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The sampling switch in a time-division switching system s, in general,
different from the sampler of sampled-data system theory. A general
approach is developed for characterizing such a switch as an ideal sampler
plus some modified transfer functions. With this approach, a time-division
switching circuit containing a sampling switch can be converted easily
lo a typical sampled-data system, and the well-established mathematical
tools for sampled-data systems, such as the Z-transform, can be applied.
In addition, a simplified approach s described that will lead to a very
good approximation of the ‘‘exact’’ solution.

I. INTRODUCTION

The transfer function approach developed for sampled-data systems
has proved to be a very powerful tool for analyzing time-division sys-
tems.'=? It yields information useful for both analysis and synthesis of
the system. However, its application is often limited due to the fact
that the sampling switeh in a time-division circuit is different from the
sampler of sampled-data-system theory. This difference can be seen
from the fact that the voltage at the output side of a sampler in a
sampled-data system is always zero between sampling instants, while
the voltage at the output side of a sampling switch in a time-division
circuit is not necessarily zero between sampling instants, if, for ex-
ample, the switch is connected to a capacitor. As a consequence, one
cannot treat a time-division circuit as a sampled-data system unless
the sampling switch can be modeled by a sampler plus a modified
system-transfer funection.

Of the few who have worked on time-division-system analysis,'—
only Desoer! has come close to using functional blocks to model a
sampling switch, but no general approach has been developed. It is
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the purpose of this paper to present a general approach for solving this
problem. With this general approach, any time-division circuit con-
taining a sampling switch can be converted to a typical sampled-data
system, and the well-established mathematical tools for sampled-data
systems, such as the Z-transform, can be applied.

Il. FORMULATION

In a sampled-data system, the sampled signal is related to the original
signal by a sampling device such as is shown in Fig. 1. The output of
the samples is a train of amplitude-modulated pulses. The interval T
between the consecutive pulses is called the sampling period, and the
pulse width p is referred to as the sampling duration. In the ideal case,
we assume that the sampler operates in zero time so that the pulse
width p is equal to zero. Then the output of an ideal sampler is a train
of amplitude-modulated impulses and is related to the input by

(1) = = oDt — al), (1)
where  is the Dirac Delta function. We note that whether the operating
time of the sampler is zero or not, the sampled voltage is always zero
between samplings.

A switch operating periodically in a time-division system is not
equivalent to a sampler in a sampled-data system, because the signal
at the output side of a switch is not necessarily zero between samplings.
However, if an ideal amplifier with zero output and infinite input
impedances is added to the switch, as shown in Fig. 2, then the output
signal of the amplifier is equal to zero between samplings. In fact, if
the sampling duration is much shorter than the sampling period, then
an input-output signal relation identical to (1) ean be obtained. Thus,
if the switch in a time-division circuit is followed by an amplifier, then
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Fig. 1—Sampling device.
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Fig 2—Time-division switch followed by an ideal amplifier.

the sampled-data system techniques are directly applicable. In practice,
this is not always the case. Sampling in a time-division system is
frequently performed by a switch connected directly to a time-division
bus. Our objective is to characterize the switch by a sampler plus some
modified system-transfer function so that any time-division system
employing periodic sampling can be treated as a standard sampled-
data system.

In general, the time-division system we are interested in has the form
shown in Fig. 3. It consists of two networks connected by a switch in
series with some finite impedance Z,. The switch is closed periodically
for a brief interval of p seconds every T seconds. The smallest time
constant of the input signal and the sampling period T are both much
greater than p. Referring to Fig. 3, we define v1,(f) as the difference
between vy () and v, (t), the voltages at terminals 1 and 2, respectively;
voo(f) is defined as the open circuit Thevenin equivalent voltage at
terminal 1 and () as the current in the switch. The current i(f) can
be found from the equivalent circuit (Fig. 4) obtained by connecting
the driving source e(t) = v,.(f) in series with the time-division switch
and impedances Z,, Z,, and Z,, where Z, and Z, are the output im-
pedance of network 1 and input impedance of network 2, respectively.
As the switch is closed only for a time interval from ¢ = nT to

|<————v,2m ————)i

SWITCH

°
—_—
ilt)

v(t) NETWORK 1 v,y vylt) NETWORK 2

S

1

Fig. 3—General time-division system.
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Fig. 4—Equivalent circuit for solving for g(t).

