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Losses and Impulse Response in Parabolic
Index Fibers With Square Cross Section
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(Manuscript received August 13, 1973)

Mode coupling is studied in a parabolic index fiber with a lossy boundary
and square cross section. Statistical deviations of the fiber axis from perfect
straightness and random changes of its width are considered as causing
mode coupling. The excess loss caused by these mode coupling mechanisms
and the loss penalty incurred for a certain degree of narrowing of the
impulse response are estimated.

I. INTRODUCTION

Multimode optical fibers whose cores have parabolic distributions
of the refractive index,'

rt
'n=un(1-—t-1;A), (1)

are of great practical interest for light transmission over long distances,
since their delay distortion is much less serious than that of con-
ventional clad fibers.

Since no optical fiber can ever be produced free of random imper-
fections, it is important to know how statistical irregularities of the
fiber affect its performance. Random irregularities of the fiber axis
and random changes of the effective width of the fiber cause coupling
among its modes. The mode losses are functions of the mode number.
Absorption losses tend to affect all modes in the same way. However,
if we assume that the fiber boundary either consists of an absorptive
material or is a rough surface that scatters light, we must expect that
higher order modes, whose fields reach strongly into the neighborhood
of the fiber boundary, suffer much higher losses than lower order
modes that are confined to the vieinity of the fiber axis. Coupling of
the low-order modes to the high-loss, high-order modes increases the
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overall waveguide losses. One objective of our study of the effect of
waveguide irregularities is thus the determination of the excess losses
caused by mode coupling.

The second objective of this study of waveguide irregularities con-
gists in determining the impulse response of the fiber. In the absence
of coupling, each mode transports a fraction of the total power at its
characteristic group velocity. Since the group velocities of different
mode groups are not identical, pulse distortion results.?? Mode
coupling has the beneficial effect of improving the impulse response of
the fiber. It is thus of interest to determine how much reduction of
multimode pulse distortion can be achieved by random bends and
random width changes of the fiber.

The effect of random bends on parabolic index fibers with circular
cross section has been estimated in an earlier paper.* Pure diameter
changes of a fiber with circular cross section leave modes with different
circumferential symmetries uncoupled. Statistical irregularities are
unlikely to result in pure diameter changes without distorting the
circular fiber cross section. However, an analysis of more general
distortions of a fiber with nominally circular cross section is difficult
to perform. For this reason we discuss a fiber with parabolic index
distribution (1) but with square cross section. It seems reasonable to
expect that the performance of a fiber with square cross section is
similar to that of a fiber with circular cross section. We expect to find
the correct order of magnitude of the losses and impulse response of
the round fiber by examining its close relative, the fiber with square
cross section. In particular, it should be possible to assess the relative
effect of random axis deformations as compared to random width
changes. In a square fiber, changes of only one set of opposing walls
leave groups of modes uncoupled from each other. This situation
corresponds to the circular fiber with pure diameter changes that
leave modes of different azimuthal symmetry uncoupled. By allowing
both sets of opposing walls to change their separation randomly, we
are sure that all modes are coupled to each other. This model corre-
sponds to a nominally round fiber whose cross section is deformed in
an arbitrary way that does not conserve the circular symmetry.

Il. THE MODES OF THE PERFECT FIBER WITH SQUARE CROSS SECTION
The modes of an infinitely extended medium with the distribution

n’=n§(1—2;5) @)
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of the square of the refractive index have the form?®

(i) (2 (2) e

E!’Q = (.nu-n-zr'l"ﬂ'p 1 q !) tw

e (3)

It is
” =2+ g @)

The parameter a is an arbitrary constant that, in conjunction with A,
determines the transverse dependence of the refractive index distribu-
tion. However, in the round fiber it is convenient to associate a with
the radius of the fiber boundary so that A is the relative difference
between the values of the refractive index on axis and at the fiber
boundary.

