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The response of notch filters to sudden excitations is analyzed. Unit
step and stepped irigonometric inputs are considered for the class of
filters derived from low-pass networks by a frequency transformation.
It is possible in some cases to approzimate the transient solutions in terms
of Laguerre functions and deduce general properties of notch filters from
these solutions. The use of phasing seciions to modify the iransient response
is also examined. It is shown that this method can be used to effectively
reduce the overshoot in the response to a stepped trigonometric excitation.

I. INTRODUCTION

In order to accurately measure noise levels in compandored com-
munication systems, it is necessary to set the compandor charac-
teristics at approximately the values associated with signal trans-
mission. This is done by applying a so-called “‘holding tone” which is
subsequently removed by a noteh filter incorporated into the measuring
set. This investigation originated in connection with the design of such
a notch filter for an impulse noise counter.! The filter has to meet
both frequency and time domain requirements. The frequency response
requirements could be readily met with existing filter design pro-
cedures. However, the time domain characteristics of notch filters
needed investigation with regard to the suitability for the present
application. The time domain requirement is that the filter when
combined with a C-message weighting filter? and excited with a stepped
trigonometric time function at the notch frequency should, in the
transient state, have only a specified overshoot level. This requirement
is imposed by the necessity to distinguish in the measuring set between
sudden gain and phase variations and impulse noise.

To examine the transient response of notch filters, a class of such
filters derived from low-pass filters by a frequency transformation is
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considered. The transient response to a unit step function, and to a
stepped trigonometric function with the notch frequency, is expressed
in terms of the low-pass impulse response. It is shown that the low-
pass and notch filter response are for both excitations related by a
Hankel transform. Some general properties of the transient response
are deduced by considering notch filters for which the response can
be obtained approximately in terms of generalized Laguerre functions.

This investigation shows that notch filters would distort narrow
time pulses of duration less than one-half the notch frequency period.
The amount of distortion is related to the notch depth. The response
of a notch filter to a stepped trigonometric function can be kept to a
low level only after a certain time duration, which depends on the
filter parameters. The transient response of a notch filter followed by
a low-pass filter may still assume large values at relatively short times
from the beginning of the response. A method of decreasing the
transient response at such times by the use of phasing sections is also
presented. The use of phasing sections is of particular importance
where it is necessary to modify the transient response without affecting
the frequency response.

Although this work is primarily concerned with notch filters, the
methods used may also be applied to determine the transient response
of high-pass and bandpass filters, when derived from low-pass filters
by a frequency transformation.

Il. TRANSIENT RESPONSE OF NOTCH FILTERS TO A UNIT STEP FUNCTION

A class of noteh filters derived from low-pass filters by a frequency
transformation?® is considered. The transformation corresponds to re-
placing the inductances and capacitances in the low-pass filters with
parallel and series resonant circuits, respectively. Let T'.(s) be the
low-pass transfer function in the complex frequency domain s. The
transformation is given by

8= 22—5_'—20,% ’ (1)
where w, = 2rf,, f, = notch frequency, and g is a constant. (For
low-pass filters normalized such that for s = jw the 3-dB bandwidth
is at w = 1, B is the 3-dB circular bandwidth of the notch filter.) The
transfer function of the notch filter in the complex frequency domain
2z, Tn(2), is related to the low-pass transfer function 7'(s) by

TN(z)=TL( be ) (2)

22 + o}
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To investigate the transient response of notch filters, that response
is related to the impulse response of the low-pass filter. Such a rela-
tionship is obtained by first expressing the transfer function of the
low-pass filter in terms of the Laplace transform of the impulse re-

sponse, fr(t),
T.(s) = L e o ()dt: 3)

then from (2) the transfer function of the notch filter by
= Bzt
2@ = ["ew = | 755 | 0 (@)

The time response, fys(t), of the notch filter to a unit step function
can now be obtained by inversion of the Laplace transformation,
through integration in the complex plane over the contour T, as follows:

fs) = oo [ e THE g, (5)