t=nT +p,n=0,1,2 -, we may express i(t) as
o 2a(®) al <t=nT+p
iy = {0 otherwise @
or
i) = 5 int)-[ult — n7) = ult = nT = p)] (3)

where u(f) is the unit step-function, T is the sampling period, and p
is the sampling duration.

To solve for 7,(t), we let the switch in the equivalent circuit (Fig. 4)
close only for a time interval from ¢ = n7T to t = nT' + p. The driving
source e(f) should be modified to v,.() — vio(nT™) — v20(nT), where

v1o(t) = v0.(t) — v1(t) = i(t)0z1(P)
va0(t) = va(t) = i(t)022(t)

and o denotes the convolution product. Note that vi(n7~) and
ve0(nT-) are the voltages across Z, and Z, just before the switch is
closed. For the small time interval nT < t < nT 4+ P, voc(t) =2 voe(nT).1
Therefore, €(t) =~ v,.(nT) — v10(nT~) — v30(nT). Defining*

va(t) = voc(t) — v10(t7) — v20(E7)
= voc(t) - vlﬂ(t - 5) - 920("' - G), (5)

(4)

where ¢ > 0 is an arbitrarily small number, the current .:(f) can be
expressed as

in(l) = £ ["-"—(S”'—T)-Y(S)-e—m], (6)

where Y(S) = 1/[Zs(8) + Z:1(8) + Z»(S)] is the admittance func-
tion of the equivalent circuit and £ denotes inverse Laplace trans-

* From (5) we note that at the sample instant t = (nT), va(nT) = 0:(nT~) — 0 (nT-)
forn = 1, and v4(0) = v5,(0) = 0 for a physically realizable system. Hence, va(nT')
= v13(nT"), the difference between v, (t) and v:(f) just before the switch is closed.
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formation. Substituting (6) into (3), we have

L]

i) = 3 va(nT)e! [é Y(S)-e—"TS]

[u —nT) —ul —nT —p)]. (7)

Equation (7) suggests that we may characterize the switch by a
sampler plus a transfer function G(S), as shown in Fig. 5, to relate v,
and 7 by

1(8) = Va(S)G(8), (8)

where 1(S), Va(S), and G(S) are the Laplace transforms of i(t),
va(t), and g(t), respectively (similar notations will be used hereafter
without explanation). By the definition of impulse-modulated signal,

i(l) = }Zﬂ va(nT)8(t — nT). (9)
In the time domain, eq. (8) corresponds to the convolution integral
i) = L V()i — 7)dr. (10)
Substituting (9) into (10) and integrating we have
i(t) = 3 va(nT)g(t — nT)ult — nT). (11)
Comparing (7) and (11), we have
sut) = £ | $Y(9)] [ - ult— )] (12)
and
6 = 2ot [ gv®] o - we-pl, a3

where £ is the Laplace transformation operator. Equation (13) yields
the transfer function we need to characterize the switch. Note that
the function £71[(1/S)Y (s)] is the current 7(¢) in Fig. 4 with a unit
dc driving source. Once G(S) is found, a funectional block diagram

vilt) it
2 Gls)  p—d
V3is) 1(s)

Gi{s) = Llg(1)]

Fig. 5—Characterization of the switch.
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Fig. 6—Transfer function block diagram between V. and V.
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describing the signal flow from network 1 to network 2 can be con-
structed easily, as shown in Fig. 6. Now the system in Fig. 3 is con-

verted to a standard sampled-data system.
The transfer function from z,. to v, can be obtained from Fig. 6:

Vd(S) = Van(S) - Vlu(S)eits — Vzu(S)e_‘s

Voe(8) — I(8)[Z1(S) + Z2(8)Je~*3

Voe(S) — Va(8)G(8)[Z:1(8) + Z2(S) Je~*
Vee(8) — Va(S)[GZ1(S)e™5 + GZa(S)e 51"

Va(s)

or
Ve (S)
N AR (14)

where GZ:(S) = G(8)Z:(S) and 7 =1, 2, and ¢ > 0 is arbitrarily
small. From (14),
Va(8) = I(8)Z:(8) = Va(S)G(8)Z:(S)

- GZ:(S) )
1+ [GZ,(S)e =5 + GZz(S)e"E]* Voe(S). (15)

To find [GZ(S)e~*5T*, we need to know the relationship between
g2;(t) and [gz:(t — €/ J*. The function ¢(t) is defined in (12):

. i —
o0 = o | s mE Tz | 1O — ¢~ 9]

h(u(t) — h(ult — p),

Va(S) =

where

—1 1 ’
h(t) = £ [S[Zu(S) + Zy(S) + Zz(S)]}

Note that & (£) is the step-response of a linear passive network and, thus,
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is continuous for all ¢ > 0. Now
13
gz:(t) =f g(7t)z:i(t — 7)dT

- f " Rzt — nyu(ndr — f_ " h(D)at — Dulr — p)dr.

From the convolution of two continuous time functions, gz;(f) will be
continuous for all 0 < ¢t < p and ¢ > p. Since p < T, gz:(t) will be
continuous at t = nT foralln = 1, ie,,

gz:(nT — €) = gz;(nT) (16)
as e approaches zero. At { = 0, since gz:(t) = 0 for all { < 0, we have
g2:(0 — & £ 0. (17)

From (16) and (17),

3 gei(nT — 8(t — nT) = 3 gz:(nT)5(t — nT)

n=0

= gﬂ gz:(nT)s(t — nT) — gz;(0)5 ()

for arbitrarily small e. Therefore,

Lgzi(t — 1% = g2i(t) — gz:(0)a(t) (18)
and
[GZi(S)e~*5]* = GZ}(S) — g2:(0). (19)
From (15) and (19), we have:
Vee(S) 1 — g21(0) — g22(0) + GZ3(S) + GZ3(S)
and
vies) _ GZ3(S) -

VeS) 1 — gz:(0) — gz2(0) + GZi(S) + GZi(S)

If we are interested in the transfer function V.(S)/V3(S), then since
Vi(8) = Voo(8) — I(8)Z4(S), we have:

Vi(8) = Vi.(8) — Va(S)GZi(8). (22)
Substituting (14) into (22),

1 4+ GZ3(8S) — g21(0) — g2.(0) .
1 4+ GZ1(8) + GZ3(8) — g2:(0) — gz.(0)

Vi(S) = Va(S) (23)
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From (20), (21), and (23), we have:

Va(S) _ GZx(8)

VilS) 1 —ga1(0) — 92:(0) + GZ3(8) 24

and
Vi(S) _ GZ;(8S) ,
Vi(S) 1 — gz:1(0) — gz.(0) + GZ3(8S)

Since gz;(0) = limg.. S-GZ:(8S), it will be equal to zero when the func-
tion GZ;(S) has at least two more poles then zeros. In such cases, (20),
(21), (24), and (25) become

Va(S) _ GZy(S)

(25)

Ve®) ~ 1+ GZi(S) + GZiS) (204)
Vi) azy(S)

7S " 1L GZ(S) + OZ®S) (214)
VoS GZu(S)

Vii8) 1+ GZi(S) (244)
ViS)  GZi(S) (25)

ViS) 1+ GZy(S)

