Copyright © 1974 American Telephone and Telegraph Company
Tae Bern System TECHNICAL JOURNAL
Vol. 53, No. 4, April 1974
Printed in U.S.A.

Slab-Coupled Waveguides

By E. A. J. MARCATILI
(Manuscript received October 16, 1973)

The slab-coupled waveguide, consisting of a dielectric rod lying on a
slab that in turn covers a substrate, is a multidielectric waveguide that
includes such special cases as the single-material fiber, the rib waveguide,
and the strip-loaded film guide. These guides have recently become known
as potentially useful either for long-distance optical transmission or for
integrated optics.

Simple, closed-form, approximate solutions have been found to describe
the following properties of the guide: number of modes, their field con-
figurations and propagalion constants, numerical aperture, requirements
for single-mode operation, field penetration in the slab, tolerance to curva-
ture of the guide axis, dispersion, and impulse response.

I. INTRODUCTION

Descriptions of three novel dielectric waveguides of wide potential
use in long-distance optical transmission and in integrated optics have
appeared in the literature recently. These guides are the single-material
fiber'? (Fig. 1) made of low-loss undoped fused silica; the rib wave-
guide® (Fig. 2) made of two materials, and the strip-loaded film guide*®
(Fig. 3) made of three materials. In all these fibers ng is air or an inert
atmosphere, while in a more general guide it could be another dielectric.

Although these guides have different shapes and different distribu-
tions of refractive indices, they have essential elements in common
that make them close relatives of the same family. A more generic
member of this family of waveguides (Fig. 4), from which all the others
can be deduced, is a fiber of arbitrary cross section at a distance [ from
a slab mounted on a substrate. The way in which this guide operates
is simpler to understand than the others, and is described below.

The modal spectrum of the fiber (I = =) is shown in Fig. 5(a). In
this example, five modes are guided and their axial propagation
constants k. lie between kns and kn. where k is the free-space propaga-
tion constant 2/\. Smaller propagation constants than kn, belong to a
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(a) 20 um (b) 10 um

Fig. 1—Photographs of an experimental (a) multimode single-material fiber and
(b) single-mode single-material fiber (top), with magnified core region (bottom)

(n > ns).

continuum of radiating modes that are unimportant for this discussion.
On the other hand, the isolated slab (I = «) supports modes with ¢
extrema in the y direction. For simplicity we will assume that the
field is well confined within the slab. The field components vary
sinusoidally along z, y, and z and the respective propagation constants
k=, k, = mq/t and k. are related by the characteristic equation

k. = \/kzﬂ_z — k2 — (3"_'1)2
Z T t

Since k- can take any value between zero and infinity, the propagating
L
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¥
i
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Fig. 2—Rib waveguide (n > n; and n;).

—
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Fig. 3—Optical strip line (n > ny, n2 and n,).
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modes of the slab with one maximum along y, (¢ = 1) constitute a
eontinuum with axial propagation constants ranging from zero to

2
212 I
k*n (t)’

as shown in Fig. 5(b). Similarly, propagating slab modes with two
extrema along y, (g = 2) constitute another continuum with propaga-
tion constants k. ranging from zero to

27 \?
2m92 iy
k*n ( : ) ,
as shown in Fig. 5(c), and so on.
Now let us imagine that, as in Fig. 4, the fiber and the slab are
separated by a finite distance ! which is far enough that their respec-

tive spectra are only slightly perturbed by the coupling. Modes with
the same propagation constant %. will couple to each other. Therefore,
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Fig. 4—Slab-loaded waveguide.
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Fig. 5—Modal spectrum in: (a) isolated fiber of Fig. 4; (b) isolated slab of Fig. 4
(only for modes with one half period across {; (c) isolated slab of Fig. 4 (only for
modes with two half periods across ¢).

modes 1 and 2 of the fiber will remain guided without attenuation,
though there is indeed an electromagnetic field in the slab that decays
exponentially in the z direction (Fig. 4) away from the fiber. Mode 3
will couple to the slab mode with the same k. of the spectrum in Fig.
5(b) ; modes 4 and 5 will eouple to modes of spectra in Figs. 5(b) and
5(e), ete. The net result is that modes 3, 4, and 5 of the fiber will be
attenuated by coupling to slab modes. The smaller the distance !
between fiber and slab, the tighter the coupling and consequently the
higher the attenuation of these leaky modes. From Fig. 5 it becomes
obvious that by adjusting the thickness ¢ of the slab, the number of
lossless modes can be selected.

