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The purpose of this paper is to make comparisons between optimum,
linear phase, finite impulse response (FIR) digital filters and infinite
impulse response (IIR) digital filters which meet equivalent frequency
domain specifications. The basis of comparison s, for the most part,
the number of multiplications per sample required in the usual realiza-
tions of these filters—i.e., the cascade form for IIR filters, and the direct
form for FIR filters. Comparisons are also made between group-delay
equalized filters and linear phase FIR filters. Considerations dealing
with finite word-length effects are discussed for both these filter types. A
set of design charts is also presented for determining the minimum filter
order required to meet given low-pass filter specifications for both digital
and analog filters.

I. INTRODUCTION

Although a great deal is known about the properties of different
types of digital filters, very little has been done to relate the various
designs as to performance and complexity of realization. Thus the
filter designer must learn the details of several design procedures
before being able to make a wise decision on a suitable filter for his
specific application. It is the purpose of this paper to add insight into
some of the problems that have been encountered by filter designers
by: (i) presenting new and useful design curves for digital and analog
low-pass filters, and (i¢) making several comparisons between optimum
(quasi-equiripple), linear phase, FIR low-pass filters and equiripple
(elliptie) IIR filters which meet equivalent frequency domain specifica-
tions. Although these results are presented for low-pass filter designs,
they are easily extended to the case of bandpass, bandstop, and high-
pass filters by the well-known frequency band transformations.
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Fig. 1—Terminology used to describe low-pass filter characteristics.

The organization of the paper is as follows. After defining the
terminology to be used, the design relationships between the FIR
filter parameters are reviewed. The design relationships for the IIR
filter parameters are developed and a novel graphical interpretation
of these relations is presented in the form of useful filter design charts
(applicable to both digital and analog filters). Using the design rela-
tionships, the filter orders required to achieve equivalent performance
are compared for different ranges of filter parameters.

Il. TERMINOLOGY

The design procedures for the two general classes of digital filters,
FIR and IIR, have essentially progressed along independent paths. As
a result, the terminology used in specifying the filter performance is
generally not quite the same. Thus it is instructive to define the most
commonly accepted definitions of the filter parameters for these two
classes of filters. The relations between these parameter sets for
equivalence are then established. Figure la shows the amplitude
response of a typical optimum FIR low-pass filter and Fig. 1b shows
the magnitude response of a typical elliptic low-pass filter. For the
FIR case the amplitude response in the passband (0 = f £ F,)*
generally oscillates between 1 + 8; and 1 — &, where 8, is the passband
ripple. In the stopband (F, < f < 0.5) the amplitude response oscil-
lates between —+8; and —8&: where 8, is the stopband ripple. For the
elliptic case the magnitude response is constrained to always be less

* Throughout this paper the frequency scale has been normalized with respect to
the sampling frequency. Thus the normalized sampling frequency is 1.0 and the
frequency range graphed is 0 £ f < 0.5 or, equivalently, 0 £ w < .
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than 1.0. Thus, in the passband (0 = f £ F,) the magnitude response
oscillates between 1 and 1 — §;. In the stopband the magnitude re-
sponse oscillates between 8, and 0. It is straightforward to relate 8,
33, 85, and 8, so the resulting magnitude characteristics are equivalent.
If the FIR amplitude characteristic is scaled by 1/(1 + &,) and the
magnitude of the resulting amplitude response is taken, then the
following relationships are obtained :

- 2 (1)
b= jfal )
b= ilél (3)
==y 2—3251' @

Thus, given either (8, 82) or (8, §2), eqs. (1) through (4) can be used
to find the equivalent specifications for the other type of filter.
Although the notation of Fig. 1b is acceptable for the magnitude
response of an elliptic filter, it is not the most widely used form for
these filters. Figure lc¢ shows the same magnitude response described
in terms of passband parameter e and stopband parameter A. Com-
paring Figs. 1b and 1c it is easy to relate ¢ and A to §, and 8, as
T (5)
(1 — é1)

| =

A= (6)

S
Y]

At this point it is convenient to define the additional filter terms E,
ATT, and 5 as

E = (in-band) ripple = 20 logio V(1 + €) (7)
ATT = stopband attenuation = 20 log,, A (8)
€ _ 52‘/8_1 N2 — 31 _ 252(4\’,8_1) (9)

n =

VAr— 1 a-8)V1—8 (1 — )V + 1) — )

Thus, parameters E and ATT are a third set of parameters which
describe the characteristics of the magnitude response of the elliptic
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filter. The parameter » has been shown to be a basic analog filter
parameter! which will be used in the filter design curves given in a

later section.