27] Jy—ijm

where v is a positive constant. The relationship between step response
of the notch filter and the impulse response of the low-pass filter is
obtained by the substitution of (4) into (5) yielding

1 e
s =305 )5 [ ow = (55a) e ©

In Appendix A it is shown that (6) can be expressed as follows:
fwa® = | [ ei]-10)
t L] ﬁu
—fo [L fL(u)\/;JIQ\'ﬁ:Eu)du] Jo(2w,Vat — 2¥)dzx, (7)

where 1(t) is the unit step function and J,(y) is a Bessel function of
order n.
In (7) the first term is the undistorted unit step response and the
second term expresses the distortion introduced by the notch filter.
The first term can be simplified by observing that from (3)

7 s0dt = 1200). ®)
Without loss of generality, T'5(s) can be normalized to be equal to

unity at zero frequency. The expression in the brackets of the second
term contains a Hankel transform,* of order one, hence (7) can be
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written

fus® = 10 = 2 [ V8D \[2 L ue = Pz, )

where y, is the Hankel transform.

The integration in (9) can be performed approximately by using
the method of stationary phase. This is a good approximation when
the Hankel transform is a slowly varying function in comparison to
the Bessel function. It is also shown in Appendix A that with the
stationary phase approximation (9) can be approximated by

fus(t) = {1.0 _ dnod [ nw %Tuh(\/%ut)du}-l(t). (10)

An example considered subsequently shows that (10) is indeed a good
approximation for g << w,, i.e., for narrowband notch filters.

IIl. TRANSIENT RESPONSE OF NOTCH FILTERS TO A UNIT STEPPED SINE
FUNCTION
The transient response to this function is obtained in a manner
similar to the response to a unit step function. However, a more
general response function, fy.(t), is considered,

(11)

Fum() = fez' o/ g

o7 L @ e %

providing for the possibility of a low-pass notch combination. The
time response of a notech filter to a stepped sine function with the
notch frequency is obtained as a special case, by setting m = 0.
Proceeding in a manner similar to Appendix A, it can be readily
shown that (11) can be expressed as follows:

Tum(t) = cuof [f fr(u) [“’"(tﬁu ’”)] J m (2VBuz)du
T w20zt — z)]dz.  (12)

Equation (12) also contains a Hankel transform but of order m.
Similarly as before, (12) can be approximated by using the method
of stationary phase. It can also be readily shown, from the results in
Appendix A, that with this approximation (12) is given by

Swm(t) = sin (wot—”ﬂ)f fL(u)(
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It is shown below that, for m = 0, (13) is a good approximation
for 8 K w,.

IV. APPLICATION TO PARTICULAR TYPES OF NOTCH FILTERS
4.1 Introduction

To gain some insight into the behavior of the transient response, a
low-pass transfer function is chosen for which the integrals (10) and
(13) can be evaluated. As mentioned before, these integrals are Hankel
transforms. A class of functions for which Hankel transforms can be
evaluated in closed form are the generalized Laguerre functions.® In
fact, for these functions the Hankel transforms are self-reciprocal.®
These functions form orthogonal sets so that, in principle, any passive
filter impulse response can be expanded in terms of these functions.
However, the impulse response of some low-pass filters may be ap-
proximated closely by a single Laguerre function. Such a response can
be used to obtain an estimate of the notch filter response.

The low-pass transfer functions considered are of the following form:

(8/az + 1)"
(s/ar + 1)ntmH

with m and n integers, n, m = 0, and a; > 0.

The transfer function (14) is normalized such that 7'z (0) = 1.0. This
function can be considered as consisting of (m + 1) cascaded low-pass
filter sections and, for a@s = —a, of n phasing sections. For physical
realizability of the n cascaded sections, it is necessary and sufficient’ ®
that ta2| = ai.

The impulse response corresponding to the transfer function (14) is®

Tr(s) = (14)

Ju@) = o (:T; )n(alt)"‘E‘““Lﬁ‘[(ax —at],  (15)

(n + m)

where L (z) are generalized Laguerre polynomials given by

@ = % o (L) 5 (16)

These polynomials are oscillatory for positive arguments and mono-
tonically increasing for negative arguments.