The most important point from this discussion is that only fiber
modes with axial propagation constants &, larger than the propagation

constant
22 _ [ TY
k*n’ (t)

[Fig. 5(b)] of the slab’s fundamental mode are lossless. Therefore,
throughout the paper we will be concerned with the coupling between
the field in the core’s guide and the fundamental mode of the slab.

Having identified the three basic elements of this waveguiding struc-
ture, a slab, a guide (also referred to as a fiber or strip), and the coupling
between them, we will use the generic name of slab-coupled guides,
fibers, or strips for all the members of this prolific family. Of course,
we will reserve the names given by the original authors to identify
individual guides.

The general solution of the slab-coupled guide in Fig. 4 would en-
compass as particular cases those in Figs. 1, 2, and 3. However, only
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Fig. 6—Slab-coupled waveguide. (a) Original guide. (b) and (c) Equivalent simpler
guides. (d) Single-material guide.

two extreme cases seem amenable to closed-form calculations: the
case of feeble coupling described in Ref. 6 and the case of strong cou-
pling occurring when the separation between fiber and slab vanishes,
and which is the subject of this paper.

In Section II we consider the properties and characteristics of a
somewhat generalized slab-coupled guide [Fig. 6(a)]. These are the
following :

(7) the equivalence to a much simpler guide shown in Fig. 6(c),
(#7) the number of guided modes,
(#77) their propagation constants and field configurations,
(7v) the numerical aperture,
(v) the design for single-mode operation,
(vz) the field penetration in the slabs,
(viz) the tolerance of the guide to the curvature of its axis.

These general results are applied to the multimode and single-mode
single-material fibers, rib guides, and strip-loaded guides in Sections
III, IV, V, and VI, respectively. Furthermore, dispersion and impulse
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response in single-material fibers are considered in Sections III and IV.
The simple but burdensome mathematics involved are placed in the
appendices to this paper.

Il. SOLUTION OF THE SLAB-COUPLED GUIDE

Consider the somewhat generalized slab-coupled guide of Fig. 6(a).
It is shown in Appendix B that if

(?) most of the electromagnetic energy travels within the region
of refractive index n,

(72) the height and the width of the core are almost constants,

(447) there are no turning points within the core (0 < & < Wmax)

or, in other words, exponential decay of the field components in

the region of refractive index n occurs only in the slabs, and

ﬂl,
(w) n > {ﬂz, (1)

T3
then the four-dielectric guide with somewhat arbitrarily shaped core
in Fig. 6(a) is equivalent to the single-dielectric guide with rectangular
core in Fig. 6(c). Surrounding the dielectric of refractive index =,
there is a material into which there is no field penetration and the
z and y field components of the guided modes vanish at the interface.

The dimensions of this equivalent guide are, according to egs. (83),
(84), and (85),

T = (1 + ¢), (2)
W = w(l + ¢u), (3)
H =11 + ci), 4)

in which the quantities ¢,, c», and cs, which are small compared to
unity, are from (73), (74), (79), (86) to (89), (100), and (101).