Ill. FIR DESIGN RELATIONS

The five basic FIR filter parameters are F,, F,, 81, 82, and N, the
duration of the filter impulse response in samples. For the general
case of optimum, linear phase, low-pass FIR filters, there exist no
simple analytical relationships between these five filter parameters,
except in special cases, e.g., one passband or one stopband ripple.
However, an approximate empirical relationship between the filter
parameters has recently been obtained? which accurately satisfies
known design results for a wide range of values of the filter parameters.
The relationship is of the form:

m(al, 62)

N =1+ 22008 g5 5ar, (10)

where
AF = F, — F, = relative transition width, (11)

Da (81, 52) = [0.005309 (logo 5,)? + 0.07114 logso 8, — 0.47617 logyo 62
— [0.00266 (logso 81)? + 0.5941 logy 3, + 0.4278], (12)

and
f(ch, 62) = 051244 logm (61/62) + 11.01 (13)

Equation (10} can generally predict the value of N required to meet
specifications on 8y, 8;, F,, and F, to within 4+2. In the cases where
F, is very close to 0, or F, is very close to 0.5, eq. (10) tends to over-
estimate the required N. It should be noted that eq. (10) shows the
estimate of N to be independent of specific values of F, or F,, but
instead is dependent only on the transition width, (F, — F,).

A simpler expression giving a less accurate estimate of N is

—10 logm (61'82) -1
14AF

N = > 11, (14)

This expression is a modification of the design relationship for FIR
filters designed by windowing techniques (where §; = 82). See Ref. 3,
pp. 237-238.

IV. IIR DESIGN RELATIONS

One of the most general procedures for designing IIR digital filters
is through the bilinear transformation of an appropriate continuous
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filter. There are two equivalent techniques for obtaining the desired
digital filter using the bilinear transformation and these are illustrated
in Fig. 2. The technique of Fig. 2a begins with an analog low-pass
filter with normalized passband cutoff frequency of 1 radian per second,
and analog stopband cutoff frequency of @, radians per second. This
filter is bilinearly transformed* to give a ‘“normalized” digital filter
with passband cutoff frequency =/2 radians per second (or f = 0.25 on
the normalized scale) and stopband cutoff frequency @,. The relation
between the frequency variables @ and & is given by

Q = tan (&/2). (15)

Thus @, and &, are simply related by eq. (15) with @ = Q,, and & = &,.
Finally, a digital all-pass transformation® is used to give the desired
digital low-pass filter with passband cutoff frequency w, and stopband
cutoff frequency w,. The relation between the frequency variables w
and & is given by

(1 — o?) sin &
(14 a?)cosd — 2a’

(16)

tanw =

where in (w,/2) (0,/2)
8in (wy — cos (wp

“ = sin (0,/2) + cos (0,/2) ()

The second technique (shown in Fig. 2b) begins with the identical
analog low-pass filter as in the first technique and immediately per-
forms a low-pass—to-low-pass transformation to give an analog filter
with passband cutoff frequency {2, and stopband cutoff frequency ,.
The relation between the frequency variables @ and  is

Q= 0/0, (18)

The resulting low-pass filter is then transformed to a digital filter using
the bilinear transformation, giving the same end result as in the first
technique (Fig. 2a). The relation between frequency variables w and { is

0 = tan (w/2). (19)

In the case where the prototype normalized analog filter is an elliptie
filter, it is relatively easy to derive a design formula relating the various
filter parameters, both in the analog and digital cases. For either the
analog or digital case the order, n, of the elliptic filter is related to
the remaining filter parameters by the equation

o KKKR1L — k) , (20)
K(k)K W1 — k)
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where K(-) is the complete elliptic integral of the first kind and
1  tan (w,/2)

k = transition ratio = 0 = tan (@./2) (21)
and
kl =g = € 262%: (22)

-1 (1—o)Vlto)-8

Thus eq. (20) relates filter order, n, to the parameters I, F, [through
eq. (21)] and & and &, [through eq. (22)].

