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This paper develops the properties of the Erlang loss function, B(N, a),
used tn telephone traffic engineering. The extension to a transcendental
Sfunction of two complex variables is constructed, thus permitling the
methods of complex analysis to be employed for the further study of its
properties. Ezxact representations, Rodrigues formulas, and addition
theorems are given both for the loss function and for the related Poisson-
Charlier polynomials. Asymptotic formulas and approximaltions are
developed for the loss function and also for its derivatives. A table of
coefficients is included which, together with one of the asymptotic formulas,
permits compulation of B(N, a) by simple means even when the number
of trunks, N, vs very large. This same table is used to obtain dB(x, a)/dx.

I. INTRODUCTION
The Erlang loss function

N N J
BW, o) = &/ oy (1)

is fundamental to the study of telephone trunking problems. A. K.
Erlang! used B(N, a) to express the probability that a call, which is a
member of a Poisson stream of parameter a, arriving at a group of N
telephone trunks will be rejected. Later studies of trunking problems
have shown the desirability of enlarging the scope of applications of
the loss function. For example, the consideration of trunk groups with
nonintegral number of trunks arises in determining the equivalent
number of trunks in Wilkinson’s ‘‘equivalent random method.” ?
Methods for accomplishing the computation by interpolation are given
by Rapp® while continued fraction procedures for accurate computa-
tion are given by Levy-Soussan* and Burke.® Derivatives with respect
to N and e arise in optimal trunk group size apportionment problems.
See, for example, Akimaru and Nishimura®:” who studied such models
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and prepared tables of derivatives. In some investigations, rapid and
accurate approximate computations of B(N, a) for very large trunk
groups are needed. This occurred in the study of certain satellite
telephonic communication problems.®? The need thus arises of en-
larging the definition of B(W, a) as given in (1). Of course, that is done
implicitly in the above investigations. It has been customary to extend
the definition of B(N, a) by use of an integral formula (Theorem 3)
ascribed to Fortet. This integral formula is used in (23) to define a
transcendent, B(z, a), for complex z and . The extension to the complex
plane in both z and « permits the powerful methods of complex analysis
to be applied for obtaining exact, asymptotic, and approximate
representations.

It is the purpose of this paper to provide an investigation into the
properties of B(z, a) with the object of generalizing known results,
obtaining new results, and presenting practical methods for application
to the class of problems outlined above.

Part II derives exact relations satisfied by B(z, «). Similar relations
for the related Poisson-Charlier polynomials, G;(z, a), are derived in
the appendix. These relations provide efficient means for exact com-
putation; thus, Theorems 1 and 2 constitute a practical method of
computing B(N, a) to a prescribed accuracy for isolated computa-
tions. Similarly, the use of Theorem 5 enables one to compute B(z, a)
even for nonintegral number of trunks. Theorem 6 may be similarly
employed. The relationship of B(z, @) and G;(z, a) to Whittaker func-
tions as given in Theorems 7 and 24 is the key for linking up these
functions with the more well-known functions of applied mathematics,
i.e., hypergeometric functions and Laguerre polynomials. The Rod-
rigues Theorems 8 and 22 are useful for the evaluation of integrals
of the form

[ ) (@)a—te-*B(N, a)-‘da, f [ (a)are-9G;(z, a)da  (2)

and, as in the case of Theorem 22, for obtaining an integral representa-
tion. The addition Theorems 9, 10, 26, and 27 yield group-theoretic
structure information which is useful for simplifying formulas contain-
ing these functions, and for the evaluation of integrals. The evaluation
of an integral, by means of generating functions and Theorem 10, was
done in Part IV to obtain ultimately an approximate formula for
dB(z, a)/dx. A general use of the exact relations is to serve as a spring-
board for asymptotic and approximate results and also for their error
estimations. This is well illustrated in Part III of the paper.
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The asymptotic expansions of Part III are also representations of
B(z, a) but, unlike those of Part I1, when used as approximate formulas
for computation they cannot yield results of arbitrarily high accuracy,
i.e., the accuracy depends on specific values of parameters. Theorem
11 is particularly useful for computation when |2z/«/| is small. It may
be used for the computation of B(z,e) for fractional number of trunks
by computing B(z, a) for 0 < z < 1 and then using the recurrence
formula of Theorem 4. Theorem 11 includes well-known asymptotic
results, e.g.,

1 -1
B(‘ é’“)

Vraes(1 — erf Va) ~ 1 — %rrl + %?a"‘

_1.33.50_3_{_,__, a— o, (3)
B(—1,a)!' = — ae*E;(—a) ~1 — a4 2!a™?
—3la?® 4+, a— o,