The square of the refractive index distribution (2) does not follow
precisely from (1). However, if one equation is regarded as the precise
distribution of the corresponding quantity, the other holds approxi-
mately provided A is small and we limit r to the range r < a. H, and
H, are Hermite polynomials of degree p and ¢, and P is the power
carried by the mode. The parameter » is defined as® (k = wVeopo)

w = ( \Ea_ )* (5)

ﬂ.ok\fz
and determines the radius of the field distribution with p = ¢ = 0. At
r = w the field has decayed to 1/e of its value on axis. E,, represents
the transverse component of the electric field vector. The longitudinal
field components are relatively much weaker and are not being con-

sidered. The field (3) is only an approximate solution of Maxwell’s
equations. The propagation constant of the mode is given as®

2v2A
B=Bn=n0k[1— n‘{;(p+q+l)]

L]

(6)

The modes of the square-law medium are mutually orthogonal and
satisfy the relation

2_%: J;:E j:_m quE;’q’dxdy = Pdppdoqg- (M)

So far, the fiber boundary has been ignored. The mode field (3) is an
(approximate) solution of the guided-wave problem if we assume that
the distribution (2) extends to infinity. However, each mode decays
very rapidly outside of a certain region. For a given value of p the
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field oscillates as a function of z passing through p zero crossings. The
shape of the function

ii(vz g ) e ®)
is shown in Fig. 1. At the point (see appendix)

r=2=uwip+3 9)

the oscillatory behavior of the function changes to a rapid decay.
If ' < a the presence of the wall does not interfere appreciably with
the field distribution. However, if ' > a the field distribution is
severely altered by the presence of the wall. Since we are assuming
that the interaction of the field with the wall causes power dissipation
either by absorption or by radiation, we consider those modes whose
fields reach the vicinity of the wall with high field intensity as being
effectively cut off. By replacing 2’ in (9) with a we obtain the condition
for the maximum value of p that can be allowed for low-loss modes.

al* 1 A 1
Pe = (a) — § = ‘HDkGJ; — §' (10)

Since we are assuming that the boundary of the fiber has a square cross
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Fig. 1—Plot of the function given by eq. (8).
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section, we also must impose the same “cutoff” condition on
y q,

w=(2) -3 an

We use the modes (3) of the infinite square-law medium (2) to
describe the modes of the fiber with square boundary if p < p. and
¢ < .. If either p > p. and/or ¢ > g. we regard the modes as so lossy
that they are effectively cut off. This procedure is an approximation,
but it allows us to obtain estimates (whose errors are unknown) to a
complicated problem.

Ill. COUPLING COEFFICIENTS

The coupling coefficients between two modes are defined by the
general expression®’

w * i _
Kpgpo = E;:'_‘: f_m dxfrw dy (@* — nz)quE;‘a’- (12)
A square-law fiber with random axis deformations can be described
by the following distribution of the square of its refractive index.

ﬁz=na§1—fﬁ[<x—f)2+(y—g)=13 : (13)

We assume that f and g are both random functions of z and that
f/a and g/a are small quantities. The deflection of the optical axis of
the square-law medium has a far more important effect on the modes
than the corresponding deviation of the fiber boundary. The deflection
of the fiber boundary that results from the random bends of its axis
is neglected.

Substitution of (2), (3), and (13) into (12) results in

kwA
K p.psra = —5o— VP T 41(2) (14)
and
K nokwﬁ ‘J—_l
pa, gkl = 1a? q + Og(z)' (15)

All other coupling coefficients vanish. The two choices (1 or 0) that
are indicated under the square-root sign in (14) and (15) belong to
the corresponding upper or lower sign of the subscript on the left-hand
side. Random deformations of the fiber axis couple only neighboring
modes.
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For random width changes of the fiber we use the distribution

ﬁ'=”5{1‘2[(aff)2+(a?y:g)z]z}' (16)

For small values of f/a and g/a we can write this expression approxi-
mately as follows:

1—0—3[12(1—25)+y’(1 —25)] 3]- (17)

For random changes of the width of the guide we obtain from (2),
(3), (12), and (17)

A2 = ni

Kpo,psaa = “gs 2 NG £ Do T 1) (18)
and
Kppasr = "0 Nl = g + Do o). (19)

All other coupling coefficients vanish. There are nonvanishing diagonal
elements in this case. However, diagonal elements couple each mode
only to itself. This self-coupling is of no importance if f(z) and g(z)
have Fourier spectra with no zero (spatial) frequency component.