4.2 Unit step response

The integral (10) with f.(u) given by (15) can be reduced to a
tabulated integral for the special case n = 0. The applicable integral
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is of the form!
© n !
[ e inte ], (2eNT)dz = 5 e Y YIMIA(Y), 17)
0

For this special case the low-pass transfer function is

1

GFD 4e)

TL (S) =

where without loss of generality o, is set equal to one.
The transient response of the notch filter is obtained by using (10),

(15), and (17) and is approximately
Fus(t) A [1.0 - g (8L ( g s) sin .,,,,t] 1) (19)
o

It is of interest to determine the aceuracy of (19) for different
values of m. This is done in Appendix B for m = 0, 1, and 2 where
(19) is compared with the exact solutions. It is shown that the accuracy
of (19) is of order 8/w, when expressions multiplied by both sin wi
and cos wi are considered. However, expressions multiplied by sin wi
only are of order (8/w,)? so that near the maximum amplitudes of
the second term in (19), expected near cos w.t R 0, the approximation
can be said to be of order (8/w,)?. Equation (19) is therefore a very
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Fig. 1—Laguerre functions, e-=L},(z).
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good approximation for 8/w, K 1, i.e., for noteh filters in which the
3-dB bandwidth is much smaller than the notch frequency.

In Fig. 1 the function e~2Lk (z) is shown for m = 0, 1, 2. It follows
from this figure, in conjunction with (19), that the distortion of the
unit step function will be particularly pronounced in the time vicinity
T = x/2w, In Fig. 2 the values of the second term in (19) are plotted
as a funection of T/2 for m = 0, 1, 2. This graph gives an estimate of
the distortion of the unit step function, and is of particular significance
when considering the transient response of notch filters to pulses of
short time duration. This investigation shows that pulses of duration
less than one-half notch frequency period will be considerably dis-
torted by notch filters.

To obtain a numerical estimate of the distortion, a notch filter with
the following requirements is considered: (i) Notch frequency—1010
Hz. (i) Notch depth at least —30 dB in the frequency range 995-1025
Hz. A notch filter with these requirements is derived from the low-pass
transfer function (18) form =0, 1, 2, 3.

It readily follows from the transformation (1) that 8 can be deter-
mined from the following equations.

8 = wan(i— 0 (14 L, (20)

where f, = notch frequency, f1 is the lower frequency where a notch
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depth A[dB] is required, and, from (18),

A
w4q = Jexp - (m In 10) — 1. (21)
The 3-dB bandwidth B of the notch, also obtained from (1), is

B
B = 2rwp’ 22)
where wp is given by (21) with A = —3.0.

Table I lists the filter parameters, including the maximum value,
@m, of the second term in (19).

It is evident from Table I that the 3-dB bandwidth and the distor-
tion term a,, decrease as the number of sections increases. The differ-
ence is particularly pronounced between m = 0 and m = 1. A further
decrease in the distortion term can be obtained by decreasing §8; how-
ever, this also reduces the depth of the notch.

The listed values of a.. seem to be representative of what is obtain-
able with notch filters of specified notch depth and 3-dB bandwidth.
For example, computation of a two-section noteh filter derived from
a.Tschebyscheff low-pass filter with 0.5-dB ripple gave a value for
a, of 0.18. The notch depth of this filter was also —30 dB and the
3-dB bandwidth 170 Hz. The lower value obtained with this filter can
be attributed to the more oscillatory behavior'? of the low-pass impulse
response. Equation (10) suggests such an interpretation.