? ( vl + ul ) for modes polarized along z

“=Vh(nt (5)
1, M .

i ( oy + 7 ) for modes polarized along y

wyz n?

|2

| wus

for modes polarized along x

for modes polarized along y
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v3

— + —tanh(’hvz + tanh™! 2)

for modes polarized along x

Ch = 3 (7)
731 ha flg 1 n3vs
P + tanh ( B b -+ tanh- nﬁva)
L for modes polarized along y,
where
V1,03 = kh¥n? — niag,t (8)
hmﬂx
h = . s (9)
w = ZU::: s, (10)

and hmax and Wmax are the maximum height and width of the portion
of the core with refractive index n in Fig. 6(a) and s is its cross-sectional
area. All these expressions are valid for

™ n? — ni .
5= tan1 oy p— for modes polarized along x
1= "3
v > . s (11)
LN B el S . 1
5 tan PR e or modes polarized along y,
where
= kivn? — ni. (12)

Four parameters, then, n, T, W, and H, determine the guide in
Fig. 6(c) and we proceed to characterize its transmission properties.

The guided modes are hybrid; however, the longitudinal field com-
ponents (along z) are small compared to the transverse ones; there-
fore, the modes are almost transverse electromagnetic (TEM). Within
the core, these transverse field components vary sinusoidally along
x and y. Within the slab, the field components also vary sinusoidally
along y but decay exponentially away from the core. All these com-
ponents vanish at the edge of the guide.

There are two families of modes, E%, and E%,. The first family, Fig.
7(a), is mostly polarized along y, and the main transverse field com-
ponents are E, and H.. Within the core, a mode has p field extrema
(approximately p half periods) along x and g field extrema along y.

T Throughout this paper numbers or letters separated by commas must be con-
sidered one at a time.
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Fig. 7—Two families of modes. (a) E%, modes and (b) E;, modes.
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The second family of modes, Fig. 7(b), is mostly polarized along z
and the main transverse components are E. and H,.

For both families, the axial propagation constant k., and the field
penetration in the slabs d,,, that is the distance over which the field
components decay in the slabs by 1/e, are according to (98) and (99),

’“==\/’“2"2‘[W(1ﬂp q)]z (#) (13)

where ¢, taken from (97) is

2 71 1

The highest-order modes, which we will designate with indices
p = P and ¢ = @, are those for which the penetration depth deq is
infinite. For them, egs. (13) and (14) are reduced to

} ki _ A

Ny R

and

While for ordinary fibers, the numerical aperture (N.A.) vnz — n?
is an exclusive function of the refractive indices of the core n, and the
cladding n., the N.A. of a slab-coupled guide defined in (16) is mostly
a function of the wavelength and the slab thickness. The longer the
wavelength and the thinner the slab, the larger the numerical aperture.
This statement is true provided that the inequality (11) is satisfied.

Naturally, an equivalent cladding refractive index

Ne = 4[N — (%, )2 (18)

is derived by equating k. min/k to n,.

The easiest property to observe in slab-coupled guides is, probably,
the number of spots of the highest order mode guided. That number is
the product of P and @ which are related to each other by eq. (17).
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Fig. 8—Waveguide dimensions for E%4 mode at cutoff.

A plot using PT/W and QT/H as coordinates and T2/WH as the
parameter is shown in Fig. 8. Given T/W and T/H, the parameter
T2/ WH, which selects one of these curves in Fig. 8, is also known. For
the ordinate T/W corresponding to P = 1, the abscissa Qm.x T/H is
determined and from it the maximum number of half periods Qmax
of the modes E34.., in the y direction. Similarly for the abscissa T/H
corresponding to @ = 1, the ordinate Pmax T/W yields the maximum
number of half periods P of the modes EZL,; in the z direction.

Ezample: For T/H = 0.5 and T/W = 0.1, the values Puax = 8
and Quax = 1 (rounded off to the immediate lower integer) are
obtained.

The explicit values of Puax 8nd Quex derived from (17) are

e S (ET 4 5R)
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and

H T\ 2T \2]4
anx_TI:l‘_(W) (1_;—)]' (20)
From this last equation,
H
T < . 21
anx ( )

Consequently, for any guided mode the slab thickness 7' is always
smaller than the half period of the mode in the core along y. This
justifies one of the assumptions in Appendix B.

