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Although coherent phase-shift keying (CPSK) 1s an efficient means of
transmitiing digital signals over carrier systems, it has not enjoyed wide-
spread wuse at microwave and millimeter wavelengths because of the
difficulty of recovering an accurate reference carrier for coherent detection.

In this paper, a system 1is deseribed which requires only a narrow-band
phase-locked-oscillator filter for reference carrier recovery. This is ac-
complished by block-coding and decoding the pulse sequence at the ter-
minals; the recovery of a baseband timing wave is also facilitated by the
coding process. It is also shown that: (i) for an arbitrary random input
sequence, accurate carrier recovery cannotl be achieved with just a narrow-
band filter, (iz) for the system described, any input pulse sequence 1is
acceptable, and (ii1) there is a maximum error in the phase of the re-
covered reference carrier which can be controlled by choosing the number
of pulses in the coding block and the bandwidth of the recovery filter.

I. INTRODUCTION

Coherent phase-shift keying (CPSK) is one of the most efficient
means of modulation for the transmission of digital information over
carrier systems. In particular, CPSK is at least as efficient as frequency-
shift keying or differentially coherent phase-shift keying.'* Equally
important from the point of view of hardware realization, CPSK is
suited to operation with amplifiers which operate most efficiently in a
nonlinear regime ; this class of amplifiers includes those using traveling-
wave tubes, varactor up-converters, and tunnel or IMPATT diodes
used as power amplifiers or as injection-locked oscillator amplifiers.

Traveling-wave-tube amplifiers have been proposed for use in
satellite repeaters, and there is considerable current work directed
toward the application of millimeter-wave integrated circuit injection-
locked oscillator amplifiers in digital radio and waveguide transmis-
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sion systems.*'® The CPSK method described here is suitable for
those applications.

For the type of operation envisaged for these systems, the statistics
of the digital sources are usually unknown. To achieve maximum
operational flexibility, it was assumed at the outset that the system
must operate with any input pulse sequence. With this arrangement,
the statistics of the signal source need not be restricted.

In the system to be described, the recovery of the reference carrier
phase—a major problem in CPSK transmission—is accomplished with
the aid of a block-coding and decoding of the pulse sequence at the
terminals. This coding allows recovery of the reference carrier with a
narrow-band phase-locked-oscillator filter.

Another important problem in digital systems with unrestricted pulse
sequences is the recovery of the timing wave for use in the regeneration
process. The same coding process which affords reference carrier
recovery for all sequences also assures timing wave recovery for all
sequences.

In this paper, the block-coding, the reference carrier recovery, and
the timing wave recovery are described for binary and multilevel
CPSK systems.

Il. COHERENT DIGITAL PHASE MODULATION
2.1 The baseband and modulated carrier signal formats
A diagram of the block-coded CPSK carrier system is shown in Fig. 1.
Ignoring the block coder for the moment, the input to the radio system
is a baseband sequence of discrete amplitudes as illustrated by a binary
sequence of ones and zeros in Fig. 2a. The ones are coded as positive
pulses and the zeros as negative pulses as shown in Fig. 2b; this se-
quence is the input to the phase modulator. Although raised-cosine
pulses are used for illustration, other pulse shapes can also be used.
An m-level baseband sequence of raised-cosine pulses shown in

Figure 2b is written
v(t) = Vo X anp(t — nT), (1)

where T is the pulse interval, V, the peak pulse amplitude, a, = + 1,

and
1 2wt T
§(1+GOST), |t|_s_§
p(t) =
T
0, |t| >§'
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Fig. 1—Block-coded CPSK carrier terminals.

This baseband signal is used to phase modulate a sinusoidal carrier. The
output of the phase modulator is

M) = A, cos [wit + 2 a.p(t — nT)], (2)

where @, = kx/m, k = 1, &£ 3, ---, &= (m — 1). The pulse sequence
of Fig. 2b represents both the baseband signal voltage of (1) and the
phase modulation in (2). The peak baseband voltage V, produces a
peak phase deviation of x/2 radians for the binary case illustrated.

A vector representation of the modulated signal is shown in Fig. 3a.
The carrier amplitude is A. and the unmodulated phase of the carrier

1 1 0 0 1 1 1 1 0 1 0 ]

(a) BASEBAND PULSE SEQUENCE
AT INPUT TO RADIO SYSTEM

AN ANA N
AVAY, VARVAY;

Fig. 2—Binary polar signal format.

