLIC INDEX DISTRIBUTION

Letting © = 2 in the equations of the preceding section yields the
near-parabolic index distribution. As shown by (35), the impulse
response has zero width when e, = 0 in the approximation made here.
In the cylindrical fiber there is no index distribution which gives zero
delay distortion among all the various modes. There is a distribution
of index which minimizes the delay distortion, and we now evaluate
this condition. We can use the above theory to evaluate the cylindrical
waveguide by noting the two limiting conditions already known for
low dispersion. Take the form

n = n(l — jo*R? + biatR* +- - ) (40)
in which R is the radial transverse coordinate. In two earlier papers®!?
it has been pointed out that the value of by must be different to produce
no dispersion for meridional rays versus skew rays; the difference in
bs was found to be 3. Kawakami and Nishizawa® found that b, must
be 1 to give no dispersion for skew rays and must be } to give no dis-
persion for meridional rays. We can visualize minimizing the dis-
persion for one ray type, and thus experiencing a maximum dispersion
corresponding to a change in b, of 3. We do this in the approximation
used here by setting u = 2, r = 4, and making

ay = _%Gg (41)
corresponding to no dispersion for meridional rays. From (24), (25),

(31), and (41) we find for this “ideal” index distribution in the round
fiber the specific group delay

Ml _ (m + 1)?
=T =026 T A”} (42)
and
frax = —0.26 % A?, (43)

184 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1974



This agrees reasonably well with the value —n.A?/8¢ arrived at by
Gloge and Marcatili® using an entirely different analysis for an
optimum index distribution defined differently.* The rms width of
the impulse response corresponding to (41) and (42) is

¢ = 0.752 -’% A%, (44)

In contrast with this, the simple step-index fiber [represented by
a, = 0 and n — e in (1)] has an rms impulse response width of
1 1
= — —A. 45
"= T3 (45)
Thus the “ideal,” corresponding to (42) and (43), is smaller by a
factor of 0.26A. Since A =~ 0.01 the ideal graded-index fiber has an
impulse response narrower by a factor of about 400 than that for the
conventional fiber.
The fourth-order term represented by (41) corresponds to

8 =—3A. (46)

This is very little different from the simple parabola—not enough to
see on Fig. 1 where curve (@ represents both 6 = 0 and (46) for
A~ 0.01. More importantly, (46) and (41) imply that the fourth-
order term decreases in size relative to the second-order term as A
decreases. The inaccuracies of material processing are likely to prevent
this as A becomes small. A more probable limit is a fixed value of &
in (25) as A changes. This results in a specific group delay

0.3896 (m + 1)

="
i L (R N (T ) (47
and an rms width for the impulse response
ni b}
o= 011277 A T (48)

* If instead of minimizing the delay distortion for either the skew rays or meridional
rays we had minimized the delay distortion for an index equation (40) at the mean
of the index values giving minimum distortion for the skew and meridional rays—i.e.,
at b = 5/12—then the maximum departure in b for any mode corresponds to a
change in b = ==1/12. This corresponds to a; ===1/6a}, leading to

_m (m + 1)
i e S ) 3

in place of (42). The coefficient 0.13 corresponds almost exactly to the result of
Gloge and Marcatili,"® but the present analysis indicates twice the total delay spread
predicted by Gloge and Mareatili due to the = sign.
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Fig. 1—Normalized index of refraction versus transverse coordinate (z/a) for the
following parameters in egs. (1) and (25): curve ®, u = 2, § = 0; curve @, u = 2,
4,8 =005;curve @, u =4,8 =0;curve @, =4, r =2,6 = — 1; curve @,
8,8 =0;curve ® u = =,8§ =0.

r
u

For 8 = 0.05, ¢ becomes 0.00591 n,A/c which is narrower than for the
step-index fiber by a factor of about 50 independent of A.

We note from (39) that the impulse response for the ideal index
distribution perturbed by a fourth-order term (r = 4) is a rectangular
pulse, shown as curve (@ in Fig. 2. However, if the perturbation were
sixth order, r = 6, the impulse response would vary as ¢t~} Other values
of r give other impulse-response shapes, which we discuss further in
the next section.

Finally we note from (47) that the impulse response due to the
fourth-order perturbation of the ideal distribution may either lead or
lag the impulse at » = ni/¢, depending on whether & is positive or
negative [see (1) and (25)7]. Similar effects due to the sign of & are
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IMPULSE RESPONSE P(t)

0 | | | | | | | | |

4] 0.1 0.2 0.3 0.4 05 0.6 Q.7 0.8 0.9 1.0
t/tyax

Fig. 2—Impulse response P (t) versus ¢/t.ax Where { = 7 — m1/c and r is given by
(31) and (33). The conditions are the same as defined under Fig. 1.

found for perturbations of the nonideal index distributions and may
be seen in (31).

In Section VI there is a discussion of Fig. 8 which shows the effects
of perturbing the parabolic index distribution in several ways.