An undesirable feature of many methods of computing B(z, a) is the
dependence of the computational effort, e.g., time of computation, on
the value of z; thus, the larger the value of z the greater the computa-
tional effort. Theorem 14 overcomes this defect; the computational
effort is independent of the size of x. Theorem 14 is easily usable even
with a desk machine regardless of how large = is. The accuracy, how-
ever, depends on z and a parameter ¢. For fixed ¢ the accuracy improves
with increasing x. When z is fixed, the accuracy deteriorates when ¢
is large and negative but greatly improves as ¢ is increased. To facilitate
the use of Theorem 14, Table I gives required coefficients, namely,
ao(c), a1(c), a:(c). To use the table, one computes

a—zx
€= 4)

then

B, )7 = au(e)Nz + as(e) + 2. (5)
vz
Possibly, one should comment that the range of values of x, ¢ for
which (5) is aceurate is not as important as the fact that it is accurate
over a wide range of values of B(x, a), that is, values encompassing
the ranges of most applications. For quantitative limitations, see Fig.
1. A method of obtaining dB(x, a)/dx based on Theorem 14 is given
in Part IV. This uses the formula

dB(z, a) _  B(z, a)’ _a

a2z Q” ?)
r+a

™

ML@{§—1+B@J).(Q
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Table | — Coefficients for evaluation of B(x, a) and aB(x, a)/ax

(]
*

Qo ay @

0.8230 | 0.7274 | 0.1011
0.7749 | 0.7414 | 0.0985
0.7313 | 0.7552 | 0.0954
0.6917 | 0.7686 | 0.0920
0.6557 | 0.7814 | 0.0883
0.6227 | 0.7937 | 0.0845
0.5926 | 0.8053 | 0.0806
0.5649 | 0.8163 | 0.0767
0.5394 | 0.8267 | 0.0729
0.5158 | 0.8364 | 0.0691
0.4940 | 0.84556 | 0.0654
0.4739 | 0.8540 | 0.0619
0.4551 | 0.8619 | 0.0585
0.4376 | 0.8694 | 0.0552
0.4214 | 0.8763 | 0.0521
0.4062 | 0.8828 | 0.0492
0.3919 | 0.8889 | 0.0464
0.3786 | 0.8946 | 0.0438
0.3661 | 0.8999 ( 0.0413
0.3543 | 0.9049 | 0.0390
0.3432 | 0.9095 | 0.0368
0.3327 | 0.9139 ([ 0.0347

L]
*

@p @ @z

226.3 2032 13726
167.7 1367 8636
126.0 925.4 5334
95.63 630.5 3348
73.28 432.2 2111
56.70 298.0 1336
44.29 206.7 848.1
34.92 144.1 540.2
27.80 100.9 345.0
22.33 71.07 220.7
18.10 50.27 141.4
14.80 35.71 90.70
12.21 25.49 58.17
10.16 18.27 37.28
8.521 13.15 23.86
7.205 9.622 15.23
6.139 6.936 9.692
5.271 5.090 6.141
4.557 3.772 3.872
3.968 2.830 2.430
3.477 2.159 1.519
3.066 1.682 | 0.9486

|
S I W T S W e
ok~ NDOD

UL

T A T O A B

PR WRRWWE RN e == =000 0
coNuGhhERN~OoLCNO RO DBNOLIR RO DND

—08 2.721 1.344 | 0.5960 0.3228 | 0.9179 | 0.0328
-0.7 2.428 1.108 | 0.3816 0.3134 | 0.9218 | 0.0309
—0.6 2.178 | 0.9435 | 0.2540 0.3046 | 0.9254 | 0.0292
—0.5 1.964 | 0.8318 | 0.1804 0.2962 | 0.9287 | 0.0276
—04 1.780 | 0.7580 | 0.1398 0.2882 | 0.9319 | 0.0261
—-03 1.620 | 0.7112 | 0.1187 0.2806 | 0.9349 | 0.0247
-0.2 1.481 | 0.6840 | 0.1089 0.2734 | 0.9377 | 0.0234
—-0.1 1.360 | 0.6705 | 0.1052 0.2666 | 0.9403 | 0.0222
0 1.253 | 0.6667 | 0.1044 0.2600 | 0.9428 | 0.0210
0.1 1.159 | 0.6696 | 0.1048 0.2538 | 0.9451 | 0.0199
0.2 1.076 | 0.6771 | 0.1052 0.2478 | 0.9473 | 0.0189
0.3 1.002 | 0.6877 | 0.1052 0.2421 | 0.9494 | 0.0179
0.4 0.9357 | 0.7000 | 0.1045 0.2367 | 0.9514 | 0.0170
0.5 0.8764 | 0.7135 | 0.1031

Calculate ¢ = a- then

z
E ?
B(z, )~ ~ aVz + a1 + a2/,

aBg;; a)_ﬁ_J _ B;};a)z(“"fgg) .7:+aB( 2, ){_ — 1+B(x,a)}

* Standardized offered load.

It is appropriate to mention, at this point, another method of approxi-
mating B(z, a) by means of a formula whose computational effort
is also independent of = and which, similarly, is applicable over a wide
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YIELD ERROR <56%

2
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C=STANDARDIZED OFFERED LOAD

Fig. 1—Five-percent-error contour.

range of values of B(x, a). This method is described in Refs. 10 and 11.
A comparison of this method with that of Theorems 1 and 2 is given
at length in a report by 8. Miller.?