AMPLITUDE
OR PHASE
o

-V, OR —m/2

(b) BINARY POLAR CODE
OF PULSE SEQUENCE
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Fig. 3—Phase plane representation of a binary signal.

is zero. When pulses modulate the phase of the carrier the amplitude
remains constant and the phase follows the modulating signal voltage.
Trajectories for the positive and negative raised-cosine pulses of Fig.
3b are shown in Fig. 3a for the binary case.

It is worth noting that double-sideband suppressed-carrier modu-
lators and switched delay-line modulators are sometimes regarded as
phase modulators. A justifieation for this interpretation is that the
pulses are sampled at the receiver only when the phase is at the peak
value. However, they differ from phase modulators in the amount of
amplitude modulation that is generated. The trajectory of the double-
sideband suppressed-carrier modulation is the vertical axis in Fig. 3a
between the points A and B; the trajectory of the switched delay-line
modulation may be intermediate between the vertical trajectory and
the circular trajectory of a phase modulator. Since future systems are
expected to have power amplifiers operating in the region of saturation,
the distortion caused by large variations in amplitude can be avoided
by restricting consideration to phase modulators. Phase modulators
suitable for this purpose are described elsewhere.!8

2.2 A description of coherent phase detection

Let the input to the phase detector of the receiver in Fig. 1 be the
phase-modulated signal M (). The phase detector requires a local
reference signal with the proper phase. This reference signal is written

R(t) = — 24 g sin [wd + ()], 3)
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where €(f) is any error in the reference phase. The output of the phase
detector is the low-frequency part, Vz(f), of the product of the input
signal and the reference signal.

V() = AcAgsin [ a.p(t — aT) — (t)]. (4)

If the phase error, €(t), is zero, and if the output of the phase detector
is sampled at times { = nT, the output will be +£4 ¢4 accordingly
as @, = = 1 and the transmitted pulse sequence is recovered.

If the reference phase error is not zero, the signal output amplitude
will be reduced by the factor cos e. For example, if ¢ = x/4, the base-
band pulse amplitude will be reduced 3 dB. An important function of
the system to be described is to recover the reference phase in such a
manner that e(f) is small.

IIl. REFERENCE CARRIER RECOVERY WITH A PHASE-LOCKED OSCILLATOR

The reference carrier recovery filter is assumed to be a phase-locked
oscillator with a locking bandwidth much smaller than the bandwidth
of the modulating pulse sequence. The analysis presented here applies
to an injection-locked oscillator or a first-order phase-locked loop;
the noiseless case will be considered.*

Let the input signal be

M(t) = A, cos [wt + 0(8)]. (5)

The differential equation describing the locking behavior of a
negative resistance sine-wave oscillator has been derived in several
forms.'"—® With the present notation the equation is

WD _ (w, — w) — Asin[e@) — 00)], (6)
where w, is the unlocked oscillator frequency, |w, — w.| < w., 24 is
the locking bandwidth, and ¢(t) is the reference phase error.

Since the oscillator is being used to recover the reference phase, the
phase error, (t), should be as small as possible. For this reason it is
necessary that the locking bandwidth of the locked oscillator be much
smaller than the bandwidth of the signal, 8(¢). This assumption, in its
most useful form, means that AT << 1. Following Adler, expression (6)
is rearranged as follows:

de(t)
dt

= AK — Asin [e(t) — 0(t)], )
* Eisenberg has presented a related analysis which includes additive thermal noise.®
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where K = (w, — w.)/A. The term K represents any initial difference
between the free-running frequency of the oscillator and the input
frequency; in the region of interest K| < 1.

We are interested in deriving an unambiguous reference carrier for
multilevel digital modulation in which each pulse is time-limited to a
single interval of duration T'.

o(t) = g a.p(t — nT). (8)

During a single pulse the variation in @(t) is much larger than the
variation in e(f) because AT < 1. Therefore, the phase error at the end
of the nth pulse can be found by integrating (7) over the nth pulse with
¢(?) held constant at the value of the phase error at the beginning of
the nth pulse. Writing e, = e(n7), we have, from (7) and (8),

(nH) T .
enir — € = Af (K — sin [e. — 6(2)]}dt

7

1 (n+1)T
— AT [K - S“}E“ f cos 0(t)dt
nT

cos €, [(UT |
+ fﬂ smo(t)dt]- ©)