IV. COUPLED POWER THEORY
Mode coupling in waveguides with random irregularities can be
described by coupled power equations.?

oP, | 10P,
dz v, ot

N
= —Q,P, + Zl hru(Pu - Pr)- (20)

P, is the average power carried by the mode labeled v, v, is its group
velocity, and a, its power loss coefficient. The mode label » is used as
an abbreviation for the set of labels p, g. The power coupling coefficient
hy, is defined as follows:®

how = | Kou| F (B — Bl). (21)

The coefficient K,, is the factor of the function f(2) or g(z) appearing
in egs. (14), (15), (18), and (19). The spatial power spectrum of the

function f(2) [or g(z)] is defined as
» (22)

1 L .
F(o) = 2 <‘ f F@)e-tdz
\|/,
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It is assumed that L — e in (22). The symbol ( ) indicates an en-
semble average.

Since the random processes considered here tend to couple each
mode only to one of its neighbors on either side (in mode label space)
the equation system (20) can be converted to a partial differential
equation whose variables are not only the length coordinate z and
time ¢ but in addition the two mode labels p and ¢.°* If the number of
modes below the effective cutoff value is very large, the set of discrete
modes can be regarded as a quasicontinuum. We write

Z hm.p'ﬂ'(Pp'q’ - Pm)
Ny

= hpq.:H-Ap.c(PHAp.c - Pm) + hpq.p—hn.q(Pp—Ap.q - Prq)

+ hpum.e+dq(Pp.q+Aa - Pru) + hm-p.q—Aq(Pp.q—Aq - PM)
d aP d aP
~ e 2 [0 L+ o [r0 5 | (23)

The last step follows by considering the discrete mode labels as con-
tinuous variables and replacing differences by differentials. The nota-
tion h(p) and h(g) serves as a reminder that, according to (14) and
(15), the coupling coefficients depend only on p if ¢ is held fixed, and
(18) and (19) show that they depend only on g if p is held fixed. We
thus obtain the approximate partial differential equation

9P | 1P , 0 aP 9 P
Lk B A LR A B

The average mode power P is now regarded as a continuous function
of 2, t, p, and ¢. The group velocity v is a function of p and g. We have
omitted the loss term. We consider the modes as lossless if the vari-
ables p and ¢ remain below the cutoff values (10) and (11) and as
having infinitely high loss if cutoff is exceeded. This fact can be incor-
porated into the theory as a boundary condition by requiring

It has been shown in Ref. 8 how the pulse propagation problem can be
solved by means of a perturbation method if the solutions of (24) for
the time-independent case are known. We thus consider the trial
solution

P(zt, p,q) = UpP)V(ge (26)

PARABOLIC INDEX FIBERS 201



and obtain by substitution into (24)

err g 55 [0 G | + @ g 2 ma 5 | +o = 0. @

We separate this equation into two ordinary differential equations by
introduecing the separation constant «*:

d aU K2

d—p[”'@) ]+ g U= 0 (28)
and

d av c— K

"0 |+ e ¥ =0 @)

V. CALCULATION OF THE STEADY-STATE POWER LOSS

The equation system (28) and (29) together with the boundary
condition (25) (and an additional one to be discussed later) defines
an eigenvalue problem. The lowest order eigenvalue ¢y has the
physical meaning of the steady-state loss of the statistical power
distribution.® This quantity is of interest since it determines the
additional losses that are caused by the statistical irregularities of
the fiber.

For random deformations of the fiber axis we obtain the power
coupling coefficient A(p) from (14) and (21).

h(p) = K(@)p (30)
with
K(9) = ( ""’;?;"5 ) F(9). @1)

We assume that f(2) and ¢(2) have identical power spectra so that
h(q) follows from h(p) by replacing p with ¢. According to (6) the
difference of the propagation constants of adjacent modes can be
approximated as

2A
Brrig — Bpe = QRS _a“ (32)

This approximation is independent of the mode numbers. This means
that only one spatial frequency (or actually a very narrow range of
spatial frequencies) of the power spectrum F(Q) is responsible for
mode coupling. For random axis deformations we have

Ap = Ag =1 (33)
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so that we must solve the differential equation

d dU K?
ch[?’Tp] Trm V=" (34)
Its solution is a Bessel function of zero order,
Ulp) = J (2 —p ) 35
(P) 0 m p ( )