4.3 Transient response to a stepped sine tunction

The low-pass transfer function (14) and the corresponding impulse
response (15) are again considered. With that impulse response the
integral (13) is given by

n+m—+1 1 mi2
_al n! @l . _mmw
Tom®) = == G m) (273) st (“"" 2 )

: ﬁ " rauym 2L (@) — an)u W m(V2BuD)du.  (23)

The integral (23) can be evaluated in closed form, again yielding
Laguerre functions®

fin® = s () ey | § a2 |

(n =+ m) ! o102

-sin (wat - %’r ) (24)
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Table |—Notch filter parameters

m wA ‘ %)) | BlkHz] B[Hz] @m
0 31.61 1 6.00 955 0.527*
1 5.53 0.64 1.056 260 0.273
2 3.00 0.51 0.57 178 0.234
3 2.156 0.43 0.41 149 0.227

* Computed from the exact expression, and occurs at a time, ¢t = 0.12 ms.

It is noted that with the condition for physical realizability of the
n cascaded sections in (14), |a@s| = e, that the argument of the
Laguerre functions is always positive, and hence the functions are
oscillatory.

From (11), (14), and (1), (24) corresponds to the inverse of the
following Laplace transform:

Wo wﬁm
T@ = [z’ + wj ][ (22 + ot + ﬁ/alz)"']
[ 2+ Wl ][(zﬂ+w%+ﬁ/022)"]‘ (25)
22 + i 4 B/arz 2+ wp + B/asz

The terms in the brackets in (25) can be interpreted as transforms
of (i) a stepped sine function, (i) an m-section low-pass filter, (i)
a notch filter section, (iv) n phasing sections for ap = —a; or n addi-

tional notch sections for ay — .
The transient response of a notch filter followed by a low-pass
filter is of interest. However, (25) is restricted to a particular low-pass
filter with a high-frequency cutoff in the vicinity of the notch fre-

quency, and will not be considered further.
Setting m = 0, (24) simplifies to

fno(t) = e~(Bl2antL] [ﬂ (1 - )] sin w,t. (26)
2(11 g

The special case a; —, treated previously for the unit step re-
sponse, can be obtained from (26) and is in agreement with the result
obtained by performing the integration directly by using (1.

For as — and m = 0, 1, 2, a comparison was made between the
exact solutions and the approximate solution (26). The comparison
showed the same accuracies as for the unit step response.

The time response due to a stepped cosine excitation can be ob-
tained by differentiating (26) and dividing by w.. It readily follows
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that, within the accuracy of (26), the same expression is obtained but
with sin .t replaced by cos w,l.

It is noted that (26) gives the correct value for { = 0. This value
can be obtained by using the initial value theorem of Laplace

transforms.®
lim sF(s) = lim f(2). (27)
a-—»00 t—+0
Graphs of e=L§(z) are shown in Fig. 3 for n = 0, 1, 2. These graphs
give the envelope of the transient response (26) for a;— . The
effect of finite values of @, can be deduced from the graphs. For
example, for «, negative the arguments of the Laguerre functions
increase reaching maximum values of (8t)/a for @1 = —a3. Therefore,
for the same Bt the spacing between the zeros would decrease and
the maximum values increase. For positive a: the opposite would be
the case.

08

0.6

04 \

e* L2 (x)

0.2 \

X

Fig. 3—Laguerre functions, e=L$ (z).
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It has been shown above that the transient response of notch filters
can be obtained from the Hankel transform of the low-pass impulse
response. This property can be used to deduce the qualitative charac-
teristics of notch filters derived from conventional low-pass filters of
the Bessel, Butterworth, and Tschebyscheff type. The impulse re-
sponse of conventional filters, with transfer function polynomials of
the same order and approximately the same bandwidth, has similarities
to the impulse response considered. Therefore, the graphs shown in
Fig. 3 are also representative of the transient response of notch filters
derived from conventional filters.

The transient response of notch filters can be kept arbitrarily low
at large times, such times being defined after the first zero of the
envelope, t,. The time ¢, can be kept small by the choice of the number
of sections m, and/or by choosing /a; large. However, for the interval
0 <t < {, these methods are not effective. In fact, it has been shown
above from the initial value theorem (27) that, at ¢ = 0, the envelope
of the response is unity independent of the filter parameters. A low-
pass filter combined with a notch filter would cause the transient
response to be zero at { = 0, and behave, for small ¢, as t*7* if k is the
order with which the transfer function goes to zero as s — «. However,
with a given low-pass filter the transient response may not be reduced
to a desired level at small {. An additional method of reducing the
response by the use of phasing sections is discussed subsequently.