As a simple example, let us refer to Fig. 7, which shows an ideal
sample-and-hold circuit with a capacitor C. For this circuit Zo=21=0,
Zy, = 1/C8, and it can easily be found that G(S) = C. Therefore,

G(S)Z:(S) = 5 (26)
Since it has only one more pole than it has zeros, eq. (24) should be

used to find V,(S)/V1(S):
Vi(S) _ 1/8 _1—e™ @7)
vi(s) [1—«(0)]+ [1/8]* S
The general approach used to characterize the time-division switch
can be summarized as follows:

() Form an equivalent circuit (Fig. 4) by using a unit step
voltage source to drive the impedances Zo, Z;, and Z; con-
nected in series, where Z, is the output impedance of N1 and
Z, is the input impedance of N2.

(%) Solve for the current #(t) in the equivalent ecircuit.

(#43) Let g(t) = i(t)[u(t) — u(t — p)]. Calculate G(S) = L£{g(t)}
and GZ;(8) = G(8)Z:(S),7 =1, 2.
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Fig. 7—Ideal sample-and-hold circuit.

(i) Now the energy transfer between N1 and N2 can be described
by a sampler plus some transfer functions. Either one of the
following formulas may be used:

Va(S) GZ:(8)

VeelS) 1 — g21(0) — g2:(0) + GZi(S) + GZ:(S)
Va(S) _ GZ,(8)

ViS) 1 — gz1(0) — g2:(0) + GZ5(S)’

where v,, is the open circuit voltage at terminal 1 in Fig. 3. When the
function GZ(8) has at least two more poles than zeros, we know
immediately that gz;(0) = 0 and can be removed from the above
formulas.

(28)

(29)

lll. AN APPLICATION

The switch we model here is a practically realizable sample-and-hold
switch for a time-division switching system. It is shown in Fig. 8. The
series resistor K represents the gate resistance during sampling. The
series inductor represents the lead inductance whose value depends
on the bus structure.

For this circuit, Z, = 0, Z, = 1/CS, and Z, = SL + R. Therefore,
g(t) ean be found by solving a simple series RLC circuit with unit de
input and a switch closed at ¢ = 0 and open at ¢ = p for the rest of
the time. The result is

00) = gy (e — PO —ult~ )], (30
- a® — wy

SWITCH R L

mfw\,wl

GATE RESISTANCE R=30{)

LEAD INDUCTANCE L

vit) [ SAMPLE-AND-HOLD CAPACITANCE C = 1000pF
SAMPLING PERIOD T =83.3 us
SAMPLING INTERVAL p = 300ns

Fig. 8—Practical sample-and-hold switch.
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where a = R/2L, wo= 1/VYLC, B1 =a — Va! — o}, and B; =«
++a? — 2. From (30) we have:
1 1 — g—P(S+81) 1 — e ?(8+p2)

e —ai| S+h ST 5 (31)

G(8S) =

The transfer function H(S) = V,(8)/V1(S) can now be found from

Va(S) _  G(S)Z:(S)
VilS) 1+ [G(8)Z:(8)]*

The calculation of G(S)Z:(S) and [G(S)Z.(S)]* is given in the ap-
pendix. With G(S)Z:(S) and [G(8)Z:(S)]* known, we have

H(S) = (32)

1 — e T8 Byf, [1 — g~ p(8+81) 1 — e—r(8+82)
H = . _
) S B1 — B2 S+ 8 S + B ]
1
T ke 83
where
ﬂ]g—ﬂnp — 52e—ﬂ1p
o= 216 T T P T
B2 — B (34)
From (33),
V3(8)
H*(S) = 22
B = vis)
_ 1
h 1—e™™ 1
L+ 15%
1+ k&
e 35)
When the driving function is sinusoidal, we have:
. 14k
. 1+k
| H*(ja) | = L (37)

NI+ & + 2% cos ol

This shows that, for k£ # 0, the magnitude of the voltage gain at the
sampling instant will be a function of frequency. The maximum (or
minimum, depending upon the sign of &*) occurs at wT' = =, i.e., the