The choice of the Bessel function instead of a Neumann function,
that would also solve (34), is dictated by an additional boundary
condition. Since the partial differential equation (24) can be regarded
as a diffusion process, we must require that no power diffuses into the
lowest order mode p = 0 from negative values of p. This requirement
means that aP/dp = 0 at p = 0. The solution (35) satisfies this
condition. The solution of (29) is similarly

Vi) = Jo ( s VE) (36)
The boundary condition (25) leads to
K —_—

and

o — K_2
2.‘ ﬂm ‘fa = Up. (38)

The roots u, and u, are defined as solutions of the equation
Jo(w,) = 0. (39)

Since the eigenvalues depend on the labels » and u, we attach these
labels to ¢ and obtain from (37) and (38) (note, p. = q.)

Gon = 54% (2 + 1), (40)

The steady-state power loss, the lowest order eigenvalue a1, follows
from (5), (10) (neglecting the term %), (31), and v, = 2.405

axis deformation: o1 = 5.78 a_ﬂ: F(Q). (41)
We have thus rederived the loss formula (42) of Ref. 4.
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For random diameter changes we obtain from (18), (21), and (31),
considering that the spacing (in B-space) between adjacent coupled
modes is now twice as large,

hp) = 5 2 K (22)p* (42)
p) = 4 a2 P
Since the number of modes is assumed to be large, we have used the

approximation p(p — 1) & p®. With Ap = Ag = 2 we obtain from
(28) and (42)

d [ ,dU a? k2 _
The solution of this differential equation is
1
U= —+=cos (pyInp + ¢, 44
% (prInp + ¢)) (44)
with
at 1
P\ EEY 4 (45)
The solution of (29) is correspondingly
1
V= Vg °° (pulng + ¢,) (46)

with

a?g—xt 1
P =Nw K@D 4 @

These solutions have a singular behavior at p = 0 or ¢ = 0. However,
we must keep in mind that p and ¢ are really discrete quantities.
Considering them as continuous variables is an approximate procedure
that can work only for very large values of p or ¢ where the relative
difference between adjacent discrete values becomes small. Since
Inp = 0 for p = 1, we allow p and ¢ to vary only between 1 and p..
The requirement that no power diffuses across the lower limit of the
range of the variables imposes the conditions

dU
(G ) =0
and (48)

av
(?Q)q—l =0

These conditions lead to the determination of the phase terms via
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the equations
1

tan ¢, = — % (49)
and
1
tan ¢, 4"‘20:' (50)
The boundary condition (25) leads to
1 T 1
py = In 7. [(2v —1) 5 + arctan 2—’).] (51)

p, as well as p, are solutions of this equation with integer values of ».
Since the values of p, are now known, we obtain the eigenvalue o,,
from (45) and (47)

w? 2 g, 1
Oyp = ? K(QQ) (Pv + Pu + E) (52)

For the lowest order eigenvalue, that is, for the steady-state power
loss coefficient, we obtain with the help of (5) and (31)

width changes: o1 = (4p7 + 1) aé‘ F(29). (53)

The solution of (51) is not a constant. It depends on the waveguide
parameters through its dependence on p. = (a/w)?. A plot of p1 as a
function of p. is shown in Fig. 2.

The forms of the steady-state power loss coefficients (41) and (53)
are very similar. The power spectra describe the deflection of the fiber
axis from its nominally straight position or the changes of the width
of one of the transverse fiber dimensions. However, the excess loss
caused by random changes of the width of the fiber depends on a
component of the power spectrum at twice the spatial frequency com-
pared to the excess loss for random bends of the fiber axis.

VI. CALCULATION OF THE PULSE WIDTH

The width of the impulse response of a multimode fiber that is
long enough for the steady-state distribution to establish itself is
given by the formula:®

N 4
ar =4 fpy G VG

p  Ovp — 011

(54)
The term with a,, = o1 is excluded from the sum. The functions
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Fig. 2—Plot of the parameter p, as a function of p..

