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Queues arising in buffers due to either random interruptions of the
channel or variable source rates are analyzed in the framework of a single
digital system. Two motivating applications are: (i) multiplexing of data
with speech on telephone channels and (%) buffering of data generated by
the coding of moving tmages in Picturephone® service.

In the model a source feeds data to a buffer at a uniform rate. The
buffer’s access to a channel with fixved mazimum rate of transmission is
controlled by a switch; only when the switeh is closed (‘“‘on’’) is the buffer
able to discharge. The on-off sequence of the switch 7s indicated by a
burst process which is a key element in this paper. In such a process,
long periods during which the switch stays closed alternate with periods,
called bursts, during which the on-off sequence is a first-order Markov
process. The length of a burst s randomly distributed. This is a general-
ization of the memoryless burst process considered in an earlier paper.!
In that paper we gave formulas for the efficient computation of various
functionals of the queues arising in the system. Now we extend these
formulas to hold for the generalized class of burst processes.

I. INTRODUCTION

In a recent paper' we considered the problem of buffering the output
of a uniform source whose access to a given transmission channel is
controlled by a burst process. We gave formulas for efficiently com-
puting various functionals of queues that form in such a communica-
tion system when the controlling burst process is memoryless.

In the present paper we generalize the controlling process to one
which is first-order Markov within a burst. This generalization con-
siderably increases the usefulness of the formulas. Consider, for ex-
ample, the two motivating applications discussed in Ref. 1: () multi-

* The sequence of names was decided by coin tossing.
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plexing of data with speech on telephone channels*® and (%) buffering
of data generated by the coding of moving images in Picturephone®
service.” For the first application, analysis of data shows? that it is
necessary to go to a first-order Markov process to adequately model
the burst phenomena in speech signals. In the Picturephone applica-
tion, although the correlation of data rates within a frame is negligible,
it is quite significant from frame to frame.® For frame-to-frame coding,
therefore, the present model with memory becomes necessary.

The system under consideration is shown in Fig. 1. The source emits
data uniformly at the rate of 1 symbol per unit time. The transmission
rate of the channel is (k + 1) symbols per unit time, where % is some
positive integer. The on-off pattern of the switch is indicated by a
binary burst process: E(j) is either 0 or 1 for j =0, 1, 2, ---. If
E(j) = 0 the switch is closed for the time duration [j, j + 1); other-
wise, the switch is open. We assume that there are long periods during
which E(j) = 0 and that at the end of every such period the buffer is
empty. The activity separated by such periods we call a burst. We
assume bursts to be independent of each other, and the burst length
to have a probability distribution which is either geometric or is a
weighted sum of geometric distributions. Within a burst, {E(j)} is
assumed to be a homogeneous two-state M arkov chain with transition
probabilities 8, and 8, given by

0, 2 Prob. {E(j + 1) = 1|E(j) = 0} (1a)
9, 2 Prob. {E(j +1) =0|E(j) =1}, j=0,1,2 ---. (1b)

These two parameters completely specify the Markov chain; the
probabilities of the other two possible transitions are, of course, given
by

1 — 6, = Prob. {E(j + 1) = 0|E(j) = 0}
and
1 — 8, = Prob. {E(j + 1) = 1|E(j) = 1}.

We shall assume that 0 < 8, <1 and 0 <8, < 1. If 6, + 8, =1, E;
becomes a Bernoulli sequence of independent random variables, which
is the case treated in Ref. 1.

In subsequent sections of this paper we will obtain the results sum-
marized below.

In (i), (i%), and (4i), we assume the switch to be controlled by an
infinitely long sequence generated by the Markov chain described by
(1) ; these three results are therefore of interest in situations where the
distribution of burst lengths is not known accurately.
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Fig. 1—Switched communication system.

(z) We derive a recursive formula for the steady-state distribution
of buffer content for finite buffers, the recursion being with respect to
the buffer size, N.

(77) Let T be the steady-state probability of a buffer of size N
being full when the channel is inaccessible. (7)) therefore, is the
steady-state probability of a transmission fault.) We show that

1 1 1 1—6,—6, 1 1—60, 1

T (N+k-+1) = 1 — 8, T (N+E) + 1 — 8, TN+ - 1— 8, TNy

where (k 4+ 1), as previously defined, is the transmission rate of the
channel. We show that the steady-state probability of the buffer
being full is T¥?/(1 — 8s), and therefore satisfies the same recursive
relation.

(772) For a buffer of size greater than N, let F¥) denote the mean
time to first passage through the level N. We show that /7Y satisfies
the recursion

1 B — s o
(N k1) = (N+4k) F(«\‘Fl)
F i—al +3 1—06,

1 — 91 + 0
N .
l - 92 F + —_ 02

The next two results are of interest when the distribution of burst
lengths is well-approximated by a weighted sum of geometric
distributions.