Derivatives and inequalities on derivatives are given in Part IV.
Theorem 15 extends the well-known derivative formula for B(z, a)
with respect to the real variable a. Theorem 17 provides an accurate
approximation for dB(x, a)/dx. Empirically, the accuracy seems to hold
to four significant figures or better over a very wide range of values
of £ and a. Of significance is the corollary which shows that the ap-
proximate value obtained is always too small. If a quick appraisal of
the derivative is desired, Theorem 18 may be used. The logarithmic
convexity properties of B(z, a) given in Theorem 19 provide the useful
bounds of the corollary on the second derivatives. Also an application
is given to the logarithmic interpolation of Theorem 20. This is very
useful when, for example, one wishes to compute B(x, a) for z be-
tween consecutive integers, say N, N + 1, and for which B(N, a),
B(N + 1, a) are known. An extension of this idea is provided by
Theorem 21 which permits accurate computation of B(z, a).

It may be remarked that generally relations, representations, and
asymptotics for B(z, a)7' are simpler in structure than those for
B(z, o) and may provide greater numerical accuracy in computations.
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Il. CONVERGENT REPRESENTATIONS

The study of telephone trunking problems, whether in equilibrium or
transient condition, or even nonstationary,”” engenders the Erlang
loss function, B(N, a), which initially arises in the form'

N N j
BWN,a)=2%. /%%, N=0 (integral), a>0. (7
N! j=0 J!

For these reasons and for the purposes of studying certain forms arising
in queuing theory related to B(N, a) and also for the facilitation of
numerical evaluation, it is useful to represent the loss function in
diverse ways.

The numerical computation of B(N, a) as given in (7) is awkward
when @ and N are large since then both numerator and denominator
are large. A form well adapted to numerical work is

N
B(N,a) = 2 N¥a,
=0

(8)
NO =1, N =NN-1---(N—j+1) (7>0),

which follows from

B(N, a)™ =ji’%ra:— = Z W N! )' = ,i::uNma_j' (9)

A modified form of (8) is given in Theorem 1.

Theorem 1 :
v—1
B(N,a)' = 3 N@Wai+4+ N®aB(N — » a)7, v = 0.
=0
Proof: Since
NG = NO(N — »)@, (10)
one has, from
v—1 N
B(N,a)' = Y NWag 74 3 NWa, (11)
=0 =

f Ng—i = NZ_:VN(j+v)a4.1—v = NWg—v Z (N — v)Wa—7

J=v =0 J=0
= N®g7?B(N — v, a)™. (12)
The formula of the theorem follows from (11) and (12).
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Corollary: The case v = 1 implies the known' difference equation

1
N
aB(N — 1, a)

B(N, a) =
1+

R. Franks suggested using the value of B,(N, a) defined by
_ v—1
B,(N,a) = 1 / T Ng-i (13)
i=0

to approximate B(N, a) in which, for any small number » > 0, the

index » is chosen so that
NWag—r £ 4. (14)

Theorem 2 bounds the error of the method.

Theorem 2:
B.,(N,a)(1 — n) £ B(N, a) £ B,(N, a).
Proof: From Theorem 1 one has

1
B,(N,a)'+ NWaB(N — », a)"

Thus

= B(N,a) £ B,(N, a). (15)

B(N,a) _ 1

B,(N,a) 1+ Nwa—B,(N, )B(N — », a)" (16)

Since N (g~ is strictly monotone increasing as a function of N, (8)
shows that

B(N + 1, a) < B(N, a) (17)
for all N = 0; thus
B(N,a) _ 1 (18)
B,(N,a) ~ 1+ 2B,(N, )B(N, a)™"’
and hence
B

The theorem follows from (15) and (19).
An integral representation, ascribed to Fortet,'* may be obtained for

B(N, a).

Theorem 3.
B(N,a)!' = af e 5 (1 4 y)Vdy.
0
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Proof: From the Eulerian integral

/w e~evyldy = T'(l + 1)a™, 1> -1, (20)

0

one obtains
wous=a(V) [ ot an

J 0

Use of (8) now yields

o0 N N . w0
B(N,a)! = af e Yy ( . )yidy = af eev(1 + y)¥dy. (22)

0 i=0\ J 0

The integral representation now permits extending B(N, a) into
the complex plane with respect to both N and a. One defines

B o) =a [ el + y)dy (23)

in which z, @ may both be complex. Clearly, B(z, «)~" is an entire func-

tion of z for Rea > 0 (Re designates “real part’’). The symbols N, a

will be used for nonnegative integers and positive reals, respectively.
A generalization of Theorem 1 is given in Theorem 4.

Theorem 4 :
v—1
Bz, )t = X z2Wa~ + 2¥aB(z — v, @)7}, Rea > 0.

=0
Proof: Integration by parts of (23).
It is of interest to investigate the relationship of B(z, @) to the func-
tion

Uz a) = e 1*(70;_1) (24)

which is an extension of the Poisson distribution function, ¥ (N, a),
with parameter a. The function (N, a) is a good approximation to
B(N, a) when a is much less than N. Exact relations between B(z, a)
and ¢(z, a) are given in Theorems 5 and 6. These relations provide
convenient means of caleulation of B(z, &) for general z, a; e.g., in
trunk group blocking problems when a nonintegral number of trunks
is considered.