The guide is largely overmoded if

T

W « 1 (22)
and
T
i < 1; (23)

then, the number of modes for each polarization deduced from (19)
and (20) results in

rWH
Unlike ordinary fibers, the number of modes of a slab-coupled guide
is mostly determined by its geometry.

To dimension the slab-coupled guide for single-mode operation,
eq. (17) has been plotted in Fig. 9 using T/H and T/W as variables
plus two sets of parameters P =1, @ = 2 and P =2, Q = 1. The
coordinates of the first line give the dimensions of a guide with the Ef,
and EY; modes at cutoff while those in the second line yield the guide
dimension with the E%, and E¥% modes at cutoff. The solid portions of
both curves determine the smallest possible ratios T/W and T/H
compatible with single-mode guidance. The discrete numbers on the
curves indicate the ratio H/W. For a square core (H = W) we deduce
from the figure that T/W ~ T/H ~ 0.5.

For the fundamental mode, the field penetration in the slabs, dy,,
is obtained from (14), making p = ¢ = 1. With rearranged terms,
eq. (14) reads

W 1 Yy 1

R O R A MR e )
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T/H

Fig. 9—Waveguide dimensions for Ej;* and E5* modes at cutoff.

and it is plotted as solid lines in Fig. 10 using 7/H and T/W as co-
ordinates and T'/d1; as the parameter.

In the same figure, the dotted line is a reproduction of the curve of
Fig. 9 corresponding to the cutoff condition of the Ef# and E¥’ modes.
The intersection of this curve with the others yields, then, the field
penetration of the fundamental modes in guides designed to be at
cutoff for the next higher order modes.

The region between the solid curve with parameter T/dy = 0
(infinite field penetration in the slab) and the dotted curve delimits
the possible choices of T/H and T/W for single-mode waveguides.
The region within the dotted curve corresponds to multimode wave-
guides.

Let us consider now the attenuation of the fundamental mode due
to radiation induced by the curvature of the guide’s axis. If the guide
axis is bent in the plane of the slab along a constant radius of curvature
R, the attenuation of the fundamental mode in a 90° bend”® is pro-
portional to

(26)

1 MR
Rexp | — oo @,
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and it is negligibly small if”
2
R =24 ( ”T“) 3. (27)

The tolerable radius of curvature decreases rapidly with dy,.

Shorter radii of curvature can be negotiated in the plane perpen-
dicular to the slabs if, as it happens in general, the field penetrations
from the slabs into the media of indices n; and n; are smaller than dy,.

We can reuse Fig. 10 by substituting the parameter 7/dy; with its

equivalent
n2Ts \
o2 (35)

deduced from the equality in (27). For single-mode waveguides, the
shortest di; and consequently the shortest tolerable radius of curva-
ture is achieved for T/H ~ T/W =~ 0.5.

The pertinent calculations for curvature-induced losses in multi-
mode slab-coupled guides are carried on in Section III, where multi-
mode single-material fibers are considered.

1
w
0.8 ,r- . i
#mi H
-E_ TTITTTITT77777 ’ A
]
0.6 T= 1
0.4
0.2
ol l ] 1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
TH

Fig. 10—Field penetration in slab di; and tolerable radius of curvature R for
fundamental mode.
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1. MULTIMODE SINGLE-MATERIAL FIBERS

Single-material fibers supporting any number of modes, Fig. 1(a),
are characterized by
Ny = Ng = N3 = 1. (28)

Under these circumstances, the location of the slab with respect to
the core in Fig. 6(a) is not taken into account by the theory presented
in this paper and, consequently, a more general cross section of single-
material fibers is shown in Fig. 6(d). Figure 6(c) is still its equiva-
lent (Appendix B).