(iv) Let G'Y) be the probability of overflow for a buffer of size N
during a burst. Then if the burst lengths have a geometrical prob-
ability distribution with parameter pli.e., Prob. (burst length = 7)
= p*~'(1 — p)}, we show that

1 1 1 p(l — 8, —8:) 1 1—6 1

GONFED = (1 — @,) GVF0 + -6, GO T 1 — g, GV

This result generalizes to the case when the burst length distribution
is a sum of geometric distributions.

(») We derive a closed expression as well as a recursive formula for
the mean time for first passage through a level N during a burst
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conditioned on the occurrence of an overflow. The recursion is with
respect to N, and the bursts are assumed to be distributed as in (iv).

(vi) We determine the asymptotic behavior of all the formulas
in () to () as N — . For instance, we prove that, as N — =,
(1/G™) ~ s¥ where s is the unique positive real root of a particular
polynomial, such that s > 1/p > 1.

The closed expressions are all valid for £ = 1 and N = 0, and the
recursions as stated above are valid for N = 0. The recursive formulas
provide very efficient means for computation of the various functionals,
particularly in design studies where a whole range of buffer sizes is to
be investigated.

1.1 Notation

Whenever necessary we will use a superscript in parentheses, e.g.,
x| to indicate that the quantity corresponds to a buffer of size M
(or to the level M in a buffer of size greater than M). If x is a vector,
then the superscript (M) will also indicate that the vector x is
(M + 1)-dimensional with components z{*?,7 = 0, 1, 2, - -+, M. These
two uses of the superscript are consistent because the dimensions of
all vectors defined in this paper are related to buffer size (level) in this
manner. Whenever the superseript is missing, the standard value (N)
will be implied.

We will use lower-case boldface letters to denote column vectors,
upper-case boldface letters to denote matrixes, and a superseript T' to
denote the transpose. We will denote by I the identity matrix, by 1
the vector whose components are all equal to 1, and by e; the vector
whose jth component is 1 and the rest 0, e.g., ef = (1,0, ---, 0).

Il. EQUATIONS OF THE PROCESSES
Let B(t) be the number of symbols in the buffer at time ¢. Then for
a buffer of size N

B(t+1)

Max [B() — k, 0] if E() =0 (2a)
Min [B(t) + 1, N] if E(t) = L. (2b)

In the last equation the assumption is that if the channel is inaccessible
and the buffer is full, then the current source symbol is discarded and
the buffer remains full.

In order to study the evolution of the buffer content process, it is
convenient to introduce two (N 4+ 1)-dimensional vectors p(?)

I
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= {po(t), -+, px(t)} and q(t) = {g.(0), -+, gn()} defined by the
equations

pi(t)
q:(t)

Under the assumption that {E(f)} is the two-state Markov chain de-
fined by (1), it is straightforward to show that p(t) and q(¢) represent
a 2(N + 1)-state homogeneous Markov chain. For

Pr{B() =i, E() =0}, i=0,---,N (32)
Pr{B(t) =4, E(t) =1}, i=0,---,N.  (3b)

>

pot+1) 2 Pr{B(t+1) =0 E{+1) =0}

= ﬁpr {B(t) =i, E(t + 1) = 0, E(t) = 0}

- éPr (E(t+1) = 0|E(®) = 0, B(t) = i]

X Pr{B(t) =i, E(t) = 0}

= (1 - 6) ¥ pi00), @

where the last step follows from the Markov property of {E(f)}.
Similarly,

pl(t + 1) = (1 - 91)?-’“:(0 + Bﬂqifl(f); 1= ]-s 21 Ty N — k’:

= 0xq:1(1), i=N—-k+1,--- N —1,
= Oafqi_1(t) + qn (D)}, 1 = N. (5)
Also
&
qi(t + 1) = 01 Z pJ(‘): L= 0)
=0
= Opipe(t) + (1 — 02)qia (D), i=12 ---,N —k
= (1 — 63)qi1(1), it=N—-k+1,---,N—1,
= (1 — 62){qi1(t) + qi(D)}, i =N. (6)

Equations (4), (5), and (6) can be written conveniently in matrix
notation as

p(t+ 1) = (1 — 6)Bp(¢) + 6:Aq(t) (7a)
q(t + 1) = 6,Bp(t) + (1 — Bz)Kq(i). (7b)
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Here the (N 4+ 1) X (N 4+ 1) matrixes B and A are defined as

(k + 1)
—
1 1---1 010 0 0
1 1 1 0
A T . : - 1 .
B = 0 1| N—k K2 ©.0 ()
: 0 1 1
N
Notice that the composite matrix
(1 —6,)B 8,A
[ 6,B (1 — 8,)K )

is stochastic (nonnegative elements and every column sums to 1) and
independent of t. Equations (7a), (7b) are, therefore, the transition
equations of a 2(N + 1)-state homogeneous Markov chain.

