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This paper investigates the statistical properties of the sum, S, of an
n-dimensional Gaussian random vector, N, plus the sum of M vectors,
X), ---, Xu, having random amplitudes and independent arbitrary
orientations in n-dimensional space. We derive expressions for the proba-
bility density function (p.d.f.) and distribution function (d.f.) of S and of
its length, |S|, as series expansions involving only the moments of
|X:|, 2 =1, -+, M. In addition, we find the p.d.f. and d.f. of the pro-
jection of 8 onio I-dimensional space. Our results are generalizations of
the n = 2-dimensional problem of finding the statistical properties of a
sum of constant-amplitude sinusoids having independent uniformly
distributed phase angles plus Gaussian noise. The latter problem has been
treated by Rice' and Esposito and Wilson,? but our results can also deal
with sinusoids having random amplitudes. When n = 3, our findings
treat, in the presence of a Gaussian vector, the classical problem of “random
Slights” dating back to Rayleigh. Some calculations for the 2- and 3-di-
mensional problem are presented, and an application to coherent phase-
shift-keying communications systems is discussed.

I. INTRODUCTION
In a number of problems arising in communications systems, in
multipath phenomena, and in other areas, the determination of the
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statistical properties of a sum of sinusoids and Gaussian noise is
important for evaluating system performance. For this reason there
has been interest in this problem for a number of years. Rice! first
investigated the statistical properties of the sum of a single constant-
amplitude sinusoid and Gaussian noise. Later, Esposito and Wilson?
considered this same problem but with two constant-amplitude sinu-
soids having independent uniformly distributed phase angles. More
recently, Rice? studied the properties of a sum of M sinusoids and
Gaussian noise. In this paper, we look at the natural generalization
of this problem to n-dimensional space; namely, we determine the
statistical properties of the sum of an n-dimensional Gaussian random
vector plus the sum of M vectors having random amplitudes and in-
dependent arbitrary orientations in n-dimensional space. In the special
case when n = 2, our results are applicable to the type of problems
considered by Rice and Esposito and Wilson, but they ean also deal
with any number of sinusoids with random amplitudes. When n = 3,
our findings treat, in the presence of a Gaussian vector, the classical
problem of “random flights”’ dating back to Rayleigh.

In Section II we give a definition of spherically symmetric random
n-vectors and state a theorem which characterizes the form of such
vectors in an n-dimensional spherical coordinate system. We consider
M independent spherically symmetric vectors, Xy, - - -, Xu, and define
S = ¥, X,. Using our characterization theorem, we show that the
even moments, E[|S|%*], k =1, 2, ---, can be easily expressed in
terms of only the moments of |X;|, 1 =1, -+, M. Then with the
normal vector N ~ 9t (0, ¢°I) independent of the X/’s, we derive in
Section ITI the probability density functions (p.d.f.’s) and distribution
functions (d.f.’s) of 8 + N and of |S + N| as series expansions in-
volving the moments of |S|. In addition, we derive the p.d.f. and d.f.
of the projection of 8 + N onto 1-dimensional space in terms of a
similar series expansion. When n = 2 and M = 2, we check that our
results agree with those of Esposito and Wilson for two constant-
amplitude sinusoids.

Last, in Section IV we present some calculations for the 2- and
3-dimensional problems, and discuss some aspects of the computational
procedure that we use. Certain of these calculations provide results
for the probability of error of a binary coherent phase-shift-keying
communications system operating in the presence of M co-channel
interferers and Gaussian noise. These results extend previously pub-
lished computations.*® Additionally, our findings can be used to find
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the probability of error of this system operating in the presence of
more general types of interference.

Il. SPHERICAL SYMMETRY

The generalization of sinusoids with uniformly distributed phase
angles are ‘‘spherically symmetric’”’ vectors defined in the following
way (see Refs. 6 and 7):

Definition: A random n-vector X = (X,, ---, X.), n = 1, is spheri-
cally symmetrie with matriz ¢ if and only if the covariance matrix of X
exists,* E(X) = 0, and the joint characteristic function of X is of the
form :t

= E[e™*'] = h[(ugu')}] 1

for some function % on [0, =) and where p is some n X n (symmetric)
positive definite matrix.? Actually, & and g are defined only up to posi-
tive multiplicative factors. However, in this paper we are only con-
cerned with spherically symmetric vectors with p = I = identity
matrix. Then £ is uniquely determined and ®x(u) = h(|u|). We denote
such a spherically symmetrie vector by the notation “X is s.s.”