G,, are defined as
Gv.u = AHIUV(p)V.H(q) (55)

and V is by definition the difference between the inverse group velocity
of the modes minus the inverse of the maximum group velocity.*

1 No Z

=0 d o onokia P T O (56)

The expression in parenthesis is an abbreviated way of writing
(G, VGo) = [dp [dgGuVGi. (57)

The integrals extend over the entire range of p and ¢ variables from
either 0 or 1 to the cutoff value p. = ¢.. Requiring the normalization

f dp f dgG2, = 1, (58)

we have for random axis deformations:

o7 (o) 7 () o

e a? J1 (u.)J;(u,,)
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and for random width changes:

G, = Inp + ¢, Jcos [pulng + ¢n:| (60)

A,
Vpg
with

2 2 —
A, =2 {[mm + m][lnmﬂ- m]] . (6D

The integrals (57) have the following solutions. For axis deforma-
tions (u # 1):

(Glh VGI#) = (Gllr VGMI)

T enoktat(ui — ul)? 3u? (u3 — uﬁ)“}
and for v, p # 1
21A Uity (JUR ~

(G!.I, VGv_u) = (63)

cnok?a? (uf — ul)? (ui — u,‘)2

For random width changes (u # 1):

(Guy, VG1) = (Gu, VG =— c k’a” Plp..‘PcAuAh.

% Pe
(I + 4pH[1 + (p1 + )L + (01 — 0,)%]
14+ 2(!—'1 + Pﬁ) ]
Pev (L + 4p1) (1 + 45
N 1
Al + (o1 + 20204 + (o1 — pu)%]

5+ 2(pf + pi) }
—1)* 4
x[( )+P“Z\/(1+4pf)(1+4pﬁ)] ©4)

><[(—1)wr

and for v, p # 1
A
(Gll,‘ VG’M) = 8 m piAllAv_u

PlPrPu
[1 + (o1 + 221 + (p1 — 2)*ILL + (p2 + p)*][1 + (o1 — pu)?]

1 + 2(pf + 03) l
PV (1 + 4p7) (1 + 407)

X [(—1)n+

(—1) +

1 + 2(pf + pi)

65
P (1 + 4pD) (1 + 4p2) (65)
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Evaluation of (54) with the help of (62) and (63) yields, for random
deformations of the fiber axis,

_ 042RpWL a
" enok*a*K (@) w

Equation (66) determines the pulse width of an impulse after it has
traveled a distance L (L must be large enough so that the pulse has
settled down to steady state) in the presence of random deformations
of the fiber axis. The pulse width for uncoupled modes is obtained
from (56)

(66)

_ L L _ 4AL
v(pe, go) v(0, 0) " cnokta Pe

The relative improvement of the width of the impulse response caused

by mode coupling is characterized by the ratio®

R At _ 0105 a
AT~ JLE(@) @

Mode coupling not only shortens the width of the impulse response,
but it also leads to excess loss. In order to find out how much excess
loss is associated with a given improvement of the width of the impulse
response, we form the product of (41) with the square of (68)

Riep L = 0.032. (69)

AT (67)

(68)

0.10—

0.08 |-

0.06 —

Hipc)

0.02 |—

L 1 L0 | L1
1 2 4 6 810 20 40 60 100 200 400 600 1000
Pc

Fig. 3—Plot of the function H (p.).
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Fig. 4—Plot of the loss penalty as a function of p..

For random axis deformations, the product of the square of the im-
provement factor with the excess loss is independent of the waveguide
parameters and the statistics of the random axis deformations.

For random width changes we obtain similarly

_ 4Apt L a
At = KRy L) o (70)

The function H (p.) is plotted in Fig. 3. The improvement factor is

H(p:) a
R=—]——=—- 71
VLK (20) W ()
Finally, we obtain the loss penalty from
RionL = (2p3 + 0.5)H*(p.). (72)

This function is shown graphically in Fig. 4.

Vil. DISCUSSION AND NUMERICAL RESULTS

We have derived expressions for the steady-state loss and the loss
penalty of graded index fibers with square cross section for the case of
random axis deformation and random width changes. The most
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conspicuous difference between these two types of fiber imperfections
is the fact that, whereas the Fourier components of the function f(z)
(describing the fiber axis) at the spatial frequency Q are instrumental
in the mode mixing process, the Fourier components at twice the
spatial frequency, 20, determine the mode mixing process in case of
random changes of the width of the fiber. This behavior can easily be
understood. Consider a Gaussian beam of arbitrary width that is
injected into the fiber off axis."® The beam undulates periodically
around the fiber axis and also changes its width periodically. The
undulations around the fiber axis have a period!!
V27xa

A NS (73)
while the width changes repeat themselves with half that period or at
twice the spatial frequency.!! Random displacements of the fiber axis
couple to the deflections of the beam from its on-axis position. This
deflection is driven by a Fourier component at the spatial frequency

2x _ VTR

2" a (74)

Q=
The beam width changes are correspondingly driven by changes in
the gradient (width) of the parabolic index medium. It is thus clear
that they respond to twice the spatial frequency.