2.1 Equations for some new probabilities

For many of the derivations in the succeeding sections (e.g., mean
first passage time, probability of no overflow, ete.) it is convenient to
define certain new probabilities r;(t) and s:(¢), i = 0, 1, ---, N. Con-
sider a buffer of size greater than N and let X (f) be the event

‘o |B(s) £ N}, i.e., the event that B(s) does not exceed N at any
of the time instants s = 0, 1, 2, - - -, t. Then

ri(1)
s:f) 2 Pr{B(t) =i, E(t) = 1, X(t)}, i=0,---, N. (10b)

We define the (N + 1)-dimensional vectors r(t) and s(f) with com-
ponents {r,(t), -+, ra(f)} and {s,(t), - -+, sw(D}, respectively.

In a manner analogous to the derivation of eqs. (7a) and (7b),
we can derive recurrence relations giving r(t + 1), s(t + 1) in terms
of r(), s(t). Thus, fori =0,1, ---, N,

rt+1) 2 Pr(Bit+1) =1 Et+1) =0 X(t+ 1)
— Pr{B(t+1) =4, E(t+1) =0, X()}
—(1—0)Pr{B(t+1) =1 E{) =0, X))
16, Pr(B(t+1) =14 E®)=1X@®}, (@11)

>

PI‘[B(!)=Z, E(t’)=01X(t)}) 1 =0, "°1Nr (10a)

where the last equation follows from the Markov property of {E(f)}.
As before, B(t + 1) and E(t) determine the possible values of B(t)
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and we get
k
rit+1) = (1 —0) Lr(®), =0,
=0
= (]. - B])T£+k(i) + 8231'71@), 1= 1: 2, ] N - kl
828.'_1“), t=N—Fk+ 1, ey, N. (12)

Comparison of eq. (12) with egs. (4) and (5) shows that for
t=0,1, -,
r(t + 1) = (1 — 61)Br(f) + 6:As(t), (13)

where A is obtained from A by setting to 0 the single nonzero entry
on its main diagonal, i.e.,
A=K — eyel (14)
Analogously to (13) we can also show that
s(t + 1) = 6,Br(t) + (1 — 8;)As(2). (15)

The transition equations (13) and (15), although very similar to
eqs. (7a) and (7h), differ fundamentally from them in that A, and
consequently the matrix

(1 —-46)B 8.A
[P0 o oo ] (16)
are not stochastic.

We close this section by deriving from (13) and (15) a useful second-
order recursion involving s({ + 2), s(¢ + 1), and s(¢). Multiplying
(13) by 6y, (15) by (6 — 1), and adding we get

Gr(t +1) = (1 —8ys(t + 1) — (1 — 6, — 02)As(2). (17)
From (15),
st +2) =6Br(t + 1) + (1 — @)As(¢ + 1). (18)
Premultiplying (17) by B and adding to (18) gives
s(t+2) =[(1—-6)B+ (1—0,)A)s(t+1) — (1 — 6, — 6:)BAs(1),
t=01,2 ---. (19)
As we will have to refer frequently to the recursion (19) it is convenient
to define

Il

C=[(1—6)B+ (1 —6)A]
and (20)
D — (1 — 6, — 6,)BA

>
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so that eq. (19) becomes
s(t + 2) = Cs(t + 1) + Ds(¥), t=01,2 ---. (21)

lll. INFINITELY LONG SEQUENCES

When the burst length distribution is not known, useful information
can still be obtained by considering the behavior of the buffer content
when the switch in Fig. 1 is controlled by infinitely long sequences
generated by the Markov chain (1). In this section we derive various
functionals for such a situation.

3.1 Stationary distributions for finite buffers

In egs. (7a), (7b), if we set p(t + 1) = p(t) = p and q(t + 1)
= q(f) = q, then the vectors p = {po, -+, px} and q = {po, - - -, qn}
give the limiting distributions? as ¢t — o of the buffer content process
defined in Section II. The limiting distributions p, q are thus the solu-

tions of
p = (1 — 6:1)Bp + 6,Aq (22a)

q = 6:Bp + (1 — 6,)Aq (22b)
with, of course, the normalization
17(p +q) = 1. (23)

In this section we derive a simple formula for computing the vectors
p and q for a given buffer size (N + 1) in terms of p and ¢ for a buffer
of size N. As a first step we simplify the problem by eliminating p from
eqs. (22a), (22b). Multiplylng (22a) by 6; and (22b) by (61 — 1) and

adding gives
1—4 1—60,—2¢
p- (152 )a- 4"k (24)
1 1

Substituting (24) into (22b) gives
[I—(1—6)B— (1 —6)A+ (1 —6 —6)BAJg=0. (25
Premultiplying (24) by 17 and subtracting from (23) gives

61
Tq =
1 0, + 6, (26)

since 17A = 17. It is important to note that the N 4+ 1 component
equations in (25) are not independent. Indeed, since 175 = 17B = 17,
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it is clear that the first equation is just the sum of the rest and may
therefore be ignored. The remaining N equations are linearly inde-
pendent and we can solve them for go, - -+, gy_1 in terms of gy, and
then obtain gy from (26). Finally, we can obtain p from (24).