Theorem & :
) as

B(z,u)*‘:;b(z,a)—l— Z (Z+1)(Z+S)

g=1
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The serves converges uniformly everywhere in Rez > — 1, Rea > 0.

Proof: Let w = 1 4+ y in (23), then

B(z, a)' = ae"fm e~ ydu (25)
hence, 1
B(z, a)! = aze"fgc e uidy — a[l exU—wyzdy, (26)
and u D
Bz, o) = ¥(z, ) — a '[U g ti=uygedy, 27)

To exhibit the integral in (27) as an inverse factorial series, consider
the beta function integral

! z—1 _ y—l1 — I‘(:r')P(y) ¢

which yields the special case (s = 0 integral)

s!

1
z —_ 8 = " . 2
Jwa =W = T 29)
Use of the expansion
extimn = 3 X (1 — w)s (30)
s=08"

in (27) and subsequent use of (29) yield the result of the theorem.
The Mittag-Leffler expansion for the integral of (27) leads to
Theorem 6.

B, =¥ e +e E (=)' e 5

Conditions of convergence are the same as in Theorem 5.

Proof: The expansion
U
s!

e = é (—1)* (31)

used in (27) leads immediately to the required result.
Whittaker functions,'® W, (), play a useful role in the discussion

of B(z, ) and of Poisson-Charlier polynomials to be introduced later.
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They may be introduced by

Wem(z) = et (1 + f)k—Hmf—k—Hmdt (32)
ke T TR -k +m) Jo 2 ' :
Re (3 —k+ m) >0, larg z| < .
Theorem 7 :

Bz, a)™l = 6_"'23*"sz2,(:+1)12(€!)-

Proof: Let | = ay in (23), then
B(z, o) = f et (1 4 t—)zdt. (33)
0 24

The required result follows on comparison with (32).
A Rodrigues type of relation for B(N, a)™' may be obtained from

Theorem 3.

Theorem 8 :

B(N + M, a) = (—1)¥ae A a1 B(N, a)].
d M

a

Proof: From Theorem 3, one has

e BN, @)t = [ e o (1 4 y)Vdy; (34)
o
hence,

M o0
(_l)M gd&]ﬁ' [e—ua—lB(N, a)—i:l —_ f 670(1+yl (1 + y)N-FMdy‘ (35)
]
The formula for B(N + M, a)~! now follows on multiplication by ae°.

Corollary:
d N
da®

B(N,a)™ = (—1)"ae® [e*a1].

Additional formulas for B(z, a)! (as a function of «) provide con-
venient means of computation for values of a near some fixed point.
Two such formulas are given in Theorems 9 and 10.

Theorem 9:
t\y " & [n I ARY
B(n,a+t)_1=(1+7) Z( )B(’n—v,a)‘(—).
o s=0 \ ¥ o
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Proof : The function S.(e) given by

af

n
Sul@) = ¥ & (36)
r=0T:
is an Appell polynomial, that is,
dsS,
daf“) = S.i(a). (37)

Thus the Taylor expansion for S,.(e + t) can be written in the form

Sn(a + t) = i{] %Sn#v(a)tl’. (38)
One obtains from (7)
B(n,e)™ = nla"S.(a) (39)

and hence the theorem follows on substitution into (38).

Theorem 10:
B(z,a+t)! = (1 + ::) e i (—_-TIX B(z 4+ », a)71,

v=0 L
Rea > 0, [t| < Re o

Proaof: Let
I(z, «) = e'*™ % 'B(z, a)7, (40)
then, from (23),

d d . [=
—_ = — plzT —a (1+y) z
e ) o © ﬁ e =0t (1 + y)=dy,

_ eizrf e—n(1+y)(1 + y):+ldy,
0

=1z+ 1, a), (41)
and hence
a

o l(z, @) = l(z + v, @). (42)

Thus, by Taylor’s formula,

e, a410) = 3 i—',z(z 4, 0). (43)

p=0 V.
Substitution of (40) into (43) yields the required result. One has
Uz + v, @) = eftetr [T eetan (1 4 gy, (44)

]
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hence the terms of (43) are O[ (t/Re a)’»%¢*]. The stated convergence
criterion now follows.

IIl. ASYMPTOTIC EXPANSIONS

Particularly simple and convenient forms for theoretical and numer-
ical applications may be obtained by examining asymptotic expansions.

Theorem 11:

o0
B(z, o)~ ~ yz_:oz"’a—’, a— o, |arge| <.

Proof: The asymptotic expansion for W, . (2) is'®
Wi m(2) ~ e dszk
iy 5 D= G=pdm= (k=370 D= (b= v4)]

v=1 v!z*

z— o, |argz| <mw (45)

Substitution of the parameter values given by Theorem 7 establishes
the result.

It should be remarked that the error, when using the partial sum
k-l z00g— to approximate B(z, a)~!, does not exceed |a||z®a"*|/
Re a provided Re z < k, Re @ > 0. This follows directly from Theorem
4 and (23).

For large z, one has

Theorem 12
a &

B(z; a)_lrw#/(z’ a)_l - z' (Z + 1)(2 +S),

g=1

z— o, |arg z| < w/2, uniformly in any bounded region of the a-plane
for which Re a > 0.