Note that if X, and X, are two independent s.s. vectors, then clearly
X, + X, is also s.s.

The probability density function of an s.s. vector X can be found by
Bochner’s theorem.® If A(|u|) is absolutely integrable, then the p.d.f.
of X is:

px(x) = g.(|x]), (2)

where

1

ga(r) = WM.[U fl(h))\"le](n_g)/z(hf)dh r>0, nzl

Thus, if X is s.s., its p.d.f. is constant over every n-dimensional sphere
centered about the origin. This vector is precisely what is meant by a
“random flight”’ in a higher dimensional space.

For our purposes, a more suitable characterization of an s.s. vector
is given by the following theorem proved in Ref. 9.

* Expected value will be denoted by E(-).
We denote vectors by boldface characters: u = (uy, * -+, ua). The character o’
is the transpose of u. The norm of u is denoted |u| = (uu')‘
YFor n = 1, a spherically symmetric random variable has an even characteristic
function, éx(u) = hlp¥|u]|].
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Theorem 1: Suppose X = (X3, - -+, Xa), n = 2, is s.s. Then there exisis
a unique set of random variables R =2 0, %, € [0, v ],k =1, ---,n —2,
6 € [0, 27 ] for which*

i=1
X,-=R(Hsin¢1>;,)cos¢j 12j=n—2
F=1

n—2
X.,.1.=R ( II sin @k) cos @ (3)

k=1
n—2 .

X.= R( II smth) sin 6,
k=1

and furthermore (R, ®1, - - -, ®._s, 0) are independent and have respec-
tive p.d.f.s:

pr(r) = 2z [1" ( 1_;)]‘1 g (r) r=0

pay(pr) =T ( #__}) s [P (n g k )]_1 sin™ k¢,
0=Z¢:=m (4

k-—_l,"’,ﬂ-_Qr
1
= — <
pe(e) o 0=0<2r

Jor the g. () of (2).

Conversely, if (R, &, ---, ®._s, 0) are independent and have the
p.d.f.’s given by (4), and X 7s defined as in (3), then X is s.s.

The utility of this theorem lies in the fact that the random variables
(R, &, ---, ®._s, 6) are independent with specified p.d.f.’s. As an
immediate corollary, we see from (2), (3), and (4) that:

Corollary 1: Suppose X = (X1, -+, Xu), n 2 1, 75 s.5. Then its p.d.f.
18 given by:

pe®) = (@emir(oy/2) B,
Moreover, for j = 1, - - -, n and for all 7,
I'(n/2)E[|X|%] _ T(HEL|X;[*].
I[(n/2) + 1] I'(z + 1)
Using Theorem 1 we can prove:
Theorem 2: Suppose Xy, - -+, Xar are independent s.s. n-vectors, n = 1.

Let S; = Yi_1Xi, 7 =1, -+, M, and define
* We define IT;., ar = 1.
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E[|S;(*], k
E[|X,|2"], m =

“‘;213

0,
T ,

11“'1
11"')

Put
c A B[(2m + 1)/2, (n — 1)/2]
e B[}, (n—1)/2]

where B(-,-) s the beta function. Denaote

™ = (W, uf?, -, ™)

W = (60, o, -, o)

and define D, ; to be an (m + 1) X (m + 1) matrix whose (k, {)th
element equals

20 — 2\ Cnok—2Cu 202k (20—2k) )
on 2R T2k (o 2k
(Zk — 2) Cn,2t—2 " ’ voesk

and 1s 0 if £ < k.
Then, for j =2, ---, M,andm =0, 1, ---,

mof2m N\ €n2iCnam—2i
= B () e witp, )
1=0 23 Cn.2m

In matriz form this is
2 2
utm = U.f(—"i}Dn,h
so that
u™ = wfD, s D, 0D (6)

fOT 7 = 2: T M.
Proof : By Theorem 1 we have for each X; a corresponding vector in
spherical coordinate space:
X, <> (R.’, ‘I’l.i, Tty ‘bn—z,i, 9;')-
Since S; is a sum of independent s.s. vectors, it is also s.s., so there are
vectors corresponding to it:
Si - (P.il ‘El.h Ty ‘Efifﬁ-i) ‘I‘J)
Note that uf*® = E[P#] and »#™ = E[R7] and that
E[cos ®,,;] = E[cos® £&1,;]
_ r'(n/2) N
LT —1)] Jo

| eni if 7 1s even
- 0 if 7 is odd. @

cos’ a sin™ 2 ada
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Denote the components of S; and X; as follows:

SJ = (SI-J'; Y Sﬂ-i)

= (X o Xni),
so that
Sl'j = P_-,‘ COSs 51,5
Xl,j == R_.,' cos &y ;.
Also,
E[S8i,] = E[Pjcos’ £1,;]
= E[P{]E[cos* £1,;] =0 (8)
if 7 is odd, and
E[S7] = E[P{"]E[cos™ & ,;]
= ™0 2m 9)
and
E[X#] = E[R¥*]E[cos*®, ;] = v{*M¢a o (10)

Noting that S ,_; is independent of X, ; since S; 1 depends only on
X;, ---, X;_; which are independent of X;, the following equalities
follow from (8) to (10):

¥ ™y 2m = B[ST}
= E{[S1j-1 + X1,;]*"}

0(2”1 ) E([81,;1J[ X1}

§ =l

2

% (%) EOSt- X

(s
£(%

I
i

i

Il
1 L=

(21 i)

2m
27
2m
22

II
i 1M

) e P

)
)E[Su \JE[ X3
)

Hence,

m c c .
2 _ 7,21 Cn, 2m—21 29)  (2m—2
o = z ( ) R e T T el

cn,2m
The vector equation
u@m = yemp j=2 - M (11)

follows immediately from this expressmn Since uf*™ = v*™ eq. (11)
implies that wf®™ = v#™D,,---D, ;aD.; for j=2,---, M. For
n = 1, we prove (5) directly.
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In Reference 9 we proved the result:

Theorem 3: If X is s.s. and independent of N ~ 3(0, ¢’I), then the p.d.f.
of X + N 1s:

1 n * 1
'Px+n(z) = D2l r (5) _/; v pIXI(v) [ﬂlzl:ltnﬁzﬁ“z
1
Xexp[ 5 (VP + |Z|2)] I 2)/2( ‘zl),n.l_‘ 1, (12)

where I,(-) 1s the vth order modified Bessel function of the first kind.

From this theorem we obtain the following:
Corollary 2: Suppose X 1s s.s, independent of N ~ (0, ¢’I), and
Yo [(1/262) /2 JEL | X [*] < = (for example, if |X| is a bounded
random variable). Let Z be the projection of X + N onto 1-dimensional
space, i.e., Z is (say) the first component of the vector X + N. Then
forn = 1the p.df’sof X + N, of |X + N|, and of Z are given, respec-
tively, by:

2 1
Px+n(z) (21(::% ,1)fg exp (_ EG—'—Z |Z|2)
w Lg(n—2)/2]( |z|2/2a2)(— 1/20.2):'E'[‘x|2i:]

Xz T0n/2) + ]  O3)
CE U _2)/2]@21{2[?2 ICHTE 2l R
and
o (- )
x § LEC 2K

where L{®(-) are the generalized Laguerre polynomials. In addition,
for n = 1 the “distribution functions” of |X + N| and of Z are given,
respectively, by:

1 n a? a? \ "2 a’
PT{|X+N|>U]=WI‘(§“‘—2)#(2—EZ) exp(—z—ag)
X Z L2 (a2/26%) (— 1/26%)E[ | X|2]

il[(n/2) + 7] (16)
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and
Pr{Z > a} = %erfc(ﬁ) —%%ﬂgexp(—ﬁ)

X 3 LY, (a?/2¢% (— 1/2¢*)E[|X|*]

i=1 iT[(n/2) + 7] '
where T'(-,+) is the incomplete gamma function (Ref. 10, p. 337) and
erfe (-) is the complementary error function.

(17)

Proof : From Ref. 10, p. 242, we have the generating function

a1 _ @ L@ (=1
¢ )= L.(2t2) .-Z=:0 Tla+1+1)

With ¢t = v/V2e, = = |z|/V26% and a = (n — 2)/2, we substitute (18)
into (12) to get:

1 n 1 ®
Pxn(Z) = mr(ﬁ)exp [— 35 |Z|2] j; dvpix| (v)

x 1 = [Le=2/72(|z|2/26%) (— 1/24%) %%
(25%) (=22 & P[(n/Z) + ,'.;]

= arwyen o (= 2 1)

=, L{o-9/(|7]2/24%) (— 1/2¢*)EL|X|*]
> IC(n/2) + ] '

(18)

(19)

assuming that the interchange of integration and expectation is valid.
The second assertion of the corollary follows from Corollary 1 since

2,".1:1'2 _
pix+w (12]) = T (n/2) |z| " pgin(2). (20)

To prove (15) we note that Z = X, + N, is a l-dimensional s.s.
random vector and we apply eq. (13) (with » = 1) and the second part
of Corollary 1 to obtain the desired result.