In carrying out the solution of (25) and (26) in this manner the
recursion we are looking for becomes obvious if we define the (N + 1)-
dimensional vector yV) with components given by*

y = qf0/qf",  i=0, -, N. @7

[The meaning of the superscript (N) is given in Section 1.1.] Equations
(25) and (27) give

g™ =1 (28a)
9
N — 2
o = 2 (28b)
{
o = YL (28¢)
1—6,
M 1 -9, —8 9
N Yk 1 2, (V) 2
vn =1 _a T 1o YV T 1o, (28d)
(#04] —_ oy .
T 1 1 . 5 ® 0 i g Yk 1> k41 (28e)

The important fact about (28) is that the superseript (N) is superfluous.
If N is changed to N + 1, for instance, in (28) we see that

gy = ™M = ... N, (29)

and the last component of ¥+ js

1 , 1 —6; — 6 1—0
yf\"\;——’i” = 1= 0, y& + ﬁ' Y — 1 — 8: yi2x.  (30)

Thus the vector y ¥+ is obtained from y ‘¥’ by merely appending to the
components of y*) one component given by (30). To complete the
recursion for ‘¥ we note from (26) and (27) that

1 0, + 6, \ &1 (N+1

* Note that ¢’ 5 0, for otherwise the solution ¢ of (25) is the null vector which
cannot satisfy (26).

FORMULAS ON QUEUES—II 433



and therefore, from (29) and (30),

1 = i b1 + 6: yuv+1)
gih? N 6, M
1 6, + 6,

TP T a1 — 6)
X I:y}é‘” + (1 —06,— ez)yﬁrN-fq—k — (1 — )yl (32)

Equation (32) gives ¢’ in terms of the components of q‘¥.

3.2 Probability of transmission fault and of buffer being full

Frequently it is adequate to determine the variation with buffer
size of the components p§" and ¢§" rather than of the complete dis-
tributions p‘ and qV. Notice that the probability of transmission
fault Tt is, by the definition given in Section I, identical to ¢§”;
and the probability that a buffer of size N is full is clearly p§” + .
It is therefore of interest to obtain recursions for these quantities
without having to compute the entire p and g vectors from the re-
cursions derived in Section 3.1.

By premultiplying eqs. (22a) and (22b) by e4(2£{0, 0, -+, 0, 1})
we get
elp = fuefhq = 2 _efq (33)
1= 6,
or
r _ e£q _ T(N)
eN(p+q)”1_62_1_621 (34)
ie.,
(N (N _— 1 (N)
Px + gy’ = 1—¢ -T .
2

It therefore suffices to obtain a recursion for T'¥). Suppressing the
superscript (N) from (28e), and summing over the index ¢ from k + 2
to N + k + 1, we get

N+k+1 1 N4k 1—6, — 8, NH1
2 y‘-+—1_i—92——2 2 i

ik 42 =1, i=FF1 i=e
1—6, X
1 _ 02 ig]. yJ" (35)

Since T™) = ¢, (31) is used to relate T™ to {y:}. Now substituting
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the values of |y:} given in (28) we obtain

1 1 1 1—6,—6: 1 1—6, 1 ~0
TOVFED 1 — g TVFE 1 — @, TOFD + 1—6, T 7
N=z1 (36)

Equation (36) is the recursion quoted in Section L.

3.3 Mean first passage time

Let N be a positive integer and let the buffer be of size greater than
N. Let an infinitely long burst start at ¢ = 0, with the buffer initially
empty, and let F) denote the mean time required for the buffer
content to first exceed N. The manner in which F¥) depends on N
is a useful guide in designing an adequate buffer, especially when the
distribution of burst lengths is not accurately known. In this section
we derive a recursive formula for F¥?, the recursion being with respect
to the level N.

By definition, the Nth component of the vector s() defined in eq.
(10b) is the probability that the level N is exceeded for the first time
at the instant ¢ + 1. Therefore,

F = 3 (t+ Dsn(0)

el g (t + 1)s(0). (37)

In the appendix we show that if A is an eigenvalue of the matrix de-
fined in (16), then |A| < 1. This proves the convergence of the series
in (37).