Proof: The representation of Theorem 5 is used. One must show

. ot

B, — ¥ = F
- o(GrniwEn) @

i“:,§ﬂ(z+n+1)...(z+s)=o. (47)

that is,
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Let Re z = =, then one has

al—”
sgn (Z+n+ 1){z+s)
a—n 1
ésgn\a{ z+n+1)---(x+8)° (48)
Letv = x + nand l = s — n, then the dexter of (48) is
= !
3 a| (49)

s+ 1) +10)°
Use of (29) and (30) on (49) yields

o' "

D P ) Sy e

1
< |a| j; elel—wyrdy;  (50)

thus
al_ﬂ

,g',,(z+n+1 - (z + 8)

The theorem is proved.

Useful asymptotic formulas are obtained when both « and z have
infinite limits but approach infinity in a fixed ratio, that is, « = ¢z, ¢
fixed. The cases ¢ > 1, ¢ = 1 are discussed by A. Descloux! for large
real z. Theorem 13 generalizes the result for ¢ > 1 to complex 2z and
provides the structure of the coefficients for the complete expansion.
The case ¢ = 1 is obtained as a corollary to Theorem 14 where the
result is also generalized to complex 2.

el
= v+1

0, wv—o . (51)

Theorem 13:

Bz, c2)™' ~ X gz},
=0

z— ® [argzl<£, c>1,

Proof :* One has, from (23)
B(z, cz)™ = ¢z fm e<=v(1 4 y)=dy. (52)
0

* The author wishes to thank C. L. Mallows for this proof, which replaces a much
longer proof originally supplied by the author.
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Defining the function k(y) by
h(y) = cy —In (1 + y), (63)

one may write, since h(0) = 0, h(®) = «, and h(y) is monotonic
increasing,

wuw=fwwﬁ%%ﬁm (54)

The factor ¢(1 4 y)/[e(1 + y) — 1] is now expanded in powers of h
as follows:
c(1+y) ’Q
Aty -1 =i (55)
A theorem on Abelian asymptotics for Laplace transforms'® and (54),
(55) yield the asymptotic behavior of B(z, ¢z)~* forz— =, |arg z| <w/2;
thus,

Bz, ey ~ Y gi (56)
1=0
The coefficients g; may be evaluated as follows. Let
w=¢—Inc, (57)
and
c
k() = —, (58)
then

Bw+ 1) = el +9) — e +9)] = ;250 69)

Thus, Taylor expansion yields
c(l +y) — i E(i)[k(w) (60)

C(l + y) —1 1=0 '\ dw
One has
d ¢ d
dw ¢ — lde’ (61)
hence
d \! c d\' ¢
(dﬂ)k(w)=(c—lﬁé)c—ldg" (62)
The following formula is obtained directly from Theorem 13.
R c 1 2 +c1
B(z, c2) e Sl -+ =132 (63)

The evaluation and behavior of B(z, @) for « in a neighborhood of 2
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is often of interest; accordingly, the function B(z, z + c+z)~! will be
considered for z — = ; ¢ is a fixed real number.

Theorem 14: There exists a representation of the form

B(z, 2 + ovB) ~ 3 a;(0)z G,
=0

™
z— o, |argz\<§, ¢ real,

n which

-]
ao(c) = e*"f e duldy,

c

a:(c) = g + %c’ = %c“ao(c),
a,(c)=—-ll8c"—376 +—c+( c“+ +112)au(c)

Proof: From (23), one has
B(z, z + cva) " = (2 + ¢+B) f T ettevou(l + w)idu,  (64)
0
larg z| < g-
Let u = v/+/Z, then

B(z, 2 + cvi) = f " e-dnrenh (, 2)dy,
0

w142 b

h(v, 2)

Il

Let K be a positive constant, then, for |v| = K, h(y, 2) clearly possesses
an asymptotic development in vz uniformly in »; thus,

h(v, 2) ~ 3 by(v, )a=G D2, z— o, (66)
=0

in which the coefficients b;(v, ¢) are polynomials in v. In particular,

bo(v, €) = 1,

b, ©) = 308 + 6, (67)
— L 3 *l 4 i 6

ba(v, ¢) = 3¢ a? + T
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Since
g~ Uttenlpke], (0, ) (68)

for each k > 0 and any ¢, termwise integration of (66) leads to the
required asymptotic expansion. Thus, letting

a;(c) = f " e @renp (v 6)dy, (69)
0
one has
Bz, 2z 4+ cz) 't ~ i a;(c)z— D2, (70)
=0

The formulas for ao(c), ai(c), az(c) stated in the theorem are obtained
by evaluation of (69) using b;(v, c) as given in (67).

_ T | 2 1 T
B, 2 J;+§+EV§’

™

2

Corollary

z— oo, |arg z| <
Proof : The result is obtained from Theorem 14 with ¢ = 0.

This theorem helps explain the phenomenon of the efficiency of
large trunk groups since even when a > z, B(z, a) is small as long as a
is in a small neighborhood of z; thus, Theorem 14 shows that
B(x, x 4+ ¢vT) ~ 1/avz, T — .