V. DISCUSSION OF THE INDEX DISTRIBUTION, n = n,(1-%2a.x")

In this section we discuss the distributions obtained by setting
a, = 0 in (1) which mean 6§ = 0 in (24) and (25).

The total spread in specific group delay for all modes fax.4 is given
by (37), which gives a null value when u = 2. As already discussed,
this is a simplification in the vicinity of the “ideal” distribution.
However, (37) gives a valid representation as u departs significantly
from the value 2. Figure 3 shows the variation in fmax,. versus u.
The behavior in the vicinity of u = 2 is a form of singularity. For
5-percent error in u from the ideal, tmax,. =~ 0.025m,A4/c. This com-
pares with 0.0244n,A/¢ for the modal delay spread from (47) for
5-percent (at @ = a) fourth-order perturbation of the ideal. We con-
clude that it is not particularly important how the ideal is perturbed.
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The value of tmax.. from (37) and plotted in Fig. 3 is not very
sensitive to the value of u at values removed from » = 2. The reduction
in rms width of the impulse response is illustrated in Fig. 4. Foru = «
(the conventional step-index fiber) the value of o/ (n1A/¢c) is 1/V12 or
0.289. This is reduced by a factor of 2 for u near 6, and by a factor
of 4 for » near 3.5. These results are identical to those of Gloge and
Marcatili.®

The shape of the impulse response, given by (39) for u = 2 and
by (34) for u away from 2, is plotted in Fig. 2 for several cases of
interest.

The number of modes which can propagate, given by (28) for the
square fiber, is plotted as a function of ! in Fig. 5. For comparison
the corresponding quantity for the round fiber from Ref. 10 is also
plotted. The ratio is 4/r at w = o, and near 2 for v = 2. The approxi-
mations made here are seen to be good, though not perfect.

VI. PERTURBATIONS OF THE GENERAL INDEX DISTRIBUTION

We discuss now some of the results for the perturbed index distribu-

tions, eq. (1). We recall the solutions have been obtained assuming
la,| < a,or 8] K 1.

The solutions for the specific group delay, given in (31) and (33),
contain the quantity @ as a factor in the perturbing term. The factor
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Fig. 4—Normalized rms width of the impulse response versus u for a, = 0 in eq. (1).

SQUARE FIBER (EQ. 28)

ROUND FIBER (REF. 10)
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Fig. 5—Total number of propagating modes versus »™! for ¢, = 0 in eq. (1).
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@, given by (32), contains the principal effect of the exponents « and
r on specific group delay. Figure 6 shows how @ varies with r for the
special case v = 2. The region very near r = 2 is in question since we
know the ‘“‘ideal’” index distribution differs slightly from u = 2. Else-
where, the results should be significant and may be used in (34),
(31), and (33).

More general curves for @ are given in Fig. 7. We observe that
when r > 0 the maximum value of @ is not very dependent on u but
the most sensitive region of r (giving largest @) does depend somewhat
on u. An intuitive feel for the changes in the index distribution which
correspond to some of the curves in Fig. 7 can be obtained by examina-
tion of Fig. 8. Figure 8 shows the normalized index n versus transverse
coordinate (x/a). The curve labeled r = 2 corresponds to the pure
parabolic distribution. The other curves correspond to § = 0.05 with
various values of r in the perturbing term and » always equal to 2.

We note in Fig. 7 that, at u = 2, the value of @ at r = 10 is much
larger than at » = «. This may seem surprising, since a step-index
change occurs at (z/e¢) = 1.0 when r = . Below (z/a) = 1 the
r = e curve in Fig. 8 corresponds to a pure parabolic gradient between
the ordinate equal zero and —0.95A.

0.25

D.ISI—

-0.051—

-0.10—

—0.15 | 1 | | 1 1 | |
1.2 1.4 1.6 1.8 20 2.2 24 26 28 3.0 32

r

Fig. 6—@ versus r for the near-parabolic index distribution.
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Fig. 7—Q versus |r| with u as a parameter.

We also note in Figs. 8 and 7 that dips in the index distribution
near (z/a) equal zero (curves for r = —0.4 and —0.1) yield values of
|Q| comparable to those for r in the range 4 to 20.

Vil. CONCLUSION

The above analysis provides an approximate solution for the delay
distortion to be expected in a wide variety of graded-index fibers,
representable by (1) with [a,| < au.

In general, gradual tapering of the index between the center of the
fiber and the outer support provides reduced delay distortion. Only
in the vicinity of the near-parabolic distribution is the performance
highly sensitive to the exact index distribution. The ‘“ideal” near-
parabolic distribution provides a potential reduction in delay distortion
of several hundred times compared to the step-index distribution of
the conventional clad fiber. With an accuracy of the order of 5 percent

in achieving the “ideal’” distribution, the reduction in delay distortion
is on the order of 50.
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