We proceed by obtaining an expression for 3.2, (t + 1)s(t) by the
method of generating functions. Let

SG) 2 ¥ 28 (1) (38)
s0 that
S'() = £ (t+ De's () (39)
and, in particular,
S'(1) = ¥ (t+ Ds(). (40)
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From the equation, (21), governing the evolution of {s({)} we find that
S(z) = [I — 2C — 22D *{zs(0) + 22s(1) — 2*Cs(0)}. (41)
It is shown in the appendix that the above matrix inverse exists for
all |z| £ 1. Following the procedure already outlined [eqs. (39) and
(40)7] we find that
i (t+1)s(t) =[I-C—D][C+2D]J[I-C—DI{s(0)+s (1) —Cs(0)}
t=0
+[I-C—D]'{s(0)+2s(1)—2Cs(0)}. (42)

The resulting expression for F(, from (37) and (42), is further
simplified by using the following identities:

el = L17[1- ¢ - D],
01

and
17[C + 2D] = (61 + 6)17 + (1 — 0, — 261)ef .
Then
pan = 9t + b2 17[1 — € — DT{s(0) — (1 — 62)Bs(0) + 6:Br(0)}

+ (17r(0) — 62)/61.  (43)

The above expression for F holds for arbitrary initial states of the
buffer. However, as mentioned in the beginning of this section, in
deriving a recursive formula for F/¥ we will assume the buffer empty
at t = 0. In that case, r(0) = reo and s(0) = (1 — 7)eo with e[0, 1].
Substituting in (43) we get, for this special case,

FD = (6, + 017(1 — € — D) ey + 5 - (44)
We can derive a recursion for the quantity
f 2 17(1 — C — D) e (45)

from which the recursion for F¥) will follow immediately. The pro-
cedure is very similar to the one used to derive (36). Thus let
xT = (20, 21, - - -, n) be the solution of

(I—C—D)x = e (46)

Then, since 17(I — C — D) = e, we get zy = 1/6,. We may re-
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place the first of the component equations in (46) by this relation.
Exactly as in (27) and (28), we find that the components z{"’ (z = 0,
-+, N) of the vector x¥) are, in reverse order, the first N + 1 numbers
#; in the sequence generated as follows:

“ 1

B0 = B, (47a)

fi=—1 3, i=1, ek (47b)
[ 1 — 6, i1, y y oy

L1 1—6—6, 16, .

€T = Tit + b1 0 . 01 Lik—1, 1> k. (478)

1— 6 1—6 " 1-—6

Summing (47¢) over i from k 4+ 1 to N +k + 1 and noting that
J = 3Nz, we get

1 ]. - 91 - 32 l - B]
(N+E+D) (N+k) _ (v = 7 e
! l—ﬁzf 1 — 6, 7 1_02f
o k=l 1—6:—86:,
R R A T e e
1
- 1 — 62, (48)
where the last step follows from (47a), (47b). However,
JN = {FW) — (7 — 8:)/0:}/ (81 + 62).
Substituting in (48) we get
. 1 v 1 - 61 — Bg ]- - 61
MN+E+HD) — 7 FUIN+K) P . /L O\ o §
I 1 -6, ! + 1 -8 F 1 — 86
408 N 12 . (49)
1—286;

Interestingly, = does not appear explicitly in the recursion (49); it
does, of course, affect the initial conditions [i. e., the values of F©),
coe, ] via eq. (44).

It is interesting to note that the foreing term (6, + 6.)/(1 — 62) in
(49) can be eliminated. By direct substitution it is seen that if 8, # k6.
then F\W) — (8, + 6.)N/ (8, — k@) satisfies the homogeneous recursion
(49). When 8, = k8, the same is true of F ) — (8,4+8,)N?/k(2—6:—6,).
These transformations which reduce (49) to the homogeneous form
will be of use when we investigate the asymptotics of solutions in
Section V.
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IV. BURSTS WITH GEOMETRICALLY DISTRIBUTED LENGTHS

When information is available concerning the distribution of burst
lengths we can compute design parameters which are more realistic
than the quantities 7™’ and F¥’ discussed in the preceding sections.
Clearly an event is of consequence only if it occurs within a burst.
Its probability of occurrence at the fth instant must therefore be
weighted by the probability that the burst length exceeds ¢ If the
distribution of burst lengths is the weighted sum of geometric dis-
tributions, i.e.,

J
Prob. {Burst length = i} = Y 8:(1 — pi)ei |,
k=0
i=1,2 ---; 0<pr <1, (50)

then simple recursions can be obtained for such weighted averages. To
keep the derivations simple we have only treated the case J =1
since, as shown in Ref. 1, generalization to higher values of J is straight-
forward. In Sections 4.1 and 4.2 we derive such recursions for the
probability of overflow within a burst and for the mean time to first
cross a level within a burst.

4.1 Overflow within a burst

For a buffer of size greater than N let G‘Y) denote the probability
that the buffer content exceeds N (at least once) during a burst. It
is clear that G¥) also equals the probability that a transmission fault
oceurs (at least once) during a burst, when the buffer size is N. We call
GY) the probability of overflow.