Each pulse is nonzero in a single interval of duration 7' so we have

(nH )T (nH) T T
f cos 6 (t)dt =f cos a,p(t — nT)dt =f cos|a,|p(z)dz,
n 0

T nT
and
(n41)T (n41)T
f sin 8 (t)dt = f sin a,p(t — nT)dt
nT nT

Qn T,
= Tau] j; sin|a,.|p(z)dz.
Simplifying the notation, we write
T
b = an/|@nl, C,= ]T [ cos|a.|p(z)dz,
L]
and
1 77 .
S, = "T'./; sin|a. |p(z)dz. (10)
Expression (9) becomes
€ni1 — €n = AT[K — C,sin e, + buS, cos eq]. (11)

As shown in (10), C, and S, are functions of the shape of the pulse.
For the digital signal described by (8) the peak deviation is less than =
radians for any number of levels and, for the class of pulse shapes of
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interest, S, is positive. This is not true of C,—it can be positive, nega-
tive, or zero. Eisenberg'® has derived C and S for several pulse shapes
of interest. The sign of C, has an important effect upon the phase of
the recovered reference carrier; in order that the recovered reference
carrier have an unambiguous phase near zero degrees, it will be shown
that a pulse shape must be used for which C., > 0.

For the binary case, (11) can be written

i1 — € _ g OTF Ssin(en — botan-i s ). (12)

AT C
Let the probability that b, = + 1 be p and the probability that
b, = — 1be (1 — p). The average phase, &, will be such that the error

due to p positive pulses is equal in amplitude and opposite in sign from
the error due to (1 — p) negative pulses. From (12) we get

P [K — NC? 4 §%sin (eu — tan*‘g)]

=—(1- P)[K — V(2 4 S%sin (e., + tan™! g)] )

and solving for the average phase, we get

K
VG + (2p — 1S

Under the best circuit adjustment, K = 0 and the average phase error
is given by the second term in (13). When C is positive, the average
phase is in the first or fourth quadrant and when p = } the average
phase is zero. On the other hand, when C is negative, the average phase
is in the second or third quadrant and when p = } the average phase
is .

A switch of the reference carrier phase from near zero to near r can
happen in a multilevel system. Consider a 4-level system with rec-
tangular pulses and peak phase deviations of =+m/4 and =3w/4.
Suppose that for a time the pulses alternate between ==m/4. From (10),
C = cos /4 = 1/¥2Z > 0 and the average phase is zero. If the pulse
sequence then changes to alternate between +3x/4, C = cos 3n/4
= — 1/v2 < 0 and the average phase becomes . This very undesirable
situation can be avoided by using pulse shapes for which ¢ > 0. In
the rest of this paper we assume that, in all cases, a pulse shape is
chosen for which C, > 0.

It is highly desirable that the average phase of the reference carrier
be near zero. This means that in addition to requiring that C. > 0, it

+ tan—! (2p — 1) g (13)

€, = sin™!
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is also necessary that K =~ 0 and p &~/ } as may be seen from (13).
The parameter K can be kept near zero by setting the rest frequency of
the phase-locked oscillator equal to the signal carrier frequency. The
system is required to operate with any input sequence so it is unlikely
that p will always be near one-half. The input sequence can be coded—
by a block coder to be described in Section V—into a transmitted
sequence with p = 3, thus insuring tan™ (2p — 1)S/C =~ 0. Even
with coding, however, the reference phase will fluctuate about zero
and it is necesssary to insure that these fluctuations do not cause
substantial degradation in performance relative to the performance
which would be obtained with a perfect reference carrier. 1t has often
been thought that the problem in the recovery of reference phase is
that the occurrence of long sequences of identical pulses drives the
recovered phase beyond reasonable limits and that if the sequences of
pulses were sufficiently random this problem would go away. Random
sequences are therefore of great interest. In the next section the vari-
ance of the reference phase error is derived and the results illustrated
by an example.

IV. REFERENCE CARRIER PHASE ERROR FOR RANDOM SEQUENCES

The differential equation which describes the phase-locked oscillator
is nonlinear and therefore difficult to solve. We begin by noting that
(7) can be solved exactly on a pulse-by-pulse basis if the pulses are
rectangular. For pulses with other shapes an equivalent rectangular
pulse can be derived. Then, linearizing the equation, and recognizing
that the phase error is approximately normally distributed, the vari-
ance can be estimated for the equivalent rectangular pulses. The binary
case is considered.

Let the pulses be rectangular with peak deviation +6,. Then, re-
arranging (7) and setting #(tf) = 8., we have

(n+1)T df(t) (nt+1)T
,[,,T —K +sin[e(t) —0,.]

The solution to the integral on the left can be found in many tables of
integrals. After some algebra the result can be written

— Adt.