Next, to show (16) we integrate (14) over the interval (a, ») and
utilize the relationships:

© 2 l n a?
j; v ! exp (— ;—gz) dy = 3 (26%) 2T (5’ 2—-0_2) (21)
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and forz = 1,

4 2 2
,[,, ™1 exp (— 2%2) Litn—2/2] ( 2”—62) dy
@ )L}’:ﬂ’ (%/20Y)
7

1
=30 exp (— 9.2 (22)
Equation (21) is given in Ref. 10, p. 337, and (22) is proved in the
appendix.
Finally, to obtain (17) we integrate (15) and use eq. (22) withn = 1
and the definition:

erfe (z) = 1% fw exp (—)dt.

It remains to justify the various interchanges of integration and
expectation or summation. For example, to validate the interchange
in (19) it suffices (Ref. 11, pp. 28-29) to show that

= (1/20%);
& TC(n/2) T 1]

Since (Ref. 12, p. 207) |L®(@y)| = e T« + 7 + 1)/iIT(a + 1),
the expression in (23) is less than or equal to:

2 (1/20% 5 2|2\ 1 T[(n/2) + i]
Z iy 17 SUX T (G ) ot

which is finite by hypothesis.

The utility of this corollary lies in the fact that we can evaluate the
various p.d.f.’s and d.f.’s knowing only the moments of |X| and not the
entire distribution of X.

2
E[|X]%] Li[(n—z)/sl(%)’ < . (23)

Ill. STATISTICAL PROPERTIES OF THE SUM OF INDEPENDENT
SPHERICALLY SYMMETRIC VECTORS AND GAUSSIAN NOISE
For simplicity, we combine the results of Corollary 2 and Theorem
2 into:
Theorem 4: SupposeX,, - - -, Xy areindependent s.s. n-vectors, n = 1, with
moments v§£™ = E[|X/|*™], m =0,1, ---,and £ =1, ---, M, which
are also independent of N ~ 91(0, ¢’I). Let S = Y, X, and assume that
220 (1/26%)/E[|S|*]i! < = (for example, if the |X:|'s are bounded
random variables). Let Z be the projection of S + N onto 1-dimensional
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space. Then the following relations for p.d.f.’s and d.f.'s are valid:

psin(z) = (I;fr—%%exp (_ 2—{17‘2 |z]2)
LEO=2/71(|2]2/20%) (— 1/20")ufl

X ~Z T[(n/2) + ] , (29
Pisem(0) = Gy 0™ exP (_ 2%,,)
y éﬂ L{m—m/sz(fE (j/o-;)) (:r :-:l/zaz)ipﬁf) @
ps@) = ey exn (— s )
x 5 e
Pr(|S+N| >a} = F(;/Z)r(g,zi;) _ (2a_)'
X exp (- 5 ) 5 ELGLEDC W )
and
e 12> a) = gorte (g ) ~ 5 (aay
xexp (- g5 ) Lm““:éﬁ‘{: 12, g

The moments 2> 2 E[|S|%] are determined by the recurrence relations
d 27 \ Cn 2k Cn,2i22 —
(20 _— . . (2k)  (21—2E) 9
My go ( %k ) Cn2i Hi—17; (29)
for § = , M with

P B[(2m + 1)/2, (n — 1)/2]
e B[3, (n — 1)/2] ’
or by the matriz equation (6).
We next look at some special cases.

A. n = 2-dimensional space

When n = 2, egs. (24) through (29) reduce in an obvious manner.
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The incomplete gamma function in (27) equals (Ref. 10, p. 339):

ﬂ.2 2
I‘(l,g—az)=exp(—2%)- (30)

The Laguerre polynomials L{™" and L® in (26) and (28) can be ex-

pressed in terms of Hermite polvnomials H.(-) using the relations

(Ref. 10, p. 240):

(—1) H i (2h)
1192+

L (x) = (31a)

and
(—1)Hai(ah)

Li("!) (I) = J1o8

(31b)

For example, eq. (28) can be rewritten as:

> a 1 a?
PriZ>a} = erfc(@) +Fexp(_?)