In order to be able to associate specific rms deviations of the fiber
axis or rms width changes with fiber loss we have to consider a par-
ticular statistical model. We choose (arbitrarily) a Gaussian correlation
function

(f@ (2 + w) = g% 127 (75)

# is the rms deviation of the function f(z) and D its correlation length.
The power spectrum of f(z) is known to be'?

F(6) = Vma2De (00127, (76)
For a given value of § this function assumes its maximum value

—0.6
FOTomp = Y7 5 2 182 )

at
D, = V2/8. (78)

Let us consider a numerical example. We use the following fiber
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parameters

a =485 X 10~ em
ne = 1.56 } (79)
A = 0.014

At A =1 pm wavelength we have a/w = 6.3 or p. = 39.7. The
difference between the propagation constant of adjacent modes is,
according to (32), @ = 34.5 em™. With 6 = @ we calculate the excess
loss values at the peak of the power spectrum at the value of the
correlation length given by (78), D = 0.041 cm. For random devia-
tions of the waveguide axis we obtain from (41), (77), and (79)
(# in cm)

o = 6.44 X 10%3* (cm™). (80)

In order to keep the excess loss below 10 dB/km = 2.3 107° em™ we
must keep the rms deviation of the fiber axis below ¢ = 2 X 107° cm.
However, this stringent tolerance requirement results from our as-
sumption that the correlation length of the random irregularities of
the fiber axis assumes its worst possible value (78). If, for example,
the correlation length happens to be D = 0.5 cm we obtain instead
of (80)

on = 6.4 X 10725 (em™1) (81)

50 that we can now tolerate ¢ = 6 X 10° em in order to keep the excess
loss below 10 dB/km. This example shows that it is impossible to
predict the excess loss to be expected from a practical square-law fiber
unless the statistics of its irregularities are known precisely.

For reasons of comparison we state the corresponding value for
random width changes. In this case the spatial frequency that is
instrumental in providing mode coupling is 2@ = 69 em™". The worst
possible correlation length is now D,, = 0.02 em. From (53) and Fig. 2
with p. = 40 we obtain (& in cm)

o1 = 1.39 X 10°%* (cm™). (82)

The tolerance requirements of random width changes appear a little
less stringent than those of random axis deformations. However, we
have already pointed out that the excess loss value depends critically
on the actual statistics of the fiber. Since the excess loss caused by
random axis deviations depends on a different spatial frequency than
the excess loss caused by random width changes, a loss comparison
of the two effects is not possible.
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Next we discuss the loss penalty that is incurred for a given im-
provement of the width of the impulse response of coupled mode
operation compared to uncoupled mode operation. The equations (69)
and (72) show that the loss penalty is independent of the statistics of
the fiber irregularities. This feature makes the loss penalty a useful
quantity. In case of random variations of the fiber axis, the loss penalty
is even independent of the fiber parameters and is simply a dimension-
less number. Let us assume that we want to achieve a ten-fold improve-
ment of the width of the impulse response compared to the impulse
response of uncoupled multimode operation. In this case we have
R = 0.1 and obtain from (69) for random deviations of the fiber axis

enl = 3.2 = 14 dB. (83)

The length L needed to incur this loss and at the same time to achieve
R = 0.1 depends on the statistics of the irregularities. However, eq.
(83) tells us that it costs 14 dB in excess loss to achieve a ten-fold
relative pulse width improvement.

For random width changes, the situation is slightly different. Here
the loss penalty depends somewhat on the fiber parameters. For the
values used earlier we find from Fig. 4 with p. = 40,

RlouL = 102 (84)

The loss penalty for R = 0.1 is more favorable in this case,
d’uL = 434 dB

Fiber irregularities can be introduced intentionally in order to
improve the impulse response. In the conventional fiber with a round
core of constant refractive index that is surrounded by a cladding
with constant index, the loss penalty for pulse distortion improvement
can be reduced (in principle avoided) by tailoring the shape of the
power spectrum carefully.® The reason that the shape of the power
spectrum has an influence on the loss penalty is explained by the
observation that the spacing (in 8-space) between adjacent modes of
the conventional fiber is dependent on the mode number, so that a
band of spatial frequencies of the power spectrum takes part in the
mode coupling process.