For the case when the prototype filter is a Chebyshev filter (either
type I—equiripple passband, monotone stopband, or type II-—maxi-
mally flat passband, equiripple stopband) the design equation becomes

cosh™ (1/7)

n = -TB‘——', (23)
where
‘\} i k2
g = %_ (24)

and 5 and k are defined as egs. (21) and (22). Finally for a prototype
Butterworth filter (maximally-flat magnitude, all pole) the design
equation is |
n oy

n= g (25)

Although egs. (20) through (25) completely describe the design
curves for both analog and digital filters, it is generally quite helpful
to see the relationships between filter parameters displayed in a
meaningful way. Since, in general, there are five filter parameters
there is no simple way of presenting these relationships on a single
plot, even in terms of well-known nomograph procedures.® There is,
however, a simple and straightforward way of including all design
relations for both digital and analog filters, for any prototype filter,
using a sequence of three charts.

The first chart(s) relates the filter design parameter n to the pass-
band and stopband ripple specifications 8; and &, or their equivalents.
The second chart(s) graphs the filter design equation relating filter
order n, design parameter n, and transition ratio k. The third chart(s)
relates transition ratio k to passband cutoff frequency F, and transition
bandwidth ».

Figures 3a through 3d show four possibilities for Chart No. 1. The
graphs of Figs. 3a and 3b correspond to digital filters with &, as a param-
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eter (Fig. 3a) or 20 logye (1 + 8:)(dB) as a parameter (Fig. 3b). The
graphs of Figs. 3c and 3d correspond to analog filters with absolute rip-
ple &, as a parameter (Fig. 3c) or total ripple 20 logy [1/(1 — §1)](dB)
as a parameter (Fig. 3d).

Chart No. 2 represents the design relations particular to the proto-
type filters, i.e., eq. (20) for elliptic filters, eq. (23) for Chebyshev
filters, and eq. (25) for Butterworth filters. For these graphs the param-
eter 7 is plotted versus transition ratio, &, with filter order, n, as the
parameter. Figures 4a through 4c show the resulting graphs for elliptic
filters, Chebyshev filters, and Butterworth filters, respectively. The
horizontal scale on each of these graphs is a nonuniform scale which
was chosen to provide a reasonably good spacing of the curves for the
various values of n. The actual nonlinear scale used is represented by
the equation

k + k®
T = 5 (26)
where z is the z-axis coordinate (0 < = < 1) and k is the transition
width. Thus, the scale is linear for small values of k& and highly non-
linear near k = 1.0.

Chart No. 3 represents the relation between the transition ratio and
the filter cutoff frequencies [eq. (21)]. For these graphs the passband
cutoff frequency, F,, is plotted versus transition ratio, k, for various
values of normalized transition width, », defined as

v=F,~Fp=w'2_ﬂ_w”- (27)

Figures 5a and 5b show the resulting graphs for digital and analog
filters. The scale for transition ratio is identical to the scale used for
Chart No. 2.

V. USE OF CHARTS

To illustrate how to use the set of charts of Figs. 3 through 5, con-
sider the determination of filter order n required to meet the following
specifications:

8; = 0.01 (= +0.086-dB passband ripple)
8, = 0.0001 (80-dB stopband loss)
passband cutoff frequency = 480 Hz
stopband edge frequency = 520 Hz
sampling frequency = 8000 Hz.
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Normalizing the band-edge frequencies gives

480

520
F, = 3000 0.065.

For the determination of filter order n for a digital filter of the
elliptic type, the charts of Figs. 3a, 4a, and 5a are used (Fig. 4a special-
izes the design to the elliptic type). To obtain the value of 5 on Fig.
3a, we use the curve 8; = 0.01 and find its intersection with the line
8, = 0.0001 which yields a value of 5 approximately equal to 2 X 1075
To obtain the transition ratio, we use Fig. 5a by finding the intersection
of the curve » = F, — F, = 0.005 with line F, = 0.06; this yields a
value of 0.923 for the transition ratio (this agrees nicely with
F,/F., = 0.06/0.065 = 0.923, an alternate way of arriving at the same
result). Finally, the filter order, n, can now be determined from Fig. 4a
by finding the intersection of the lines n = 2 X 10~° and transition
ratio = 0.923; thus the required theoretical elliptic filter order is
~11.5. In order to meet specifications on all four parameters, a
12th-order filter must be used.