4.4 Numerical computations

To illustrate some of the properties of notch filters, numerical
computations for a three-section filter (m = 2), with the parameters
given in Table I, have been performed. Figure 4 shows the filter
response to a step function and Fig. 5 the response to a stepped cosine
function. The computed results are essentially in agreement with
those obtained based on the approximate method. Figure 6 shows the
transient response of this filter followed by a C-message weighting
filter, when excited with a stepped cosine function. A comparison of
Figs. 5 and 6 shows that the C-message filter reduced, as expected,
the first lobe of the response, affected only slightly the second lobe
and increased the subsequent lobes. Increasing 8 and hence the 3-dB
bandwidth of the notch is not very effective in reducing the second
lobe. This led to the investigation of phasing sections as a means of
reducing the transient response.
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V. TRANSIENT RESPONSE OF PHASING SECTIONS

The transient response of a phasing section is considered when
excited by a damped sine function representing the output of the
notched low-pass filter combination. Let the transfer function of the
phasing section, T,(s), be given by
s? — ¢s + 42
s* 4 ¢s 4 d?

and the Laplace transform of the damped sine function, Fa(s), by

To(s) = (28)

Ful®) = 55 as 7 (29)

with wg = Vb2 — (a/2)%. The Laplace transform of the response, F(s),is
wa (8 —¢cs + d¥)

Fis) = s2+as+ b s2+es+d (30)
Equation (30) can also be written
Fs) = s+ as + b?
a c
~ ey A(s+§)+3+c(s+2)+D . (1)
2 + as + b* s* + cs + d?

where the constants 4, B, C, and D are obtained by comparing (30)
and (31).
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It can be readily shown that the time response corresponding to

(31), f(2), is
flt) = e-taint [sin wat — 2—:@ sin (wat + go)]

+ 2098 emegin (it + 6, (32)
w1
where
r= V(@ — )+ (c — a)[b% — d?a], (33)
_ (d® — b®wa
tanao_b’(c—a)—a./2(d2—b’)’ (34)
~ (@ — B2
ban b = B =) — o/2(@ — b))’ (35)
and

w1 = 4 fd? — (%)2. (36)

The first term in (32) is the damped sine function and the other two
terms are introduced by the phasing section. In order that the last
two terms be of significance, it is necessary that these terms be com-
parable to the first term. This will be the case for d = b, for which
(32) reduces to

1) = e~tem: 0 2

. w .
7 —o sin wat — 24 g—(e/Dt gin wyf. (37)

a— Cwy

If, in addition, (a/2)® <« b* and (c/2)* < d?, (37) simplifies further
and, for (a/2 — ¢/2)t « 1, (37) is approximately given by

() =~ e/t sin bt(1 — ct). (38)

Equation (38) contains the damped sine function but modified by
the term (1 — ¢t). This term can be used to introduce a zero in the
time vicinity where the damped sine function assumes a maximum
value.

To illustrate the above, a phasing section is introduced to modify
the impulse response of a C-message weighting filter. The computed
impulse response of the filter is shown in Fig. 7 and has relatively
large values in the time vicinity of 0.4 ms. The impulse response
modified by a phasing section is shown in Fig. 8. The phasing section
parameters are ¢ = 2-10° and d = 108. These parameters have been
chosen on the basis of the above analysis. It is evident the large values
of the response have been reduced, but the modified response has
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Fig. 7—Impulse response of C-message weighting filter.

appreciable values for a much longer time duration than the initial
response. This behavior can be explained on the basis of Parseval’s
theorem, since the absolute value of the Fourier transform of the
response is the same with and without the phasing section.
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Fig. 8—Impulse response of C-message weighting filter with phasing section.
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Table ll—Two-section filter with phasing section
(3-dB bandwidth 390 Hz, 30-dB bandwidth 80 Hz)