* It can be easily verified from (34) that k will be positive only if the equivalent
RLC circuit is under damped.
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f=1s/16 f=1fs/8
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‘ HINPUT SIGNAL]

’“ r\Uf*\f{x\f&W\f\/\j

- -

f=1fs/4 f=fs/2

Fig. 9—Variation of magnitude of output signal at sampling gate with respect to
input frequency f.

half sampling frequency :
. 1+k
1 H* (.}w) |extreme =

1=kl

Figure 9 shows the laboratory observation of such an effect for k ~ 3.
When the lead inductance is negligibly small, ie., L — 0, then
B2 — = and 8; — 1/RC. Equations (33), (35), and (37) now become:

(38)

1—¢eT g 1 — gorgr8

HES) = g o T s (39)
1 — e or
H*(S) = W (40)
. 1 —egor
|H*(jw)| = = (41)

V1 + e22? — 2¢—°? cos w7’
where a = 1/RC.
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In this case, the RLC-series circuit reduces to an RC circuit. In a
practical time-division-switching system, the typical values might be:
sampling period T = 83.3 us (sampling at 12 kHz), sampling duration
p = 300 ns, hold-capacitor C = 1000 pF, and gate resistance B = 30 Q.
A simple calculation will show that

p 300 X 10~ _

ap = RC = 30 X 10 10. (42)

Hence, e¢? = ¢~ ~ ( and the transfer function H (8) in (39) becomes

1
1—e7™ RC
HE) ~——g— ——1, (43)

which indicates that the switch-and-hold eircuit can be approximately
considered as an ideal sample-and-hold device in series with an RC
circuit, as shown in Fig. 10.

It is also interesting to note that if both the gate resistance R and
the lead inductance L approach 0, we will have an ideal sample-and-
hold switch. From (43), we can see that H(S) will approach the ideal
sample-and-hold transfer function 1 — ¢~75/8 as expected.

IV. AN APPROXIMATION

In this section, we shall present a simplified approach which in
general leads to a very good approximation of the results found by the
general approach described in Section III. The basic idea here is to
approximate the current 7(¢) in the switch by an impulse-modulated
signal,

1(t) = i(8), (44)

and characterize the switch by the energy transfer during the sampling
duration:

Uz(ﬂT+) = ﬂz(‘nT—) + TEUI(HTi) — U (TLT_):I, (45)
IDEAL IDEAL
SWITCH AMPLIFIER

] ’
%l' A

Vit) TC

Fig. 10—Equivalent circuit for Fig. 8 when L approaches 0.

Y
/
o
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where nT— represents the instant just before the switch is closed, and
nT'* the instant just after the switch is reopened. The determination of
v, which is related to the transfer loss, will be discussed later. From
(45) we have:

v(t) = y[nao — 7% + (1 — v)[v2( — ¢ T* (46)
and’
V3(8) = y[Vi(S)e ST* + (1 — v)[Va(S)e~ 5%, (47)
where e is arbitrarily small.
Substituting _
Vi(S) = Voe(S) — I*(8)Z+(8)
and

Va(8) = I*(8)Z,(S)
into (47), we have
I(S)Z3(S) = A[Vuel®)e ST + I*(S) (—1[Za(S)e+5T*
+ (1 — v)[Z2(S)e~5]*}. (48)

As V,.(t) is continuous for all ¢ = 0, and z;(t) is continuous for all
t> 0,

I*(8)Z3(8) = vV5e(S) + I*(8){ —v[Zi(8) — 21(0)]
+ (1 = M[Z2(8) — z2(0)1}
or

.o v Val(S) _
L e R/ MR () vy M G
Therefore,
Va(S) _ I*(8)Zx(8)
Vee(S)  Vi(S)
_ 'YZZ (S) (50)
v(Z1(8) + Z3(8)] — v21(0) — (v — 1)2:(0)’
and
Va(S) T*(8)Z,(8)
Vi(S)  Vie(S) — T*(S)Z;(S)
'YZ 2 (S) ( 5 1)