€ny1 = 0, + 2 tan™?

Rtane";6"+(K—tane”2 )tnh(AT )

2
R+(1-Ktane"ge") ( ) ,
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where e, = e[ (n + 1)T] and R = v1 — K2 Equation (14) is exact
for rectangular pulses and, if an input sequence of rectangular pulses
is specified, the exact phase error can be computed. We will estimate
the variance for a linearized version of (14). When K = 0, (14) can
be written

€np1 = 0, + 2 tan™! (e‘-‘T tan < ; 6")- (15)

Approximating the tangent by its argument,
€ny1 2 0, (1 — e727) + €T, (16)

Applying (16) repeatedly we get

k—1
€k RS €6 8T 4 (1 — e72T) 3 Opypme F17mIAT,
m=0
When £ is large, the phase error is independent of n and becomes
k-1
e (1 — eaT) 3 f.e7 ™8T, an
m=0

where the pulses have been rearranged to simplify the notation.
From (12) it may be seen that the error due to a shaped pulse when
€. =2 0 is given by
¢ ~u ATVCT + & sin ('I:an_l g) , (18)
where a pulse of positive polarity is assumed. Comparison of (18)
with the error in (17) due to the pulse 8, suggests that the equivalent
rectangular pulse is obtained by letting
0, = b,NC? + S*sin (ta,nfl %) (19)
in (17) where b,, = + 1 with probability p, bn = — 1 with probability
(1 — p).
The variance of (17) ean be found by straightforward means;*
the mean, from (13), and the variance for shaped pulses are:
prRgtan™ (2p — 1) &
- (20)
o e 2 [V(‘z + S?%sin (tan—lﬁ)] ATp(1 — p).
The reference error is approximately normally distributed and the
probability that the reference phase error will exceed a specified value
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€, is?!

Plelz ame( =) +o(=tm). (21)
g a

These results will be illustrated by an example. Let the pulse rate
be 100 megabits per second and the locking bandwidth 0.5 MHz. For
raised-cosine pulses with a peak deviation +w/2,

g tan™! (2p — 1)
o2 = 2ATS*p(1 — p)

with S = 0.6021947. For p = %, p = 0 and ¢ & 0.0213 radian rms.
The fraction of time that the phase error exceeds 0.1 radian is

P(|e| = 0.1) 5 2Q(4.697) = 2.75 X 10-°.

In some applications, changes in pulse pattern density may occur which
are reflected in fluctuations in p. In this event the probability of a pulse
being positive will not be constant at p = § but will wander slowly
about this value. Suppose, in the foregoing example, p increases by
five percent from p = % to p = 0.525. Then, p = 0.05 and

P(lel = 0.1) =~ Q(0.235) + Q(7.04) ~~ 0.41.
Two important conclusions are illustrated by this example.

(7) For practical circuit parameters, the probability of exceeding
reasonable phase errors is uncomfortably large even for well-
behaved random input sequences.

(7) Small variations in pulse pattern density can cause large
increases in the probability of exceeding reasonable phase
errors.

It should be understood that the above example is but one of many
possible examples ; however, the filter bandwidth assumed is a practical
value for systems operating at millimeter wavelengths. It should also
be noted that the pulse sequences assumed in the example are highly
idealized and may or may not approximate sequences from real
sources.

V. THE BINARY BLOCK CODER

The coder deseribed in this section is a digital adaptation of a coder
invented by F. K. Bowers.?

The operation of the block coder will be described with the aid of
Fig. 4. The block counter is an up/down counter which counts each
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Fig. 4—Binary coder.

successive block of M pulses in the input sequence and indicates on its
output terminal whether that block contains more positive than nega-
tive pulses. M is an even integer. The output counter is also an up/
down counter which counts all pulses transmitted and indicates whether
a surplus of positive or negative pulses has been transmitted since the
start of transmission. The outputs of the two counters are used in the
decision circuit to invert or not invert the block of M pulses just
counted, the decision always being made to equalize the number of
positive and negative pulses transmitted.

In addition to the framing pulses, a coding pulse is added to each
block of M pulses and is used in the receiver to re-invert those blocks
which were inverted at the transmitter. Figure 4 shows the operations
of a block coder on a sequence of binary input pulses. In this configura-
tion a framing pulse and a coding pulse have been added to each
block of M input pulses. While a coding pulse is necessary for each
block of M input pulses, fewer framing pulses can be used if desired.