Parameters in kHz Units
7
2 2
Tni Wni | adi wdi
1 0.09 40.27 1.35 27.91
2 0.09 40.27 1.94 51.10
3 —-1.8 100.00 1.8 100.00

Phasing sections can be used to reduce the overshoot of the response
of a notch filter followed by a low or bandpass filter and excited with
a stepped trigonometric function at the notch frequency. Such sections
are of particular importance where the transient response has to be
modified without affecting the amplitude of the frequency response or
where a modification is needed at times shortly after the beginning of
the response. However, such sections may also introduce considerable
distortions of the unit step response.

As an example, the performance of a 1010-Hz notch filter with
and without a phasing section is considered. The transfer function,
T(z), of the filter and phasing section can be written as

52+ gaiz + ol
T(Z) B ,'E 22+ o4z + ng- (39)
The parameters in (39) are listed in Table II.

This filter was derived from a Tschebyscheff low-pass filter, and
an operational amplifier version was synthesized and built. Figures 9a
and 9b show the computed response to a stepped cosine of the filter
combined with a C-message weighting filter without and with the
phasing section. Figures 9¢ and 9d show photos of the corresponding
oscilloscope displays obtained with the actual filters. Good agreement
was obtained between the computed and measured response. The
effect of the phasing section on the response is evident in this figure.
About a 4-dB reduction in the overshoot was obtained with the
phasing section.

VI. CONCLUSIONS

The transient response of a class of notch filters which are derived
from low-pass filters by a frequency transformation was investigated.
General expressions for the transient response due to a unit step
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Fig. 9—Computed and measured response of noteh filter with C-message weighting
filter to a stepped cosine: (a) and (c) without phasing section, (b) and (d) with
phasing section.

function and a stepped trigonometric function have been obtained in
terms of the low-pass impulse response.

The transient response of certain types of notch filters can be formu-
lated approximately in terms of Laguerre functions. These filters have
been examined in detail and some general properties of the notch
filter response have been deduced from this formulation.

Notch filters may considerably distort short time pulses (time
duration less than one-half notch frequency period). The amount of
distortion depends on the notch depth.

The response of notch filters to stepped trigonometric functions can
be kept at low levels only after a certain time interval from the begin-
ning of the response. The length of the time interval depends on the
filter parameters.

A method of reducing the transient response at short time intervals
by the use of phasing sections was presented. This method may prove
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particularly useful in applications where it is necessary to modify the
transient response without affecting the frequency response.
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APPENDIX A
Transient Integrals
A.1 Unit step response

The relationship between the step response of the notch filter and
the impulse response of the low-pass filter from which the notch filter
is derived is given by (6) of the text,

Fus(l) = 2.” et j;w exp (— ﬁjﬁ u) fr(wdudz.  (40)

After interchanging the order of the integrations and expanding the
exponential function, (40) can be written

ws(d) =%L"’ fo) / e & (= .Bu) (zzng)”dzdu. (41)

2 a=0

Equation (41) contains a sum of inverse Laplace transforms of a
tabulated form !5:18

1 ezt w?
=f (tw_ u) Jow[ 2w, Nut— w]g(u)du, (42)
0

where g(u) is the inverse Laplace transform of G(2).

Equation (42) is of its own interest, since it may be used to obtain
the step response of a bandpass filter derived from a low-pass filter by
a frequency transformation. A direct derivation of (42) follows.

Using the definition of G[z + (w?)/z], (42) can be written

1 ezt w?
g—rrj[rz_sz(Z‘i‘ "")dz
ezl
2‘” e f exp [ ( ) ] g(w)du. (43)
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After interchanging the order of integration and expanding the
exponential function in a power series, (43) can be written

1 et wh
2—”. FWG(Z-}'—)&”
= 57 j g(w) / > n(u G o du. (44)
The inverse of each term in (44) is zero for a negative exponential

argument. For a positive argument u < {, the inverse is readily ob-
tained ; hence,