T 2Z(S) — v21(0) — (v — D)za(0)

 Note that as v;(f) may not be continuous at t = nT, n =0, 1, - - -,
[Vi(S)e51* = VI(S) — v:(0).
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To determine the constant v, we note that the change in »; during
the sampling duration is a function of the current in the sampling
switch:

Avy(nT) = va(nT*) — v2(nT")
= i () - 22(t) [ionrsp. (52)

As mentioned earlier, i,(t) can be solved from Fig. 4 with the driving
source e(t) = v4(nT) and the switch closed at ¢ = nT. Since v,.(?) is
continuous for all ¢ = 0, va(nT) = v1a(nT") = 11 (nT-) — v2(nT").
Hence, in the equivalent circuit of Fig. 4, we let e(t) = v12(nT") and
close the switch at ¢ = nT. Solving this circuit, the current will be
in(t) and the voltage across Z; at t = nT + p will be Avy(nT); ie.,

sz(nT)=..G"{E[M'Y(S)'e_"”'zz(s)]} . (53)

S t=nT+p
where Y (8) = 1/[Zo(8) + Z:1(8) + Z:(S)]. From (53),

_ A‘Ug(ﬂT)
- Uu(nT_)

o e

Il

t=nT+p

g l,e [%,Y(S)-Z,(S)“ - (54)

t=p

Hence, in Fig. 4, if we let e(f) = u(t) and close the switch at ¢t = 0,
then the voltage across Z, at t = p will be the value of . After v is
found, either (50) or (51) may be used to enable us to replace the
switch by an ideal sampler plus a transfer function, as shown in
Fig. 11.

To illustrate how this approach works, let us return to the practical
sample-and-hold switch in Fig. 8. As stated in the last section, Z, = 0,
Zo = R + SL,and Z, = 1/CS. Solving the series RLC circuit with the

IDEAL
SAMPLER
1 |
V Vo \ Y Z,(S)
oc |[ 3_../‘: : oc H(S) 2 ts}.:.y - - 2
i i [23(81423(8)] ~ 72, (0)—(¥-1) 2,(0)
| SS—— |

Fig. 11—Transfer function diagram for the approximate approach.
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driving source of u(t), the current #,(f) is found as shown in (30):

S S
a” — wy

Now +, the voltage across Z, at { = p, can be found:
L[t
Y= 0 j; T»o()
B1Bs [ 1 (1 — gfrr) — ,‘_;; (1 - e—-ﬂm)]
2

T B -Bil A
=1+ k, (56)

where
ﬂle_ﬁll‘ — ﬁze—.ﬂlﬂ

k B2 — B

is the same k given by (34) in the last section. Therefore,
(1 + k) =
CS
17* &
1+ k) [ 63] - T

l—e” 14k
S 1+ ke TS

S
HS) = geg) =

(57)

We now want to show that H(S) of (57) is a good approximation of
H(8) of (33). From (33), we have:

1—¢eT F(8
i - L E -
where
_ 51.82 1 — e P(S+8D _ 1 — e—»(8+82) ]
m$_ﬁr—&[ S+ A S + Be (59)

To show that H(S) ~ H(S), we want to show that F(8) ~1 + k.
Since p is small, we have:

8182
B: — B

_ Bibs

2 ’

F(S) ~

[p-Gs+o-p+Ts+6]
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and
Bt — Bae P _ By(1 — e hi7) — Bi(1 — eP7)

1+k=1+ B2 — b1 Bz — B
~ 1 _Bip* ] _ _ﬁ;pz
~gtg|e[er -] - ase -]

Hence, F(8) >~ 1 + k and H(S) ~ H(S).