Multimode single-material fibers satisfy not only (28) but also the
following inequalities

—L>1. (29)

Therefore, parameters (2), (3), and (4) defining the guide are sub-
stantially simplified

Il
-

(30)
w (31)
h (32)

Il

o E N
I

and are valid for all polarizations.

According to (30), (31), and (32), the electromagnetic field is well
confined within the guide. Using these values, the numerical aperture
(16), the equivalent external refractive index (18), the number of
modes for both polarizations (24), and the propagation constant for
each mode (13) are

A
NA =5 <1, (33)
A\2 1/ 2\
= s _ (M) o~ — (X
Mg n (215) _n[l S(nt)]’ (34)
TS
N_Qt_z’ (35)
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and

k. = \/k’n‘*’ - (% )2 - ("'7'? )2, (36)

where S is the core cross-sectional area.

Unlike ordinary guides the number of modes N is independent of
the free-space wavelength A. In other words, by keeping X fixed, the
scale of the guide’s cross section could be changed without vary-
ing the number of guided modes! How is it possible? The follow-
ing is a plausible argument. For a given wavelength, if S is increased
the number of guided modes in the core should increase, but simul-
taneously the number of modes that can escape through the enlarged
slabs is also increased. The fact that both increases compensate for
each other can only by justified with the mathematics.

Let us turn now to modal dispersion. Calling L the length of the guide
and ¢ the speed of light in free space, the group delay spread between
any mode with propagation constant %. and the fundamental one?
(which has a propagation constant very close to that of a plane wave
in a medium of refractive index n) is

L d
With the help of (36)
In ( kn
= (m ) (38)

The maximum time spread occurs for the highest order mode which
has the smallest k. value, kn,. Then, using (34) for the value of n,,

L n L /x\?
Tmax—z?l(_a—1)~§;lz(t—)‘ (39)

The impulse response is similar to that of clad fibers. A short im-
pulse feeding equally all of the guided modes arrives at the other end
as many impulses unequally displaced in time." However, the power
density of the arriving pulse is uniform over the time interval 7max
given in (39) and zero elsewhere. This impulse response width being
inversely proportional to the square of the slab thickness can be
shortened by increasing t.

Since there is more familiarity with clad fibers than with single-
material fibers, it is of interest to make a comparison between them,
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assuming both guide the same number of modes N, and have the
same modal dispersion spread 7max. For a clad fiber of radius a and
core and cladding refractive indices n and n(1 — A), those values

are!!?
N = (2’;“” )a (40)
and
Tmax = %nﬂ. (41)

These two equations together with (35) and (39) are plotted in Fig. 11.
The group of curves on the lower part corresponds to single-material
guides, and those on the upper part correspond to the equivalent clad
fiber. Dotted lines are for the modal dispersion spread and solid lines
for the number of modes. The parameters are either the core diameter
of the clad fiber or the square root of the core cross section of the single-
material fiber normalized in both cases to the free-space wavelength.
Ezample: For a dispersion spread r of 26 ns/km and N/n = 100,
the single-material fiber dimensions are tVn/\ = 4 and VS/\ = 31.6,
while those of the equivalent clad fiber are nA = 0.008 and 2a/\ = 36.
If the multimode single-material fiber is bent, all the modes become
somewhat lossy ; however, as in ordinary clad fibers the radiation loss
is significant only for those modes whose plane wave components ex-
ceed the critical angle. Unlike clad guides, though, a bend in the plane
of the slabs produces higher losses than a similar bend in the perpen-
dicular plane. This is due to the fact that, for a given mode, the field
penetration in the slabs is far larger than in the material of index 7.
The single-material fiber bent in the plane of the slabs on a radius
of eurvature R has a numerical aperture N.A." and guides a number
of modes? N’, both of them smaller than the N.A. (33) and the
number of modes (35) of the straight guide. As a matter of fact,

NA' =& [1 - %(%’f—t)z] (42)
and
N*:E%P-z%(z—m)z]- (43)
Only half of the modes remain guided if
r-w (B (44)
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Fig. 11—Multimode single-material fiber and its equivalent clad fiber.
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Ezample: Forn = 1.5,t/x = 2 and w = 50 g, from the previous formula

follows
Ry = 7.2 mm,

a small radius indeed.