1 et w?
i Jem 0 (4 %) o
( D™ (wau)™ (¢ — u)™*
_f o(w) T - a1 B 49)
The summation of the terms in (45) gives a Bessel function V7 of order
20, and hence (42). Using (42), (41) can be written
ﬂu)n znl

ust) = [ rou + [ nuw) [ 5 S5 2y
-Jo(2woVNzt — z2)dz du.  (46)

The series in (46) can be summed yielding a Bessel function of
order one; hence,

us(t) = L " fu(u)du — fﬂ ' L ) fL(u)\/B—E J1(2\Bzu)du
Jo(2uwoVtz — a?)dz.  (47)

The integration with respect to w can be interpreted as a Hankel
transform of the low-pass impulse response. For an impulse response
which is not very oscillatory, and for 8 <« w,, the Hankel transform
will be a slowly varying function in comparison to the Bessel function.
Under these conditions an approximation to (47) can be obtained by
using the method of stationary phase.

A.2 The stationary phase approximation

The stationary phase method'® approximates integrals, I, of the
following type:

b
I-= [ g(z)e¥dz, (48)

where k is large and g(z) is a slowly varying function. The approxi-
mation considers only contributions from the vicinity of stationary
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points where (dy)/dz = 0, and is of order (1/k). The approximate
value of the integral (48) is

I~ ):': g(xs) k‘p,,( ) gik¥ (i), (49)

To bring (47) to a form suitable for evaluation with the stationary
phase method, the Bessel function is expressed in terms of modulus
and phase.?

Jo(2) = M,(2) cos 8,(2) (50)
with

0,(2) = 2 — 7 + 8,(2), (51)
where 8,(z) and M,(z) are slowly varying functions for large z with
lim. . 8,(2) = 0 and lim, ... M,(z) = V2/(xz).

With z = 2weVtz — 22, the integral in (47) has a stationary point at
x = t/2. The approximate value of (47), obtained by using (49), is

o) % [[7 0@t = [ Mot cos [ 0.60t) — § |

7w B (B, (52)

For large values of ¢ such that M,(z) and 8,(f) can be approximated
with their asymptotic values,

Ius(l) & ﬁ " fauydt — %‘” L ® fu(w) 25” J(V2Bud)du.  (53)

It is of interest to note that the stationary phase method gives the
correct value for the integral

f T o2 Nl — w)du = S“;“’t (54)

0
This integral can be evaluated exactly by using (42) with v = 0 and
g(u) = 1.0. The left-hand side of (42) is readily inverted yielding (54).

APPENDIX B
Comparison of Exact and Approximate Solutions

Consider a notch filter transfer function

2 2 m+1
7o) = (s va) @)
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The Laplace transform of the time response due to a unit step
function is

rus@ =2 (1- 5era) (56)
For m = 0, the time response is
fus() = (1 — B omesin mt)-l(t), (57)
where
w = nJod — (g)g. (58)

A comparison of (57) with (19) shows that both are of the same
form but « is replaced by «,. Hence, the approximation is of order

(ﬁ/wu)E'

For m = 1, using tables of Laplace transforms,
2
fas@®) =1 — B [2 + ( B ) - gt]e’(‘””‘ sin wi
5 2
+ (;) Bte= (812t cos wt.  (59)
Neglecting terms of order (8/w)? against one, (59) can be written
fus@®) =1 — %e—wwm (g:) sin w,t

+ ( 5% )zﬁte—(fm“ cos wot, (60)

where from (16)

Li(z) =2 — = (61)
The terms multiplied by sin w,t are up to order (8/w,)* the same
as in (19).
Form = 2,

fas() =1 — ‘ge—(mn [3

5ot
—-5(“*) %(%)”(1-%)181“‘
7 34@2 Bt
8

3 ] cos wt. (62)
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Neglecting terms of order (8/w,)* and higher against one yields
B8

Ins(t) =1 — fze‘“””‘Lé (§ t) sin w,t

BZ

+ et ‘3—; [7 — Bt cos wd, (63)

where from (16)

() =3 — 3z 4+ 52 (64)
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