Theorem 14 shows that the parameter ¢ may be viewed as a standard-
ized offered load measuring the deviation of a from z in units of Vz.
The value of this viewpoint is derived from the very simple approximat-
ing form for B(z, a); thus,

B(z, a)" ~ aoVE + a1 + - (71)
An application of this is to the computation of dB(z, a)/dz given in
(92). Another advantage is the capability of computing B(z, a) by
means of a single-entry table against the standardized offered load ¢
rather than the usual double-entry table against z and a.

Table I gives the values of ao(c), ai(c), as(c) for —3 = c =4 in
steps of 0.1 with the intention of covering a practical range of values
of B(z, a). As an illustration, it is desired to compute B(400, 378).
Use of (71) with ¢ = — 1.1 gives the result 0.0122 correct to the last
figure. If ¢ does not appear in the table, then interpolation is used. For
example, to compute B (400, 377.6) for which ¢ = — 1.12 linear inter-
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polation in the table of coefficients and use of (71) yields 0.0118 cor-
rect to the last figure. The method, of course, is valid even when the
number of trunks is nonintegral. Consider, for example, B(400.34,
420) for which ¢ = 0.98463. The result obtained by linear interpolation
in the table is 0.0713 correct to half a unit of the last figure.

The accuracy deteriorates when z is decreased or when c is large and
negative. Thus, for B(10, 8), one obtains 0.12144 as against the correct
value 0.12166. In this case ¢ = — 0.6325 is not too disadvantageous.
The case B(10, 5) for which ¢ = — 1.58114 yields a much greater
error, namely, 0.0256 as against the correct value 0.0184. This error
occurs, however, for a small trunk group where exact calculation is
quite feasible. To aid the delineation of suitable regions of (¢, z) for
which the table is accurate, a curve is given in Fig. 1 defining 5-percent
error. When a computation is made from the table using any point
(c, z) in the unbounded, unshaded region, the error incurred will be
less than 5 percent of the true value of B(z, a).

IV. DERIVATIVES AND INEQUALITIES

It is desired to obtain formulas for the derivatives of B(z, a), with
respect to z and a.
Theorem 15:

dB(z, a) _

{f — 1+ B(z, a)} B(z, ), Rea > 0.
da a

Proof : From (23), one has

3B o) [ e 4w~ o[ et + weudu; (72)

da
hence,
—_aB(ZLa)_I = 1Bsa)' — B+ 1,07 + B @) (73)

Use of Theorem 4 provides the relation

aB(z_—’ a)fl = — E B(Z’ a)_l - 1 + B(zr a)—l' (74)
da a
Since
aB(z, 0) 9Bz o)
Ocx B B(z ) da ' (75)

the result of the theorem follows from (74).
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For the purpose of obtaining an approximate formula for the deriva-
tive with respect to z, consider

f(u) = aB(z, a)e (1 + u)* (76)
in which ¢ > 0, = > 0, and for which, by (23),

jo ® fudu = 1. 77)

1t is convenient to introduce the random variable £ with density fune-
tion f(u). The power moments u, defined by

u = BE, r > 0 (integral), (78)

are given in the following theorem.

Theorem 16 :
pr = B(z, a) :Z::u (—1)— (rl) B(z + 1, a)™.

Proof : Define a generating function ¢(t) by

#(t) = Ee = aB(z, ) L " ete-0u(1 + u)du, (79)
then, since
(a — )B(z, a — 1) f 0w (1 + w)edu = 1, (80)
one has
60 = GG (81)
Use of Theorem 10 in (81) provides the expansion
#(1) = B(x, aje gﬁﬂ:‘%;’—“): . (82)
Since
o) = ¥ 51, (83)

the coefficient of ¢ in the expansion of (82) in powers of ¢ yields the
required result. Thus

b= B ort 3 gr——l);)_t! B +“z, 2y (84)

1=0

and the formula of the theorem follows.
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Corollary : The central moments a, are given by
ar = Bt —w) = B £ (<0 () G+ DBG + Lo
Proof: The same as for Theorem 16 but considering the function

e Mtg (1) instead of ¢(1).
An approximation to dB(z, a)/dx may now be obtained.

Theorem 17 :
dB(x, a) 1 as
_ -1 ’ — i
B(z, a) FP In (1 4+ uy) 5T )
]. [+ £ _ ].
+§(Tm ane, 0<9<1.

Proof: From (23) and (76), one obtains

—B(z, a)~ "’—Bfaz’—“) — Eln (1 + &) (85)

Since, by use of the mean value formula,

1 1
111(1-|-E)=111(1'f'.ul)’f’l—_FTl(ffm)*‘éfr__iﬁ(f—m)'l

11 L1 )
+§ﬁﬁ+y1)3(£—n1)“—;5(5—m), 0<9<1; (86)

one has, from (85) and the corollary to Theorem 16, the required
result.

Corollary :
—B(x, a)™!

aB(I, a) . 1 [+7) 1 a3 .
= <In (1 4 m) U+ p)? " 30 + m)?

Proof: The error term of Theorem 17 is omitted.