The decoding process at the receiving terminal is illustrated in Fig. 5.
The position of the coding pulses in the input sequence are known
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relative to the position of the framing pulse. When framing is estab-
lished, the coding pulses can be detected and the proper block in-
versions made so that the output sequence will be identical to the input
sequence at the transmitting terminal.

A detailed analysis of the coding operation reveals the following
results for M even.

() The output count, and hence the sum of the output sequence,
cannot exceed =+ (1 + 3M/2).

(72) At the end of each frame of M + 1 output pulses the output
count cannot exceed 4 (M + 1); whatever the count at the
end of a frame, the count at the end of the next frame will
have moved in the direction of zero by a count of at least one.

(#77) The maximum number of pulses between a zero in the output
counter and the next zero is (M + 1)(M 4+ 2).

(#) The maximum number of identical pulsesis 2 4 5M /2 and the
output count at the end of such a sequence is (1 + 3M/2).

In deriving these properties it is necessary to adopt a convention as
to the output indicated by the output counter when the count is zero.
If the count approached zero from the negative side it will indicate
that a surplus of negative pulses has been sent and the converse is
true if the zero count is approached from the positive side. Suppose
the output counter indicates that a surplus of positive pulses has been
transmitted. The coding pulse is counted as a positive pulse at the
input counter making an odd number of pulses counted. At the end
of the frame the input counter indicates that a surplus of positive or
negative pulses is contained in the block. The block is inverted or not
g0 that the output count goes toward zero. Since there is always a
surplus of at least one pulse in each block, the output counter counts
toward zero at least one count at the end of every frame; the output
count can pass through zero in this process. Now suppose that the
output count is zero and that this count was approached from the
negative side. The output counter indicates that a surplus of negative
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pulses has been transmitted. If the next block has all positive pulses,
the block will not be inverted and the output count will go to (M 4 1).
This is the maximum count which can occur at the end of a frame since
it has already been shown that at the end of the next frame the count
must go toward zero by at least one. Property (i7) has therefore been
demonstrated.

The example can be continued to demonstrate property (z). Let
the count be (M + 1) at the end of a frame. At the end of the next
frame the count cannot exceed M so that the maximum number of
positive pulses that can be added to the count during the frame is
M /2. Thus, the maximum count is M + 1 4+ M/2 =1 + 3M/2 and
this is property (z).

The maximum number of pulses between zeros of the output count
is found by achieving the maximum count of (M + 1) in the first
block and reducing the count by the minimum of one in successive
blocks until zero is reached. There are just (M + 2) blocks necessary
to reach the next zero and (M + 1) pulses per block so the maximum
number of pulses between zeros is (M + 1)(M 4 2). This is property
(44%). Finally property (iv) is achieved by letting the count at the end
of a frame be — (M + 1). The next frame has all pulses positive which
brings the output counter to zero from the negative direction. The
next (1 + 3M/2) pulses can be positive bringing the total number of
successive positive pulses to (M + 1) + (1 4+ 3M/2) = 2 + 5M/2
as stated.

When the coder is in operation the transmitted sequence contains
equal numbers of positive and negative pulses. The resulting average
phase is given by (13) with p = 3.

= ain—1
€, = SIn ~0‘

The fluctuations about e, can be determined from (17). The number
of pulses between zeros is (M + 1)(M + 2) and if AT is sufficiently
small that (M + 1) (M + 2)AT <« 1, the exponential termsin (17) are
approximately unity. Then, since the maximum sum of the output se-
quence is 1 + 3M/2, an upper bound on the phase error results.

| ema| < sin! ‘%L + AT (1 n ?Ef‘,—”)a.,., (22)
where 8, is the equivalent rectangular pulse as given in (19).

A graphic example of the effect of coding is given in Fig. 6. A se-
quence of 200 random pulses from the Rand table of random numbers
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is shown at the bottom of the figure.?® The sum of these digits, . b.,
is the upper plot. Note that although there are many transitions be-
tween positive and negative pulses the sum remains above zero most
of the time. The slow drift of this sum illustrates the manner in which
the phase error wanders.

The same input pulse sequence is shown after coding in a block coder
with M = 8. The framing and coding pulses are not present. In the
uncoded sequence the maximum error for AT = 0.01 is 0.36 radian
(20.6 degrees) for rectangular pulses with /2 radian deviation,
whereas the maximum phase error in the coded sequence is 0.06
radian (3.4 degrees).

The original sequence in Fig. 6 is not a rare case. As shown, 2, bx
reaches 36 and the probability of this is

Pan(|Z ba| 2 36) 7 20 (\[22%)

~ 2Q(2.54) = 0.011.