IV. SINGLE-MODE SINGLE-MATERIAL FIBERS

In single-mode single-material fibers, Fig. 1(b), of interest for
optical communication, all of the dimensions are large compared to
the wavelength of operation. Therefore, eqs. (28) through (32) are
valid and all formulas and figures of Section II related to the funda-
mental mode in slab-coupled guides are applicable just by changing
T, H, and W into t, h, and w, respectively.

The dimensional requirements for single-mode operation with the
next higher order at cutoff are determined by the solid line in Fig. 9.
For example, it may be that for splicing purposes it is desirable to
have a core of square cross section ; then, from that figure,

h=w=2L (45)

As in the multimode case, these dimensional requirements are inde-
pendent of the wavelength and, consequently, the cross section of
the guide can be scaled to satisfy other demands, such as relief of
splicing tolerances, simplicity of fabrication, ete.

The propagation constant of the fundamental mode for both polar-
izations (13), the field penetration in the slabs (14), and the tolerable
radius of curvature (27) are

B [ 1 1 '
k‘_\/i;nz_wz_ﬁ_’+wz(l+61)2]' (46)
1 1 1 1
R B “n
and
24 (n\? 2
LR C) ) vy e s 1 @)
o w1l + er)?
where
2
61=2i———1—' (49)

Normalized values of di; and R can be found as parameters in Fig. 10

662 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974



Table |

t/h 0.33 0.5 0.9 0.33
t
(um) ¥ 0.53 0.51 0.33 0.1
2 0.23 mm 0.32 mm 2.6 mm 74 mm
5 2.1 4.9 40.0 115
10 17.0 40.0 330.0 925
Mode at Cutoff Ezv Ezv Ezv Ezv

for different values of t/h and ¢/w. Points on the dotted curve belong
to single-mode guides with either the E% or E%’ modes at cutoff.

Continuing with the practical example above in which h = w = 2¢,
we obtain either from (47) or from Fig. 10

du = 0.42t. (50)

With the help of (48) or Fig. 10, one can calculate a table of tolerable
radii of curvature (Table I) for the fundamental mode in a guide
with either the EfY or E5f modes at cutoff and assuming n» = 1.5 and
A=1pum.

Shorter radii of curvature are achieved for smaller ¢ and ¢/h ratios
if the guide is designed for the E3¥ modes at cutoff (see Table I, first
three columns). As seen from the last column, guides designed for E%¥
modes at cutoff have longer tolerable radii of curvature. The guidance
is not as tight and consequently less desirable.

Let us turn to dispersion. Knowing k. (46) it is possible to calculate
the dispersion (L/¢)(dk./0k) in a guide of length L. However, a more
interesting result is the guide response to a Gaussian input pulse of 1/¢
width T, Following standard techniques to calculate responses
through linear devices, one finds the output to be close to another
Gaussian whose 1/e width is

oL 0%, |
T=T, \/1 + [Fﬁ%w]k=k,' (51)

The second derivative is to be ealculated at the wave number k, of the
carrier and ¢ is the free-space speed of light.

For a given length of fiber L/, the input pulse width T, that mini-
mizes the output pulse width (7’ = v2T,) is related to L’ by

o2
p=C¢h_ 1 . (52)

2 0%,
0k? Ji—k,
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Assuming (46) to be applicable and ¢; K 1,

2 2,12
L' = 4mn E)\TT% hThf—w, (53)
Ezample: For
n = 1.5,
T, = 10 ps,
h=w = 20 pm,
and
A =1 pum,
then,
L' = 34 km.

As expected, the waveguide dispersion of the fundamental mode in a
single-material fiber is very small and material dispersion may be more
significant.!?