For ready reference the following formulas are given in which
B = B(x, a), B, = B(x + 1,a), B, = B(z + 2,a), B; = B(z + 3, a),
B, = B(z + 4, a).

M= — 1 + BBl_ls
ay = (u+ 1)* — 2(uy + 1)BB{' + BB:, (87)
as = — (w1 +1)*+ 3(u + 1)?BBi" — 3(m + 1)BB; ' + BBy,

as = (p1 + 1)* — 4(uy + 1)*BB{! + 6(p1 + 1)’BB3"!
— 4(p1 + 1)BB;' + BB{".
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The evaluation of Bi', Bi, Bi!, Bi! is facilitated by successive use
of Theorem 4.

An alternative method of obtaining 8B (2, a)/dz is based on Theorem
14. Let

f(xj C) = B(T’) G,), a=2z+ Cﬁ, (88)
then, from Theorem 14,
L(‘?gw _ i J ; 1 a;(Q)z- R, T w; (89)
i=0
hence,
of(z, 0t 1 as(c)
T*ﬁ[“"(c) Rk (60)

Thus, the computation of 8 (z, ¢)/dz is easily accomplished with the
help of Table I and the formula

afg.: ) _ _ fa, oy eof(s:;,z.g)—xE ~ B(;\,ﬁa}z {ao(c) B t%(:i)) (91)

One now has

dB(z,a) df(z,c) 9B(z, a) c
ar ot da (1 + ﬁ) (92)

A simple upper bound on — B(z, a)"'[3B(z, a)/ dz] is given in the
following theorem.

Theorem 18:

— B(z, a)™! <In (1 4+ m).

dB(z, a)
dx
Proof: Since the function — In (1 + u) is convex for u = 0, the re-

quired inequality follows from Jensen’s inequality, namely,

g(EE) = Eg(8) (93)

valid for functions ¢ (x) convex over the range of the random variable
£, and (85).

A function g(z) > 0 is said to be log-convex over a set if In g(x) is
convex over the set. It is known!? that the sum of log-convex functions
is log-convex and hence that the integral of a log-convex function with
respect to a parameter is log-convex provided the function is log-convex
for every value of the parameter. Since a necessary and sufficient
condition that a twice-differentiable function be convex is the non-
negativity of its second derivative over the corresponding set, one
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derives the inequality

9’9 —9¢"20 (94)
as a necessary and sufficient condition that ¢ > 0 be log-convex. One
now has

Theorem 19: B(z, a)~!, [aB(z, a)]™ are log-convex functions of z and
of a, respectively, for a > 0 and all z.

Proof : The results are immediate from (23) and the observations that
(1 + u)*® is log-convex as a function of z for u = 0, and e—°* is log-
convex as a function of a for u = 0.

Corollary :
3*B(z, a) dB(z, a) ]?
B a) oo < [ 5 ] ,
aB(z, a) [2 BBE.;;' a) +a azB;:,’ a)] = [B(x, a) + aMaBgi’ o) ]2.

Proof: Use of (94).
An immediate application of Theorem 19 is to the logarithmic inter-
polation of B(z, a), that is, linear interpolation of In B(z, a).

Theorem 20: Let a, b, p, ¢ > 0, p + q = 1, then

B(z, a)*B(y, a)’ = B(pz + qy, a),
[aB(z, a)1?[bB(z, b)]* < (pa + ¢b)B(z, pa + gb).
Proof: Jensen’s inequality applied to —In B(z, a) and —In [aB(z, a)],
respectively.

An extension of the result of Theorem 20, for the purpose of obtain-
ing an approximate formula for B(z, a) when z is not an integer, may
be derived from the corollary to Theorem 16. Let N = [z],§ = z — N,
and o, be the central moments computed for the density function

fw) = aB(N, a)e**(1 + w)¥, (95)
then one has

Theorem 21:
B, o = BV, o £, (3 ) arll + )t + BO, 07 () o,
k even, 8] = 1.
Proof: Let £ be the random variable with density function f(u), then
B(z, a)™* = B(N, a)'E(1 + £)%. (96)
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Since

a+0r="E (D) a+mrre—mr+ () 6w oD

r=

the result follows from (96) and the corollary to Theorem 16.
A useful special case of Theorem 21 is

Bl—ﬁBlﬁ

1 B?
1‘55(1*5)(332_1)

B(z, a) >~ (98)

in which
B = B(N, a), B, = B(N + 1, a), B; = B(N + 2,a). (99)

V. CONCLUSION

Further investigations would be desirable; for example, one would
like to know the contour function g(z) for which B[z, ¢(z)]is constant.
Truneation error formulas for the asymptotic expansions of Theorems
13 and 14 would be useful ; also, the general structure of the coefficients
a;(c) of Theorem 14 should be determined. Asymptotic formulas of
various types should be obtained for G;(z, @) similar to those given for
B(z, a). These formulas may then be used to obtain asymptotic results
for its zeros which are needed in many transient and time-variable
blocking analyses.

Vi. ACKNOWLEDGMENTS

With pleasure I acknowledge the careful reading of the manuscript
by R. Marzec and S. Horing and their valuable suggestions. I should
also like to acknowledge the programming efforts of M. Zeitler who
prepared Table 1.