2 o 1)
x £, Heala/ BB (g

20\ Cu2k Cuniak _f{ 2
2:10 Cn,2i IG
2 2k) | (20— 2k
uh = ) (2, )
k=0

z
k
— i ( )2 (2b) (21 —2b)
¢
2

We also check that

so that

M-

k=0

1 .' 2 2
(2i) 2k)  (20—2k)  (2i—2{;
pi = Z ) ( ) V{ )V2 }Vé ),
(=0 k=0

and so forth.

Consider the type of problem investigated by Rice!'* and Esposito
and Wilson? in determining the p.d.f.’s of the envelope and instan-
taneous value of

M
z2(t) = kZ A cos (wil + 8:) + n(t),
=]
where each A; = 0is independent of 8, and 8, is uniformly distributed
on [0, 27). Assume that the pairs { (A, #;)} are independent of each
other and of n(-). Suppose n(f) is the result of the passage of zero-
mean white stationary Gaussian noise through a bandpass symmetrical

SINUSOIDS AND GAUSSIAN NOISE 567



filter. Then n(t) can be written as (Ref. 13, pp. 142-148):
n(t) = ni(t) cos wt — no(t) sin w,t,

where n;(t) and ny(f) are zero-mean independent stationary low-pass
Gaussian processes with .

ot = E[n(t)? = E[m() ]} = E[n.() I~
Let 0:(t) = (wix — w,)t + fx and thus:

2(t) = jfl Ay cos [wat + 6:(8)] + n()
= k);ul A cos [wot + 0.(8)] + na(t) cos wt — na(t) sin w,t

M
- [3: Ay cos B(t) + nl(t)] cos wit

=1
— [é Ay sin 0x(t) + ne(t)] sin w,t
= A(t) cos [wdt + v(t)].
At any time ¢,, let 8, = 6:(L.), n1 = n1(L,), and ny = n,(t,). Put
X, = (A cos 8y, Aysin 6y), k=1,-.-, M,

and
N = (ny, ng).

Then > ¥, X; 4+ N is s.s., so by Theorem 1 it has the form (I cos ¥,
I'sin ¥), where I' = 0 is independent of ¥ and ¥ is uniformly dis-
tributed on [0, 2x). It follows that

z(to)

T cos ¥ cos wot, — I' sin ¥ sin w,t,
= T cos (w.t + ¥);

that is, ' = A(f,) and ¥ = v({,). Hence, at any time {,, A(f,) and
v(t,) are independent and +y(f,) is uniformly distributed on [0, 2x).
Moreover, the p.d.f. of the “envelope’” A(t,) is the p.d.f. of
I' = |24, X + N| which can be determined from (25). Thus we
can find the p.d.f. of the envelope of the sum of Gaussian noise plus
any mumber of sinusoids with random amplitudes and independent
uniformly distributed phase angles. The case considered by Esposito
and Wilson? was that of M =2, A, = a = constant and A, = b
=constant, in which case

v{?ﬂ) = E[|x1|2n] = aim,
1 = B[|s[] = b,

It
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and

2 (TN e
lui.(' 1) — Z (k) a2kb2;—2k‘

k=0

The envelope p.d.f. is then:

pr(s) = 5 exp[—1%/27]

L]

which agrees with the result in Esposito and Wilson [Ref. 2, eq. (12)].
This expression was obtained earlier by Goldman.!
To find the p.d.f. of z(f) at some time instant £,, note that:

2(t)) = A (lo) cos [wolo + ¥ (to)]
= T cos (wit, + ).

Since ¥ is uniformly distributed on [0, 27) and the cosine function
has period 2w, the p.d.f. of T cos (wd, + ¥) is the same as that of
T cos ¥. Recall that (T cos ¥, I'sin ¥) = 3> 4L, X, 4+ N. Thus, T’ cos ¥
is the first component of the 2-dimensional vector >, X + N and,
from eq. (26), its p.d.f. is: ‘

Pzcty) (zl) = PTr cos T(zl)

1 = (— 1/20®)uff®
= (zmﬁ)%exp(_ Tzzi) z il :