However, there are several tradeoffs possible for the final filter
specifications. For example, if 7 is held fixed at 2 X 10=* and the
transition ratio is changed to approximately 0.94 to lie on the n = 12
curve, then either F, or F, can be varied to match this new value of
transition ratio. The tradeoffs here are obtained from Fig. 5a. If the
transition ratio is held fixed, then for n = 12 we find nis &= 1.0 X 107°;
from Chart No. 1 (Fig. 3a) we can observe the tradeoff as é; and é, are
varied for this new value of 5. Finally, both transition ratio and 7
can be varied, e.g., to 0.93 for transition ratio and 1.5 X 10=° for #,
so as to make their intersection remain on the n = 12 curve; now all
four filter parameters can be varied to match the new values of
and transition ratio.

It is interesting to note that if a Chebyshev or Butterworth filter
type is specified in place of the elliptic, the designer need only substi-
tute Figs. 4b or 4c for Fig. 4a as Chart No. 2 and proceed as before.
In both cases of the example given, the required filter order consider-
ably exceeds the maximum limit of 20 of the curves; thus the “effi-
ciency”’ of the elliptic design is clearly seen.

Clearly, this design procedure presents a tremendous amount of
flexibility to the designer—more so than is generally available in most
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Chebyshev, and Butterworth low-pass filters.
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Fig. 4 (continued).

programs for filter order determination. Furthermore, the insight into
the design problem afforded by this graphical technique allows the designer
to get a feeling for the way in which small changes in filter specification
affect the required filter order. Quite often the designer is willing to
changes his ideas on “required” specifications, especially if it reduces
the filter order necessary to meet his specifications.

VI. COMPARISONS BETWEEN OPTIMUM FIR AND ELLIPTIC DIGITAL FILTERS

Based on the design formulas of the preceding sections, it is possible
to make some comparisons between optimum FIR low-pass filters and
equivalent elliptic filters. The main basis of comparison will be the
number of multiplications per input sample* required in the most
standard realization of each filter type, i.e., the direct form for the
FIR case and the cascade form for the elliptic case.” Direct realization
of an N-point impulse response filter with linear phase requires

* The number of multiplications per input sample is a useful measure of the com-
putational complexity of the filtering operations as it represents the number of
multiply-add operations required for a software implementation of the algorithm as
well as for a general hardware implementation.
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[(N + 1)/2] multiplications per sample, whereas cascade realization
of an nth-order elliptic filter (all zeros on the unit circle) requires
[ (3n + 3)/2]* multiplications per sample where [ -] denotes “integer
part of.”

Thus, one basis of comparison between equivalent filter designs (i.e.,
both meeting the same specifications on §y, 82, F'p, and F,) is in terms
of the efficiency of the respective realizations, i.e., which structure
requires fewer multiplications per sample. Equivalence between struc-
tures is attained when the condition

3n + 3 (N+1)
[ =155 &9
or equivalently

N . 1

Ak e (29)
Using the appropriate filter design formulas, we have measured the
quantity N/n as a function of n for a large range of values of F,, &,
and 8;. Figure 6 shows two typical sets of curves which were obtained.
Figure 6a shows data for the case F, = 0.15, 6; = 0.1, 8: = 0.1, 0.01,
0.001, 0.0001, and Fig. 6b shows data for F, = 0.35, 5; = 0.00001, and
the same range of &; as in Fig. 6a. Also shown in these plots is the line
N/n = 3 for showing where the data lie with respect to the fixed
portion of eq. (29). As seen in this figure, for certain values of F, 8y,
and &,, the ratio of N/n falls below the equivalence level of eq. (29),
i.e., the FIR filter is more efficient than the elliptic filter. However, in
general, the elliptic filter is more efficient than the optimum FIR
filter, and, in the case of high-order elliptic designs, the ratio of N/n
is often in the hundreds or thousands.

Based on our examination of large amounts of data, the following
general observation can be made: the most favorable conditions for
the FIR design are large values of §;, small values of &, and large
transition widths (i.e., small transition ratios). One also observes the
following behavior:

(7) For values of /', = 0.3, the ratio N/n always exceeded 3 + 1/n
for all values of 8, 8., and =.
(#2) For values of n = 7, the ratio N/n always exceeded 3 + 1/n
for all values of 61, 85, and F .