APPENDIX

The function B(z, a) is related to the Poisson-Charlier poly-
nomials?®~?? much used in telephone traffic studies. Let

\bﬂ(zs a) = ‘#(Z: a))
di
lp.?-(zj C!) = @\b(’v’, C!), (100)
then the Poisson-Charlier polynomials, G;(z, @), are defined by

¥i(z, a) = ¥(z, )05z, ). (101)
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The Taylor expansion

Ve att) = f”‘.—",w,-(z. «) (102)

J'=

yields the generating function®
et 1+‘—)'= S Gz @) & (103)
[+ i=0 7 J !
Thus, explicit formulas for G,(z, «) are

=532 0 (;2,)5

j—v /!
j j [z
-3 (_1),_,( )p!a ( ) (104)
v=0 v v
The first few polynomials are
GU(23 ﬂ!) = 1:

iz, @) = © (= — a),

1 (105)
Gi(z, @) = 5[ — (22 + 1)z + o],
Gale, @) = 15 [# — Bl + D2 + (B2 + 3o + D2 — o)
A recurrence relation derived from (103) is
Gt @) = 2= =G0, ) — L6,a5 ). (106)

The polynomials, G;(z, @), possess many properties analogous to
those of B(z, )~!. A Rodrigues formula is given in

Theorem 22:
d’k
Gir(z, a) = a~%e” do [e2a®G(z, a)].
Proof: One has from (100)

Vier(z 0) = gz, ), (107)
and hence
Givnle, @z, o) = o [(e, )0z, @)] (108)

The result follows on use of (24).
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Corollary:
Gz, @) = a %" % [e—=a=].

Proof :
Go(z, @) = 1. (109)

An integral representation for G;(z, @) is given in
Theorem 23:
A — = (— _a_s “ —a g p2—1
Gi(—20) = (~Diges [T e+ yyay,
Rea > 0, Rez > 0.
Proof: From (20), one has
1 o0
——2 — —a (141) g2—1
e F(Z)L e-a iy, (110)

Substitution of (110) into the corollary of Theorem 22 yields the result.
Theorem 23 permits obtaining a Wittaker function representation.

Theorem 24:
Gi(z, @) = (—1)ia= DRl W 1y i1y/a, (j-2y/2().

Proof: Comparison of Theorem 23 with (32) and replacement of —z

by =.
The representation of Theorem 24 remains valid, by analytic con-
tinuation, even outside the region of convergence of the integral of (32).

Corollary 1:
B(N, &)™ = (—1)¥Gy(—1, &).

Proof: Comparison of Theorems 7 and 24.
Corollary 2:

Gj(z: DI) = CE!GJ'—I(Z - 1; d) - G,'_1(Z, a)-

Proof : Substitution of the representation of Theorem 24 into the re-
currence relation®

Winm(@) = VeWiym (@) + G — &+ m)Wiam(z)  (111)
vields the result.
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Corollary 3:
Gz, @) = G5z — 1, @) + 2Giae — 1, ).

Proof: Same as for Corollary 2, except the following recurrence rela-
tion is used:

Win@ = VeWigomiy(@ + G =k = mWian(@).  (112)
A representation of G;(z, @) in terms of B(z, a) is given in
Theorem 25 :
Gr(—j ) = (—1)¥*
Proof: From (23),

@l d 1
(j—D!lde'aB(N, o)

1 —
aB(N, @)

and Theorem 23,
Gv(=j,0) = (0¥ 2y [T e+ 9y, (119)
(7—11Je

L (1 + y)Vdy, (113)

one has the result on use of

o0

[Tewt 4 pvay = (-0 e+ )y 115)

di1

doi1

The Poisson-Charlier polynomials possess addition formulas similar
to those of B(z, @)~! as given in Theorems 9 and 10.

Theorem 26: o
Gz, @ + 1) = (1 +i-)" ¥ (f)G,-_,(z, a)(—l)"(%)'-

=

Proof: Use of (103) shows that the system of functions
—~1i1 .
[ (J_l) ] ai@;(z, )

has the generating function e**(1 — {):, and hence? form an Appell
system with respect to «, thus,

d[ (=1 . o
2| S eeea| - (Rpertaee.  we

The Taylor expansion of [(—1)//j!J(a + t)iG;(z, @, + t) in powers of
{ now yields the required result.

ERLANG LOSS FUNCTION 549



Theorem 27 :
Gi(z,a + 1) = (1 + t—)_‘e‘ i Gits(2, @) t_vt
o r=0 V.

The series is permanently convergent.

Proof: Use of (107) and Taylor’s expansion yields

Vot = % Lt a). 1)

v=0

The result is now obtained from (101) and (117). Since, from (104),
z\7
G ~(2), i-e (118)

the convergence is permanent.
An asymptotic expansion is given by

Theorem 28 :
6o, @) ~ (~1)F {1+ X, (-1

Wz

o —r 0,
vla’ }’

Proof : The result is obtained directly from (104). It may also be ob-
tained from Theorem 24 and (45).
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