- [ A
X LY () (33)
In Esposito and Wilson’s example, this becomes

Pz(ty) (zl) = @#ﬂ exp ( 21) I;ﬂ (_ 1/20‘ )‘

o () A

which agrees with their eq. (29).
We also check that the d.f. in (27) is the same as that obtained in
eq. (18) of Ref. 2, when we use the fact that (Ref. 10, p. 241):

L) = i[L(z) — L ()]

Finally, consider a binary coherent phase-shift-keying communica-
tions system operating in the presence of Gaussian noise and M
co-channel interferers modeled by a sum of constant amplitude sinu-

SINUSOIDS AND GAUSSIAN NOISE 569



soids with independent, uniformly distributed phase angles, 6,, - - -, 8ar.
(Details of this model and system may be found in Refs. 4 and 5.)
The probability of error in such a system is:*?®

Pe = Pr f‘i bicosb; + Ny > a;,

where Ny ~ 9(0, ¢?) and a is the amplitude of the transmitted (de-
gired) signal. This probability of error is given by the expression in
(32) and agrees with the result found in Refs. 4 and 5. However, eq.
(32) can also be used to find the probability of error in this system for
a more general class of co-channel interference consisting of a sum of
uniformly phased sinusoids having also independent random ampli-
tudes.

B. n = 3-dimensional space

When n = 3, eqs. (24) through (29) reduce in a straightforward way.
Equations (24) to (26) and (28) can also be expressed in terms of
Hermite polynomials by employing eq. (31). The incomplete gamma
function in (27) can be written in terms of tabulated functions by use
of the relations (Ref. 10, pp. 339-340) :

T(c + 1, ) = ¢l (e, x) + z%€"
and
(3, ) = =terf (z),

where erf(-) is the error function.
The recurrence relation for the moments becomes, for M = 2,

/2N 2% +2\/ 2% —2% +2\/2+1 _
21) (2k)  (2i—2k)
s _k§0(2k)(2k+1)(2i—2k+1)(2@'—{—2)“ CH

and so on for higher values of M.

IV. SOME COMPUTATIONS

The form of the expressions in (24) through (28) is quite similar,
and so the computer programs used for their evaluation were only
slight modifications of one basic (Fortran IV) program. Different
values of n could also be treated easily. The basic program required
computation of a sum of the form :

= L (@) (= 1/267)uft”
& T+

(34)

where z is a variable.
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0.1

Fig. 1—Plots of p.d.f. of |S + N| fore? =1, M = 3, n = 2, and different sets of
vector lengths (by, bs, ba).

In one part of our program, the moments pf® were determined from
eq. (29):

i
24 2: y 2k) | (21 —2L;
F} ' = = C"(?‘s k)p‘.i(—fllvft ! ))

} 2) Ty M} (35)
where

Culi, k) 2 (2‘)3_;

2k Cun,2i (36)

Using the definition of ¢, and properties of the beta function, we can
show that the coefficients €', (4, k) are equal to:

Cn(3, k)

_ (G + LT (n/2)T[(n/2) + 7] -
T(k + DI — k + DT (n/2) + kJTL(n/2) + 1 — k]

To efficiently compute these coefficients and to eliminate “overflow”
problems, we utilized the simple recurrence relation

oy G=k+D[n/2) +1
CnGo k) = =—r72) +F = 1]

ke k-1, k21, @8
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Fig. 2—Plots of p.d.f. of |S + N[ for¢? = 1, M = 4, n = 2, and different sets of
vector lengths (b, b, by, by).
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Fig. 3—Plots of p.d.f. of [S + N| for e* =1, M = 6, n = 2, and vector lengths
all equal to b.
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Fig. 5—Plots of p.d.f. of |S + N|foro* = 1, M = 4, n = 3, and different sets of
vector lengths (by, by, bs, ba).
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Fig. 7—Plots of Pr {Z > a) forn = 2, 10logo (a?/ L%, b)) = 6dB, by =+ - = by,

and for various values of M.
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Fig. 8—Plots of Pr {Z > a) forn = 2,10 logo (a?/ 2%, b)) =8dB, by =- = by,
and for various values of M.

together with C, (7, 0) = 1. To evaluate p§” from eq. (35), particular
sets of moments {»f*"} could be read into the program. However, for
simplicity we chose spherically symmetric vectors having constant
lengths by, - - -, bu.