* This number of multiplications per sample for the IIR filter assumes that any
scaling between sections is an integer power of 2 and is performed entirely by shifts
of the data. If finer scaling multipliers are included between each cascade section,
the realization requires [ (4n + 3)/2] multiplications per sample.
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(435) The smaller the value of F,, the larger the range of &1, ds, and
n for which N/n was less than 3 + 1/n.

Since the design formula for N for the optimum FIR case is not
exact but only an estimate, measurements were also made of the
required theoretical value of n (elliptical filter order) to meet the
specifications of optimum FIR filters which had already been designed.
Typical results of these measurements are shown in Fig. 7. Figure 7a
shows the theoretical order n (n need not be an integer) required to
match specifications on F,, F, for 8 = 0.1, §: = 0.1, 0.01, 0.001,
0.0001, and 0.00001, as a function of F, for a set of optimum FIR
filters with N = 21. (It should be noted that as F, varies, F, also
varies so as to achieve the desired specifications on 8, and &,.) Figure
7b shows similar measurements for N = 41. In Fig. 7a the theoretical
point of equivalence is n = 6.3, whereas in Fig. 7b it is n = 13. From
this figure it is seen that for these cases the elliptic filter is always
more efficient than the equivalent FIR filter, as anticipated by the
discussion in the preceding paragraphs. _

In summary, elliptic filters are generally more efficient in achieving
given specifications on the frequency response than optimum FIR
filters. However, the FIR filters have the additional useful property
that their phase is exactly linear, i.e., there is no group delay distortion.
For the elliptic filter, however, there is generally a large amount of
group delay distortion (concentrated primarily near the band edge). A
question of both theoretical and practical importance is whether, in
cases when the additional requirement of a flat delay is specified, it is
more desirable to equalize the delay of an elliptic filter or to use the
equivalent optimum FIR filter (with its constant group delay). In the
next section we discuss various aspects of this question. It should be
noted that the above alternatives are not the only possibilities for
obtaining a digital filter which meets frequency domain specifications
on both magnitude and group delay responses. For example, a filter
can be designed, using modern optimization procedures, where the
number of poles and zeros are unequal. In such cases, the comparisons
between FIR and IIR filters are quite distinct from those to be dis-
cussed in the next section.

VIl. COMPARISONS OF OPTIMUM FIR FILTERS AND DELAY-EQUALIZED
ELLIPTIC FILTERS

Recently developed optimization procedures® make it possible to
design an all-pass equalizer which can equalize the group delay of any
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Fig. 7—Theoretical order of elliptic filters required to meet given specification on
81, 82, Fp, and F, as a function of F, for various values of &;. Optimum FIR filters
with N = 21 meet the specifications for all filters of (a), whereas N = 41 is re-
quired for all filters of (b).
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digital filter to any desired accuracy over a restricted band of fre-
quencies. As an example of the use of this procedure, Fig. 8 shows
plots of the group delay of a 6th-order (unequalized) elliptic filter
(with parameters §, = 0.01, 3, = 0.0001, F, = 0.24163, F, = 0.34842)
and the equalized group delay using a 10th-order all-pass filter. The
relative error in the equalized delay curve is 3.6 percent of the average
delay in the passband. In this case the equalized elliptic filter requires
20 multiplications per sample, whereas an optimum FIR filter which
achieves the same specifications requires only 11 multiplications per
sample.

The difficulty with trying to equalize the group delay of a filter
lies in the fact that the equalized filter must have a total delay greater
than the largest delay in the unequalized filter which always occurs
near the passband cutoff frequency. Thus, in the example of Fig. 8,
even though the delay throughout most of the passband is between
2 and 6 samples, the delay at the edge of the band is about 15 samples.
It can be shown that an all-pass equalizer of degree n, has the