By its definition in (10), sy (t) is the probability that the buffer
content exceeds N for the first time at ¢ 4 1. Therefore,

G A ¥ (1) Prob. {burst length = (¢ + 1)}

t=0

Il

g sn()p*

el ?:j;o o's(0). (51)

As proved in the appendix, the matrix in (16) has all its eigenvalues
strictly within the unit circle. Therefore the series in (51) converges
forp = 1.
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Multiplying (21) by p**? and summing over ¢ from 0 to « we get,
on re-arranging terms,

(I — oC — p’D) gﬂws(t) s(0) + p{s(1) — Cs(0))
= [I — p(1 — 6)BJs(0) + p8:Br(0). (52)

In the appendix we show that (I — pC — p?D) is nonsingular for all
p = 1. Therefore

G = ef(I — pC — pD)'[{I — p(1 — 6:)B}s(0) + p0:Br(0)]. (53)

As before, specializing to the interesting case of an initially empty
buffer, i.e., r(0) = res, 5(0) = (1 — 7)eo, with = in [0, 1], we get

GV =[(1 — n)@1 — p) + pb:1]ef(I — pC — p’D)'es.  (54)

We can obtain a recursion for G@¥) by a procedure almost identical
to that used in obtaining the recursion for T¥. Note that if z¥ is a
vector such that

(I — pC — pD)z™) = @y (55)
then the components of the vector zV!/z§" are, in reverse order, the
first N + 1 numbers in the sequence 3;, ¢ = 0, 1, 2, - - -, generated by
the relations
Z20=1 (56&)
2;=;2.'_1 i=1 --- k (56b)

p(l — 92) y y My
A _ 1 A 0(1_91—32)A #1—91,._
i = o(1 — 6,) Zio1 + 1— 6, Ri—k 1—6, 2i—k—1,
i > k. (56c)

The first component equation in (55) then gives

1 k
- = 3w, N >k, (57)
ZN i=0
where my, ---, m are the leading (k + 1) entries in the first row of

(I — pC — p?D). (The remaining components of this row are null.)
For N > 2k, each term on the right-hand side of (57) satisfies the
recursion (56¢). Therefore 1/z§" satisfies the same recursion. From
(54), since GV is proportional to z§” we find that 1/G™ also satisfies
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the same recursion, i.c., for N > 2k,

1 1 1 +p(1—81—32) 1
G o1 — 8y GOVD 1 — 6, G—b
1—6 1
T 1 -8, GED

(58)

It can additionally be shown that the above recursion holds for
2k = N > 1, by direct substitution of the initial values of G,

4.2 Mean time for first passage within a burst

For a buffer of size greater than N, let ¢ denote the time required for
the buffer content to first exceed N within a burst. Let H®) denote
the expectation of ¢ conditional to the hypothesis that the level N is
indeed exceeded within the burst. (Equivalently, H’ is the mean
time taken by a buffer of size N to first overflow within a burst, given
that an overflow does occur.) Clearly

0

HW = % (t + 1)sy(t) - [Prob. that burst length = ¢ 4+ 17/G‘™
=0

Il

gﬂ (t + Dsw()ot/GM

— el (L + Da's(t)/GM. (59)

t=0

A comparison of (51) and (59) shows that
0 1
HW = de (PG(N))'GT”‘_')- (60)

Multiplying (53) or (54) by p and differentiating with respect to p
we can get closed expressions for H ¥ for arbitrary initial state and for
the buffer initially empty. The resulting expressions are rather un-
wieldy.

We can also use (60) to get a recursion for H ¥, Thus let

A 1
Vo S e (61)
Then
d (1 1
m =2 =) _—_
#e =3 (75 ) o
U
= - %m, (62)
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where UM 2 (d/dp) V™). Here V) satisfies the recursion (58),
and U satisfies a recursion obtained by differentiating the recursion
for V), Thus

. 1 . p(l—ﬂl—ﬂg) . 1—81 .
(N) — 7(N—1) PAZ 7 U1 7 P2) yr(N—k) (N—k—1)
v P(l—gz)v . 1—46, v 1_02V
and
1 (1 — 6, — 62) 1—6,
(N) — = [J(N—-D) A UL YR =k — = Ul rr(N—k—1)
A s R =6

— ,Bz(Tl—Tg) Vi 4 (1—?0—18_2—92) VW=k)_ (63)

V. ASYMPTOTIC BEHAVIOR

In this section we discuss the behavior as N — « of sequences gen-
erated by the recursion

_ 1 _H(1_51—52)(p
YN ,u———(l — 6‘2) PN-1 —1 — b, N—k

1—8
+ rjé en—k—1 = En, (64)

with N=4%k+1, k+2 --- and 0<8, <1, 0<8 <1, and
0 < g = 1 the parameter ranges.