The second part of the program was concerned with computation of

() /()

In order to avoid “overflow”’ difficulties, we actually computed

. . . 1 M 2
,‘“’(z))\‘/l‘(g + z) with A= 5;,(‘;1 b.-) :
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8 10 12 14 16 18 20 22
10 LOGgl a2 /202 ) IN dB

Fig. 9—Plots of Pr {Z > a} forn = 2,10logyo (a*/ 2%, b)) = 10dB, by =+ - = b,
and for various values of M.

To do this efficiently we used the iterative identity :
L@ (2ita—1-—2)
[ (n/2) + 1] i (n/2) + 1]
_ Gte—1
iTL(n/2) + ]
[which follows from the Laguerre polynomial recurrence relation
(Ref. 10, p. 241)], together with the fact that L§”(z) = 1 and
LP@) =a+1 -z
The final part of the program computed the sum:

= L@ ()N

& T2 + 1M (40)

where a2 = p@/ (33, b)) [The factor 1/ (3.1, b,)* was built into

AL, (z)

2a(z), 1z2 (39)
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the computation of eq. (35) in order to find a§f”.] A convergence check
was provided to end the summation after additional terms did not
change any significant digits. Although the program was written to
handle up to 200 terms in the sum, many computations required less
than 50 terms. As Esposito and Wilson? also noted, for certain values
of z, ¢, and {b;}, the terms in (40) alternate in sign and have magni-
tudes of the order 10'. For these cases, precision and convergence could
not be guaranteed. The typical CPU time required to compute eq. (40)
for 200 values of x was about 10 to 20 seconds in double precision
arithmetic on the IBM 370/165 system.

Some representative results of these computations are shown in
Figs. 1 to 12. Figures 1 to 6 are plots of p;s;n (v) as a function of v
for ¢* = 1, for various values of n and M, and for s.s. vectors having
constant lengths by, ---, by. Curves for n = M = 2 were given in
Ref. 2. Iigures 7 to 12 are plots of Pr {Z > a} versus the quantity
10 logi (a*/2¢%) for fixed values of the quantity 10 logy (a?/ 32, b2)
and for various values of n and M. In these curves, for simplicity, we
took by = by = --- = bu. As we discussed in the last section, the plots
in Figs. 7 to 12 represent the probability of error of a binary coherent

10-8|

10-9

10-10

oL 11
6

8 10 12 14 16 18 20 22
10 LOG1o( a2/ 202 ) IN dB
Fig. 10—Plots of Pr {Z > a)} forn = 3, 10 logso (a?/ 2, b?) = 6dB, by =--- = by,

and for various values of M.
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6 8 10 12 14 16 18 20 22
10L0G10(a2/202) INdB
Fig. 11—Plots of Pr {Z > a} forn = 3, 10log,y (a?/ ¥, b)) = 8dB, by =+ - = bu,

and for various values of M.

phasge-shift-keying system versus signal-to-noise ratio,
SNR = 10 logy (a?/24%) (dB),

for fixed values of signal-to-interference ratio,
M
SIR = 101ogu (o / 2 37) (B,
i=1

These results extend those previously found in Refs. 4 and 5 to larger
values of SNR and smaller values of SIR.

V. CONCLUSION

In this paper we presented expressions for the p.d.f. of a sum of
spherically symmetric random vectors plus a Gaussian vector in n-di-
mensional space. We also found expressions for the p.d.f. and d.f. of
the length of this sum and of the projection of this sum onto 1-dimen-
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10-9)

10-8

pr {z>3}

10-9)

10-10

10-1

10-12
10-13f—
10-14 L
6 8 10 12 14 16 18 20 22
10L0G1g(a2/202) IN dB
Fig. 12—Plots of Pr {Z>a} for n=3, 10 logio (a?/ 2%, b)) =10dB, by=-- - =by,
and for various values of M.

sional space. All of these expressions were series expansions involving
only the moments of the length of the sum of the s.s. vectors. These
moments could be found from recurrence relations also derived in the
paper. Some computations of the p.d.f.’s and d.f.’s were presented for
the 2- and 3-dimensional cases, and an application to a communications
system was discussed. However, as pointed out earlier in Refs. 2 and 3,
there are sometimes difficulties in evaluating these p.d.f.’s and d.f.’s
for certain parameter values, even for the case of s.s. vectors having
constant lengths.

APPENDIX
To prove eq. (22) we use the fact (Ref. 10, p. 241) that, for i = 1,

& [ LietD ()] = i eL ).
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Integrating this expression over the interval (a, =) yields

— L@ = i " L (1), (41)

a

Equation (22) follows from (41) after a simple change of variables.
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