n=6

ne = 10

81 = 0.01
69 = 0.0001
Fp = 0.24163
F, = 0.34842

~—

ORIGINAL ELLIPTIC—~—
FILTER

— EQUALIZED FILTER

GROUP DELAY IN SAMPLES
>

I
|
|
|
I
\
|
|
|
|
|
|
[
|

I |
Q 0.1 02 Fp 0.3 Fs 0.4 0.5

FREQUENCY

Fig. 8—The group delay of an unequalized and an equalized elliptic filter. The
equalizer is of 10th degree and the elliptic filter is of 6th degree.
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property
1 [ -
o ./; To(w)dw = 0.5n,, (30)

where ,(w) is the equalizer group delay and the integral is taken over
half the sampling interval (0 £ w = 7). Since 7,(w) = 0, i.e., group
delays add, to justify eq. (30) it is sufficient to show that a first-degree
all-pass equalizer has the required property. The z-transform of a first-
degree all-pass equalizer is

(31)

where a is the pole position and 1/a is the zero position in the z-plane.
The group delay is commonly defined as
d[ X H (e’ 26
ro(w) = — LA, (32)
where 9 H (e’*) is the phase of the transfer function. Using eqgs. (31)
and (32) we obtain

1 —a?

1+ a® — 2acosw (33)

T(w) =
for the first-degree equalizer. Integrating eq. (33) from 0 to = and
normalizing by 27 gives

1 r 1 —a?
2r Jo 1 4+ a2 — 2acosw @

= 1 tan—! [
T

=T _ 05

o 21

(1 — a?) tan (w/2) ]
(1—a)

The significance of eq. (30) is that one can estimate the minimum-
order equalizer required to equalize a given group delay characteristic
by determining the area between the line 7 = 7., and the curve
7,(w) and dividing by =, where 7..x is the maximum value of 7,(w)
in the passband. Thus in the example of Fig. 8, the estimated order of
the equalizer is approximately (13 X 7/2)/w = 6.5. Of course, the
required order of the equalizer must be greater than the estimate given
above, since this estimate assumes the delay of the equalizer exactly
compensates the delay of the unequalized filter. As the degree of the
equalizer is increased over the estimate, the peak error of approxima-
tion decreases monotonically.

We have used the above algorithm, along with initial estimates of
equalizer order, to equalize three sets of elliptic filters. The data for
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Table | — Comparisons between optimum FIR and equalized
elliptic digital filters
(Set 1: 8, = 0.01, 5, = 0.0001)

F, F, n N Te Ty r N* N,*
0.0502 0.13999 5 21 2 28.7 12.1 11 11
4 427 34 13

0.09846 0.24111 5 21 2 14.5 11.6 11 11
4 22.2 4.1 13

6 29.4 0.8 15

0.14722 0.25297 6 21 4 17.6 13.1 11 14
6 23.0 6.3 16

8 28.5 2.6 18

0.19507 0.30647 6 21 4 13.8 16.0 11 14
6 17.8 8.7 16

8 22.0 42 18

0.24163 0.34842 6 21 6 14.5 11.1 11 16
8 18.3 7.0 18

10 21.8 3.6 20

0.28664 0.41668 5 21 6 11.6 8.4 11 15
8 14.56 3.8 17

10 173 1.6 19

0.33014 0.43727 5 21 6 10.7 14.7 11 15
8 13.1 8.3 17

10 15.7 4.5 19

0.37254 0.47479 4 21 6 8.7 19.1 11 13
8 11.1 6.5 15

10 13.4 3.2 17

0.41665 0.49417 3 21 8 9.6 6.3 11 14
10 11.8 3.2 16

* N, is the number of multiplications per ss.mtgle for the optimum FIR filter; N
is the number of multiplications per sample for the equalized elliptic filter.

these three sets of filters are given in Tables I through III. Included
in the table are the filter specifications (81, 82, Fp, F,); the required
elliptic order n; the required FIR filter duration N; the equalizer
order n,; the average passband delay, 7, (in samples), of the equalized
filter; the percentage ripple, r, in the passband group delay of the
equalized filter; and a comparison between the number of multiplica-
tions per sample required in both the optimum FIR filter and the
equalized elliptic filters. The data in these tables indicate that to
achieve equalization to within about a 3-percent error requires on the
order of 30 percent more multiplications per sample for the equalized
filter than for the optimum FIR design, although in most cases the
unequalized elliptic filter was more efficient than the optimum FIR
designs. Thus it would appear that, at least for these restricted results,
if constant group delay is required in addition to the equiripple magni-
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Table |l — Comparisons between optimum FIR and equalized
elliptic digital filters