In case of the parabolic index fiber, only one spatial frequency
(or actually a narrow range of spatial frequencies) is responsible for
mode coupling. The shape of the power spectrum is thus immaterial,
only its value at the spatial frequency @ enters into the picture. The
expressions (69) and (72) show that the loss penalty of the parabolic
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index fiber is independent of the power spectrum. No loss advantage
is to be gained by using especially shaped power spectra. One might
think that an advantage could be gained by departing from the
square-law index profile in order to change the mode spacing and
sample more of the power spectrum. But as soon as the index distribu-
tion deviates slightly from the parabolic profile the uncoupled impulse
response becomes much broader. The mode coupling mechanism would
now have to work against a far less favorable (uncoupled) impulse re-
sponse so that it seems unlikely that an advantage can be gained
in this way.

Finally, we consider an example of pulse width reduction by random
irregularities. We can introduce intentional deviations of the fiber
axis from perfect straightness in order to cause mode coupling. Since
the coupling process must be random, we could use deformation func-
tions f(z) and g(z) that are sinusoidal in shape but have a random
phase. This introduces a power spectrum centered around the spatial
frequency of the sinusoidal process having a finite width. Instead of
pursuing this idea further, we assume that we have somehow created
an axis deformation whose power spectrum reaches beyond the fre-
quency @ of (32). For simplicity, and to have a definite case in mind,
we choose

el <20
F(o) = (85)

0 8] > 2q.

This power spectrum is flat from zero spatial frequencies to a cutoff
value of 8 = 20 and zero for 8 > 2. The rms deviation & of the fiber
axis from a straight line appears in (85). Using the fiber parameters
(79) we obtain from (68) (&, L in cm)

6.9 X 10-°
R=22 "
VL

A ten-fold improvement of the width of the impulse response
(compared to the uncoupled case), E = 0.1, over a length of
L =1 km = 10° em requires an rms deviation of the fiber axis of
7 = 2.2 X 10-% ecm. We already know that we pay for this improve-
ment of the impulse response with a loss penalty of 14 dB. Very slight
random deviations from perfect straightness are already very effective
in providing mode coupling and improving the width of the impulse
response.

(86)
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For random width changes we have to allow for a wider power
spectrum. Letting the power spectrum again extend twice as far as
the effective spatial frequency, 29 in this case, forces us to divide
(85) by 2. We thus find from Fig. 3 and (71)

8.37 X 10~*
VL @7
R = 0.1 and L = 10% em requires § = 2.6 X 10~% cm.

R =

APPENDIX
The function

Hy (Va5 ) et (38)
describes the modes of a square-law medium defined by
z? o
n(z) = no (1 -2 A) . (89)

The associated ray problem can be described by a paraxial Hamiltonian
of the form!?

_Pi
H = o n(zx). (90)

The quantum mechanical treatment of this problem leads to an ex-
pression for the “energy’ E of the ray that has the form
__ B
E= i (91)
We define the “turning point” of the light rays associated with the
wave field (88) by the condition that p,, which is proportional to the
slope of the light ray, must vanish. That means that the ray trajectory
is tangential to the optical axis as the rays turn back in their path
leading them away from the axis. Using p, = 0 and equating (90)
and (91) we find the following condition for the turning point:

n(x) = Pr. (92)

The propagation constant of this two-dimensional mode field is®

~ 22 1)1
B,,—nuk[l—2m(p+§)] (93)
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Substitution of (89) and (93) into (92) leads with the help of (5) to
the formula (9) for the turning point.

The physical argument advanced here serves the purpose of defining
the range in which the Hermite polynomial has an oscillatory behavior.
This range is given by

—r Sz=x. (94)

Outside of this range the Hermite polynomial grows monotonically to
infinite values. However, since the Hermite polynomial enters the
mode field (88) only as a product with a Gaussian function, the mode
field decays rapidly without oscillation outside of the range given
by (94).
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