V. RIB WAVEGUIDES
These slab-coupled guides, Figs. 2 and 6(b), are characterized by
Ne = N3 = 1, (54:)
oMk, (55)

and A slightly larger than ¢. Substituting (54) and (55) in (2), (3), and
(4), the dimensions of the equivalent guides in Fig. 6(c) are

¢ (1 + ;lj) for E%, modes
T = . (56)
t (1 + ﬁ;—) for E%, modes,
n

W=mw for E3% modes, (57)
and
h ( 1+ %} ) for E3, modes
H = ) (68)
h (1 + 7:;;; ) for E%, modes,
where
v = kivn? — ni. (59)

Simplified by (54) and (55), eq. (11) says that expressions (56) and
(58) are valid provided
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for E3; modes
v > (60)

1 [z —n?
g - ;2 ’1’12—11 for qu modes.
2 -

Using the values T, W, and H given by (56), (57) and (58) in
previous equations and figures, the following results can be ascertained :

() Propagation constants of different modes and polarizations
(13),
(#77) Maximum number of half periods Pu.x and Qmax, in the highest
order modes Ef§,.. and E3%,,, [(19) and (20) or Fig. 87,
(777) Dimensions of the guide for single-mode operation with the
next higher order mode at cutoff [ (17) or Fig. 9],
(iv) Field penetration in slabs di, for the fundamental modes [ (25)
or Fig. 10],
(v) Tolerable radii of curvature in the plane of the slabs for the
fundamental mode [ (27) or Fig. 10].

VI. STRIP-COUPLED GUIDE
This guide, Figs. 3 and 6(b), is characterized by

N3 = 11 (61)
n — ny
— <1, (62)
=M, (63)
and
h =1L (64)

Substituting (61) through (64) in (2), (3), and (4), the dimensions
of the equivalent guide in Fig. 6(c) are

i (1 + 1 ) for E%Z, modes

T = < (65)
¢ ( n*vl ) for EY, modes,

W=uw for EZ¥ modes,  (66)
t (1 + — tanh hzTu’) for E3, modes

H = A h (67)

oy o R y

t (1 + E, + nﬂuz ) for EY, modes,
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where

V2 = ktvn? — niz- (68)

These expressions are valid only if, according to (11) simplified by
(61) through (64),

— Al for E3, modes
v > (69)

1 [|n2—nd
n2\Vn?—1

for E%, modes.

pol

It should be noticed that H cannot be made much larger than T' just
by increasing hs because the field decays almost exponentially along
y in the material of index n,, Fig. 6(b). As a matter of fact, the maxi-
mum value H is

t(1+ﬂll+ulz) for K%, modes
hanax = ) ) (70)
n N3
t(1+n2—ul+W) for EY, modes.

As in the rib waveguide the values of T, W, and H in (65), (66),
and (67) can be entered in previous formulas and figures to find
propagation constants of modes polarized along either x or y (13);
number of guided modes [(19) and (20) or Fig. 8]; dimensions of guide
for fundamental mode operation with the next higher order at cutoff
[(17) or Fig. 97; field penetration in slabs for the fundamental modes
[(25) or Fig. 10]; tolerable radius of curvature for the fundamental
mode [(27) or Fig. 10].
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APPENDIX A

Approximate solution of the slab

Consider the two-layer slab in Fig. 12(a). Propagating along z, the
field components are independent of z and the characteristic equa-
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Fig. 12—(a) Two-layered slab. (b) Equivalent slab. (¢} Field distributions (E.
and H, or E, and H.) in original slab (solid line) and in equivalent slab (dotted line).

tion" is
Ky
— -1
mq = ¢ + tan v

K hy — ;-
+ tan—! [ @—i_%tanh [ f Vo3 — ¢ + ta\,nhﬂ%-3 i ” , (71)

2 Nog — 2

where
V= kh (72)

is the electrical height of the slab of index #n; ¢ is the number of field
extrema within the slab;

nias .-
Kiaa = {ng for polarization along y (73)
1 for polarization along z,
U103 = khVn? — nigs. (74)
Assuming
ni
n > {m, (75)
ng
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the field components vary sinusoidally along y in the medium of index
n and exponentially in the others.