(Set 2: F, = 0.25, § = 0.02, 8, = 0.001)

F, n N n, To r N* N2*

0.4893 2 11 2 3.3 1.2 6 6
4 5.6 0.1 8

0.44816 3 13 2 4.5 9.4 7 8
4 7.3 1.0 10

0.39146 4 19 2 5.9 256.1 10 9
4 8.8 8.0 11

6 11.9 2.2 13

0.34153 5 29 2 8.4 37.4 15 11
4 10.6 21.6 13

6 13.7 11.6 15

8 16.9 5.6 17

10 20.3 2.4 19

0.30639 6 45 + 13.8 34.7 23 14
6 16.0 25,0 16

8 18.7 16.9 18

10 22.0 11.7 20

12 25.5 7.9 22

14 29.4 5.2 24

16 32.8 3.2 26

18 36.3 1.8 28

* N is the number of multiplications per samﬁle for the optimum FIR filter; N,
is the number of multiplications per sample for the equalized elliptic filter.

tude characteristics, then the optimum FIR filter is always more
efficient than an equalized elliptic filter. It should also be noted that
the delay of the optimum FIR filter [(N — 1)/2 samples] was always
less than the delay of the equalized elliptic filter.

The examples of Tables I through III considered filters where the
order of the unequalized elliptie filter was six or less. It can be argued
that, for higher-order elliptic designs, the relative efficiency of the
elliptic filter over the optimum FIR filter is far greater than for lower-
order designs; hence in these cases perhaps the equalized filter may
still be more efficient than the optimum FIR design. This conjecture
turns out to be untestable because high-order elliptic filters have a
peak passband delay 7,.x which is much larger than for low-order
filters, hence the order required for the equalizer becomes extremely
large and thus is not even practical to consider if equalization over
the entire passband is required. To illustrate this point, Fig. 9 shows
the group delay of a 10th-order elliptic low-pass filter with F, = 0.25.
Using eq. (30) to get an estimate of n, we arrive at a value of n, = 45.
Since this value of n, is only an underbound on the actual order of the
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Table IIl — Comparisons between optimum FIR and equalized
elliptic digital filters
(Set 3: F, = 0.25, §, = 0.02, 5, = 0.0001)

F, n N e T r N* N,*
0.49661 2 11 2 3.3 1.2 6 6
4 5.6 0.1 8

0.47564 3 11 2 4.5 9.1 6 8
4 73 1.0 10

0.43591 4 17 2 5.8 23.3 9 9
4 8.8 7.0 11

6 11.8 1.7 13

0.38983 5 21 2 8.0 33.4 11 11
4 10.3 18.0 13

6 13.5 8.7 15

8 16.7 3.7 17

10 20.0 1.4 19

0.34878 6 31 4 12.8 28.9 16 14
6 15.5 19.2 16

8 18.2 11.8 18

10 22.0 7.7 20

12 25.3 4.3 22

14 28.8 2.2 24

* N, is the number of multiplications per sample for the optimum FIR filter; N,
is the number of multiplications per sample for the equalized elliptic filter.

equalizer, it is clear that it is not practical to try to obtain such a
high-degree equalizer.

Another interesting question which arises when one considers the
idea of equalizing an IIR filter is how does the cascade combination
of an elliptic filter and an all-pass equalizer compare to the optimum
IIR filter which best approximates both the desired magnitude and
group delay characteristics? It is clear that the optimum IIR filter can
be no worse than the cascade; the question remains as to how much

@ 100
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E 80 - n=10
& Fp =025
= F; = 0.26980
< 60
N 8¢ = 0.02
7 = 0.001
I a0l 2
w
o
& 20
ERR
©
[G] 0 | -
0 0.1 0.2 03 0.4 0.5

NORMALIZED FREQUENCY

Fig. 9—The group delay of a 10th-order elliptic filter with F, = 0.25.
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better it can be. There is no clear-cut answer to this question. However,
based on our experience with equalized elliptic filters, several observa-
tions can be made. (We shall use the z-plane pole-zero plot of a typical
equalizer filter, shown in Fig. 10, to aid in understanding the nature of
the equalized filter.)