Thus, about one out of a hundred sequences of 200 pulses each has a
sum at least as great as the one shown in Fig. 6.

The price paid for the recovery of the reference carrier with a small
phase error is an increase in the transmission rate by the factor

(M + 1)/ M.

VI. TIMING WAVE RECOVERY

It has been shown that, by coding the transmitted pulse sequence,
the reference carrier can be recovered accurately. As shown in Fig. 1,
the reference carrier is used to drive the phase detector in which the
baseband pulse sequence is recovered. In a self-timed system, such as
the one depicted in Fig. 1, it is necessary to recover a timing wave for
use in regenerating the pulse sequence. Block-coding also helps in this
process.

Bennett has shown that a timing wave can be recovered by suitable
nonlinear operations even if a spectral line at the timing frequency
does not exist; the method requires a suitable number of transitions
between signal polarities.? But the block coding discussed in Section V
insures that the largest number of pulses between signal transitions
is 2 + 5M /2. Therefore, the block coding insures the recovery of
both the reference carrier and the timing wave for any sequence of
pulses whatever.

For the sequence of pulses shown in Fig. 6 it is instructive to note
that, although the sum }_. b, fails to cross the axis for a string of 186

DIGITAL PHASE MODULATION 463



pulses, there are frequent transitions between signal states and for
each transition the timing recovery filter will receive a timing pulse.?
There are 98 transitions in all and the maximum number of identical
pulses between transitions is six. This is typical of the behavior of
random sequences and is the reason that the recovery of the reference
phase is usually more difficult than the recovery of the timing wave.

VIl. MULTILEVEL BLOCK-CODED CPSK

The binary coding scheme described in Section V can be extended to
4, 8, 16, and higher numbers of levels. In each case the coder operates
to equalize the numbers of pulses with equal amplitudes and conjugate
phases. For example, the 4-level coder illustrated in Fig. 7 equalizes
the numbers of pulses with /4 radian peak deviation and opposite
signs, and equalizes the numbers of pulses with 3x/4 radian peak
deviation and opposite signs. The 4-level decoder is shown schemati-
cally in Fig. 8.

Because the multilevel coder equalizes the numbers of positive and
negative pulses for each pair of levels the computation of bounds on
the phase error reduces to the binary case. A bound can be computed
for each pair of levels and the largest bound applies; this will usually
be the bound computed for the pair of levels with the largest deviation.

QUTPUT
Cgbﬂsl:"éﬁ E DECISION COUNTER
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y
PHASE FRAMING
SELECTOR AND
+136° CODING
CHANNEL A 1§ 1
INPUT INVERT 4-LEVEL
OR 4—LEVEL | QUTPUT
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INPUT
PHASE FRAMING
SELECTOR AND >
EPY:) CODING

- OUTPUT
BLOCK » DECISION | COUNTER
COUNTER ol

Fig. 7—Four-phase block encoder.
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CODE FRAME AND CHOAUNT“F','E,'}A
RECOVERY CODE PULSE |
+135° REMOVAL
FROM TIMING
RECOVERY INVERT
CIRCUIT FRAME OR
——
RECOVERY NOT
INVERT
CHANNEL B
CODE FRAME AND OUTPUT
RECOVERY CODE PULSE
*+45° REMOVAL
FROM CHANNEL B
REGENERATOR

Fig. 8—Four-phase block decoder.

VIil. CONCLUSION

The CPSK system which results from block-coding the input digital
sequence as deseribed in this paper has the following properties:

()

(i)
)
(iv)

(v)

The system places no restrictions on the pulse sequence ac-
cepted from the source; any sequence whatever can be
transmitted.

Recovery of the reference carrier at repeater points is ac-
complished with a narrow-band filter.

A timing wave can be recovered for any sequence of pulses.
Any pulse shaping required can be done at baseband.

The phase-modulated carrier is suited to operation with
nonlinear amplifiers; in some applications RF filters are not
required to shape the spectrum.

The costs of providing these features are:

(@)
(17)

(i)

A block coder must be supplied at the transmitting terminal
and a decoder at the receiving terminal.

The transmission rate is increased by the factor (M + 1)/M
where M is the number of pulses in the coding block. In
principle, M can be very large; in practice, it will be limited by
the frequency stabilities of the RF oscillators used in the
system.

The error rate is increased by the factor 2(1 — P,) because
an error in a coding pulse causes M errors in the signal se-
quence. This increase in error rate is of little practical im-
portance.
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