Every recursion derived in this paper can be put into the canonical
form (64) by simple manipulations; furthermore, all but the recursion
(63), Section 4.2, correspond to the homogeneous form of (64), i.e.,
ty = 0. In formulas for infinitely long burst (Sections 3.1, 3.2, 3.3)
the parameter g4 = 1; in formulas for geometrically distributed bursts
(Sections 4.1, 42) 0 < u = p < 1.

Due to the linear, time-independent nature of the recursions in (64),
the behavior of the solutions is determined by the sequence {¢y} and
the roots, \;, of the characteristic polynomial:

COM ) 2 p(l — BN — Nk — p2(1 — 8 — B)A + u(l — 6y).  (65)

For the special case u = 1 the relevant properties of the roots were
derived in Ref. 2. Here we derive the properties for arbitrary p in the
range 0 < p = 1. These properties are summarized in the following

Lemma: For the range of parameters specified above, (a) C (X, p) has ex-
actly two positive real zeros Ay and A\, which lie in the ranges [u(1 — 61)]
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wlk \

<_RADIANS]

Fig. 2—Proof of lemma.

< (A)¥ 2 poand 1/u £ N\ < 1/p(1 — 8,) (the equalily signs are un-

necessary unless p = 1); (b)* the remaining zeros all satisfy [Nl * < .

Proof: (a) Regardless of the sign of (1 — 6; — 8,) there are two sign
reversals in the coefficients of C'(A, g). By Descartes’ rule, therefore,
C (A, 1) has at most two positive real zeros. On the other hand, suc-
cessively setting A =0, M = (1 —6), N =p, A =1/p, A =1/
u(1 — 6,) we find that C (), 1) takes on the respective values u(1 — 61),
120,0,[ (1 —0,) V%, —pfy (1 —p®01%), —6y (u=*—p), and pbis/ (1—62).
Also C(\, u) — +® as A — + . For 0 < u < 1, therefore, there are
exactly two zeros in the respective ranges asserted. For 4 = 1 further
examination is required to decide whether one or both of these zeros
become exactly equal to 1. Noticing that C(1, 1) = 0 and (8/dX)
C(1,1) = 6, — kb, it follows that when u = 1, either A, or A, or both
become equal to 1 according as 6, — k8, <0, >0, or =0. (b) We
will prove the stronger result that the remaining zeros lie strictly
within the contour I' (Fig. 2) defined by the following segments in the
complex A plane:

A = Redllk) 0= R < plix (66&)
= pllkei® ;-c’ <§<2r— % (66b)
= Re—iGr—r/k) 0< R < pl* (66¢)

To prove this let us define
Cy 2 A[(1 — )N — (1 — 6, — 62)] (67a)
Ca 2 N — u(1 — 1) (67b)

*We are tacitly assuming k > 1. For k = 1, C(, u) becomes a quadratic with
both roots positive and real in the ranges given in (a).
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so that
C(?\, ,LL) = Cl — Cg

~e(G-1) @

We will show that Re[C;/C, — 1] < 0 for all A on the contour T.
Then by an obvious modification of Rouche’s theorem,' it follows that
C(\, p) and C, each have the same number of zeros within I'. As C,
has k& — 1 zeros within T, this proves the lemma.

To show that Re (C1/Cs — 1) < 0 for all A on T, let us consider
separately the circular arc defined by (66b) and the radial lines defined
by (66a) and (66c).

(7) On the circular are (66b) straightforward manipulation gives

|CI|2 — “2+2H€[02[2
= — 20,u2(2 — 6; — 62)(1 — cos k) = 0. (69)

For u < 1, therefore, |Ci/Cs| < 1, hence Re (C1/Cy — 1) < 0.
If u = 1, this argument remains valid except at points where
cos kf = 1, for then |C1/C:| = 1. However, if cos kf = 1 and
g =1, we find that C/Cs — 1 = e — 1, whose real part
<Oforw/k =6 = 27 — n/k.

(72) On the radial lines (66a) and (66¢),

Re(%:wl)

= uR (1 — 8, 116,

CRF+u(l —6y)

which is obviously <0 for R* = p.

)cos% -1, (70)

All the recursions of this paper except (63) correspond to the homo-
geneous form of (64), i.e., & = 0. Solutions of all such recursions are of
the form

k
ox = LAY, (71)

and therefore the asymptotic behavior is governed by As and A
when it is equal to 1. (In the special case p = 1 and 6, = kf,, the
dominant root is repeated and the usual modification must be made.)
Dropping the subscript ¢ from \; and 8; we give below an expression for
the latter in terms of the initial conditions of the recursion, namely
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(@0, =+ =, #0):

—1 (1—96 1 =
3=a-[)\TH-E—1—_T:;-m+ 1_———}_ “’+ﬁ], (72a)

where
a = p(L — 8)NH/[NF + kp?(1 — 6, — 62) — (b + 1)p(1 — 62)].  (72b)

Thus, for example, the recursion for the probability of overflow
[eq. (58)], with = = 0, in the canonical form (64) has the initial
conditions ¢o = 1, ¢; = 1/[p(1 — 83)], % = 1,2, ---, k. Also, in this
case the dominant root of the characteristic polynonial X, is the only
root outside the unit circle in the complex plane. Therefore,

1

gom ~ B\, (73)

where 8 is obtained from (72) for the appropriate values of ¢,, « -, ¢
It can be easily shown that 8 > 0. In (73) (and similarly throughout
this section) we use the notation 1/G ~ gAY to mean that |1/G*)
—pBN| < €V, for sufficiently large N, and e < 1.