(z) The zeros of the elliptic filter lie on the unit circle to give

good stopband attenuation.

(#7) The zeros of the equalizer lie outside the unit circle to give
positive delay.

(#77) The poles of the elliptic filter are constrained by the transition
width requirements of the low-pass filter.

(7v) The poles of the equalizer lie approximately on a circle of fixed
radius, and are approximately equally spaced in the passband.

If the zeros of the optimum filter are not constrained to lie on the
unit circle, then each second-order section will require four multipli-
cations per sample, rather than the three multiplications for each
second-order section of the elliptic design and the two multiplications
for each second-order section of the all-pass equalizer. Based on the

ELLIPTIC FILTER

ALLPASS
~~ EQUALIZER

X

n=6

ng =12

Fp = 0.25

Fs = 0.30639
&§1=0.02

&2 = 0.001

X

Fig. 10—The pole-zero positions of an equalized elliptic filter.
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above observations, it seems unlikely that there is much to gain by
using the optimum IIR filter over the equalized filter.

Vill. GENERAL DISCUSSION

In this paper we have considered only one basis for comparison
between optimum FIR filters and equivalent IIR designs, that mea-
sure being the number of multiplications per sample required in the
standard method of realization for each of these filter types. The
justification for this measure is that in hardware (and generally in
software) the number of multiplications per sample is an excellent
measure of the complexity required in the implementation as well as
the factor which determines the maximum throughput rate of the
system.® However, there are many other ways for comparing these
filter types when one takes into consideration the various finite word-
length effects which occur in a practical design situation. In this section
we review several of these design issues.

Among the various finite word-length effects are roundoff noise,
both uncorrelated and correlated (e.g., limit cycles), and coefficient
quantization sensitivity. For direct-form FIR realization, the peak
roundoff noise can easily be made to be less than 3 of the least signifi-
cant bit by accumulating partial sums in an extended length register
and then rounding the final result. For cascade IIR filters realized
with fixed-point arithmetic, the roundoff noise problem is inherently
related to the dynamiec range problem,” and involves the concepts of
pole-zero pairing and section ordering. Jackson'® has shown that with
reasonable pairing and ordering the uncorrelated roundoff noise vari-
ance can be minimized. However, even in the best of situations, the
roundoff noise is equivalent to several bits. In terms of correlated
roundoff noise, i.e., limit cycles, the direct-form FIR realization has no
zero-input limit cycles (because no feedback is present), whereas the
cascade IIR realization will generally exhibit zero-input limit cycles.
Kaiser!! has extensively studied these limit cycles and has developed
bounds and estimates for their amplitude and frequency.

The coefficient quantization problem is one of the most difficult
finite word length effects to treat analytically. Rounding of infinite
precision filter coefficients to a fixed number of bits alters the overall
frequency response of the filter in a complicated manner. Avenhaus'
has shown that straight rounding of the infinite precision filter co-
efficients is generally inferior to optimizing the filter performance over
the finite set of fixed precision filter coefficients. However, there are
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no general procedures for performing this optimization, nor are there
any guarantees of convergence of the existing methods. Furthermore,
in many cases the advantage of optimizing finite precision coefficients
over straight rounding of the infinite precision coefficients is small.
Thus for the case of coefficient quantization neither direct-form
realization of FIR filters nor cascade realization of IIR filters seems
to offer a relative advantage here.

Thus it is difficult, if not impossible, to be quantitative in comparing
FIR and IIR filters based on anything other than number of multipli-
cations per sample. This is why we have used this measure throughout

this paper.

IX. SUMMARY

In this paper some comparisons were made between equivalent FIR
and IIR digital filters based on the number of multiplications per
sample required to realize these filters. In the case of low-pass filters
with quasi-equiripple magnitude characteristics, IIR elliptic filters
could generally be realized more efficiently than equivalent linear phase
FIR filters. When the additional requirement of constant group delay
in the passband was added to the specifications, comparisons showed
the linear phase FIR filters to be more efficient than group-delay-
equalized elliptic IIR filters.

Additionally, a novel set of design charts for determining the
minimum filter order required to meet given filter specifications for
both digital and analog elliptic, Chebyshev, and Butterworth low-
pass filters was presented. Explanation of how to use these charts to
gain insight into the various filter parameter tradeoffs was also given.
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