Finally, we note that as Z, approaches zero, the current () does
approach an impulse-modulated function. Thus, the approach de-
seribed in this section will always lead to the true answer when Z, = 0.
For example, when R, L — 0, the switch we modeled above becomes
the ideal sample-and-hold switch. In this case & — 0 and H(S) of (57)
approaches 1 — ¢~78/8, the familiar ideal sample-and-hold transfer
function. It can also be easily seen that if we start with this ideal
sample-and-hold switch, i.e., Zo = Z; = 0 and Z, = 1/CS, theny =1
and Z3(8) = 1/C(1 — e 75). From (51), we shall again have
Va(8)/Vi(8) = 1 — ¢ T8/8 as expected.
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APPENDIX

Calculation of G(S)Z:(S) and [G(S)Z:(S)] *

Since Z.(S) = 1/CS, 81 =a — Vo — w}, f2 = @ + Va® — «j, and
wg = 1/LC, we have:

1
GZ(S) = G(8)Z.(8) = L_Cﬁ\(———TQ‘E
1 — e~ P(8+81) 1 — g—P(S+82)
{ S+8: = S+6 }
_ BB 1 { 1 — g2+ 1 — g7 (8+p2) } (60)
Bs—B1 S S+ B S+ B
and
5162 2 1 i+1
GZ*(8) = B: — Bi { i§1 33

1 er(S+8D 1 g—P(S+AN) T*
X[s— 5 TS+& T STE ] }
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Hence,

* — 6182 2 (_1)'.'“ 1 _ e—Bipg—T8
GZ*(8) B2 — By El Bi = I p————
1 e—ﬂiTe—TS
T ] = e T8g Mt T ] Z o T8g T
Bifs & (=) [ 1 — g Bing 7S
= B2 — B1 igj Bi [ 1 —¢78 ]_]
- 8182 . e~ T8 [1 — g Bip _ 1 — e—ﬂw]
|62 - ﬁl 1 — 78 ﬁl ﬁz
1 TS
= ,ﬂg —_ -61]_ — TS [-82 - Bl + ﬁle‘—ﬂ“’ — ﬁze—ﬂw]
TS
= (14K —7s:
where
fo= e — Bre P
B2 — B
REFERENCES

|

(61)

(62)

1. C. A. Desoer, “A Network Containing a Periodically Operated Switch Solved by
Successive Approximations,” B.S.T.J., 36, No. 6 (November 1957), pp.

1403-1428.

3]

. K. W. Cattermole, “Efficiency and Reciprocity in Pulse Amplitude Modulation,

Part I—Principles,” Proc. IEE (London), 106, Part B (September 1958),

pp- 449-462.
3. D. B. James and T. L. Wang, unpublished work, 1971.

-

. W. R. Bennett, “Steady-State Transmission Through Networks Containing

Periodically Operated Switches,” IRE Trans. on Circuit Theory, 2, No. 1

(March 1955), pp. 17-22.
. T. H. Crowley, unpublished work, 1956.

(=R

. C. A. Desoer, “Transmission Through a Linear Network Containing a Period-

ically Operating Switch,” IRE WESCON Convention Record, 2, Part 2

(1958), pp. 34—41.

G. B. Thomas, “Synthesis of Input and Qutput Networks for a Resonant Trans-

fer Gate,”” IRE Int. Conv. Record, 8, Part 9 (1961), pp. 236-243.

8. A. Fettweis, “Steady-State Analysis of Circuits Containing a Periodically
Operated Switch,” IRE Trans. Circuit Theory, CT-6 (September 1959), pp.

252-260.

9. M. L. Liou and F. R. Mastromonaco, ‘‘Exact Analysis of Linear Circuits Con-
taining a Periodically Operated Switch Using the State Space Approach,”

Symp. on Circuit Theory, 1968.

10. B. C. Kuo, Discrete-Data Conirol Systems, Englewood Cliffs, N.J.: Prentice-Hall,

1970, p. 16.

TIME-DIVISION SWITCHES 627



1
i