In a manner similar to the derivation of (73) we can show that the
probability of a transmission fault (Section 3.2) has the following
agymptotic behavior

N Gl+82

1
T ~ a\y + 6. — kb, when 8, < k8, (74a)
282(N+1) 1—31_62 31+62 _
[2_01_92+ i ] % when by = k6, (74b)
01 + 6
s when 8, > kf». (74¢)

In (74), a; is obtained from the generic formula (72a). We have shown
that a; > 0 and, of course, 1 < A» < 1/1 — 6;. Likewise, the mean
first passage time (see Section 3.3) is, asymptotically,

F(N)Naz?\jzv—'w, 0!2>0, When61 <]ﬂ92
kﬂg — 31
(6, + 6;)N* -
k4—(2 — 91 — 92) + cxaN + ay, When 31 = kﬂz
~ -(81 + 02)N + o5, When 01 > kez.

8 — kb2
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Finally,

VI. COMPUTATIONS

H(NJ ~ g +a7N,

a; > 0. (76)

We have written computer programs to recursively compute the
quantities 7™ F @G HO) ag functions of N for specified values
of 8y, 85, k, and p. Figures 3 through 6 are sample illustrations generated
by these programs for 8; = 0.2 and 6, = 0.1. The asymptotic behavior

(N
LOG, ,G!N

|

| | 1

| | |

20

40

80

100 120 140

N

160 180 200 220

Fig. 3—Probability of overflow in a burst vs level (6, = 0.2, 8, = 0.1, k = 5).

5

4

LOGIUH(NI

|

] ] 1

100 120 140
N

160 180 200 220

Fig. 4—Mean time for first passage conditional on overflow vs level (6 = 0.2,
8, = 0.1, k = 5).
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N

Fig(.) E))—St.eady—sta.t.e probability of transmission fault vs buffer size (8 = 0.2,
2 = 0.1).

9
8

k=5
i k=4
6

k=3

N
LOG, oF N

0 | | | ] | ] ] ] ] |
0 20 40 60 80 100 120 140 160 180 200 220

N

Fig. 6—Mean time for first passage in infinitely long bursts (6: = 0.2, 62 = 0.1).

of the various quantities is seen to be in accord with that given by
eqs. (73)—(76) of the previous section. The dependence on the param-
eters p and k also is intuitively reasonable.

APPENDIX

(a) We prove the assertion made in the text [immediately following
eq. (37)] that the eigenvalues of the matrix (16) all lie strictly within
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the unit circle. Let

A (1—=6)B— 2l 6,A
M= [ 6:B (1 — )& — I ] 77

where I is the identity matrix of order N + 1. Then we must show that
det M = 0, for |A| = 1. (78)

From the defining equations (14) and (18), we notice that the last
column of A is identically zero. Thus

detM = — A det M, (79)

where M’ is obtained from M by deleting its last row and column. Let
Mmijy 1, J =0, -++, 2N 4 1, denote the elements of M'. Then a theorem
of Hadamard! states that det M’ = 0 provided M’ is irreducible and
2N+1
‘mii‘ 2z P;= Z _;?n‘{jlf (80)
=0,17]
for all j, with strict inequality for at least one j. The irreducibility
condition as stated in Ref. 11 is satisfied. To show (80) we note that

|my|=|A| and P, =1, forj=1,--- 2N + 1, (81)
and
‘T??ou!=|1 —91—)\\, P‘]=91. (82)

Thus except at A = 1, we find that (80) is true with strict inequality
for j = 0. This proves the assertion (78) except for the point A = 1.
However, for A = 1, det M = 6,(1 — 65)" which, by assumption, #0.

(b) Following eq. (52) we made the assertion that I — pC — p*D is
a nonsingular matrix for p £ 1. The proof is as follows. Let

A [ Mn My
M = [le Mzz]’ (83)

with M, = (1 — 6,)B — AI, My, = 6,B, etc. As My commutes with
M,, an identity of Schur'? states that

det M = det I:MuMzz —_— M21M12:|- (84)

However, straightforward manipulation of the right side of (84) shows
that
det M = det (A2 — AC — D). (85)

Then the assertion follows from (78).
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