Real solutions of (71), which correspond to guided modes, exist for
values of v; larger than

_ 1 fn —nd
vmin—w(q—é)—mn [Kg P p—
2
- tanh [ Vo — v} + tanh! K“‘/ “2” (76)
Kz — N3

The simple asymptotic solution of (71) for

¥1 2> Umin (77)
is
_ _ ™
¢ - l + ch, (78)
where
h -1 Kai)z

The asymptotic solution (78) and the exact solution have been
plotted in Figs. 13(a), (b), and (c) for several cases of interest.

Sinee the percentile errors are small, even close to the cutoff values
of v;, expression (78) will be used throughout the paper.

Now we proceed to find a much simpler slab [Fig. 12(b)] that is
equivalent to that of Fig. 12(a) in the sense that both have the same
propagation constants

_ mq
b = W@ + o (80)
and
k, = V2 — E2. (81)

That is indeed the case if the slab in Fig. 12(b) has refractive index n,
height
H = h(1 + cu), (82)

and is surrounded by a hypothetical dielectric® such that all the
transverse field components (components along z and y) vanish at the
interfaces. This dielectric plays only the role of confining the electro-
magnetic field within the slab.

* This lgpothetmal dielectric has infinite conductivity if E. # 0 or infinite perme-
ability if
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Fig. 13—Exact and approximate width of dielectric slabs. (a) Symmetric slab.
(}J) Asg’mmetric slab (polarization along y). (¢) Asymmetric slab (polarization
along z).
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A geometrical interpretation of the equivalence of the slabs can be
gained from the field intensity distributions shown in Fig. 12(c).

APPENDIX B
Solution of the slab-coupled guide

The exact solution of Maxwell’s equations for the dielectric guide
whose cross section is shown in Fig. 6(b) is very difficult because the
boundaries are not analytical. However, a good quantitative insight
can be gained if, as in Ref. 14, good guidance is assumed, that is, if
most of the electromagnetic energy is contained within the guide.
Then the field in the shaded areas, Fig. 6(b), can be ignored and the
slab solution of Appendix A can be applied independently to each of
the finite slabs of widths %, w, and ¢ that make the guide. Thus, another
dielectric guide, Fig. 6(c), is derived which is equivalent to that in
Fig. 6(b) in the sense of having the same axial propagation constant k.,
and the same field penetration in the slabs of thicknesses { and T.
Unlike the original guide that has four dielectrics, the equivalent one
has a single dielectric of index n and is surrounded by a hypothetical
material that forces the transverse field components (along z and y) to
be negligibly small on the boundaries and confines the electromagnetic
energy within the guide. The dimensions of this equivalent guide are
related to the original one by the following expressions derived from
(82),

H = h(l + ¢cpn), (83)
W = w(l + ¢y), (84)
and
T =t(1 + e, (85)
where
K,
Cw = 2 ;w—' y (86)
_h{K, K
=t () o0
]’TL§ for polarization along x
K, =4 n? ’ (88)
1 for polarization along y,
and
Vo = kwVn? — ni, (89)

and, because of the choice of symbols, ¢4 coincides with (79).
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To solve the boundary value problem of Fig. 6(c) we make further
assumptions. One is that the slabs do not perturb the sinusoidal dis-
tribution of field in the core and vice versa. Another assumption,
justified qualitatively in the text, is that only the fundamental mode
of the slabs of thickness T' contribute significantly to determine the
propagation constants of the modes of the guide. Then, the character-
istic equations of the core and slabs are

2 2
kzn“"—-(;g?c) +(}r7q) + &} (90)
!C:’nz = —'kga + (%1)2 + kg) (91)

where p and ¢ are the number of half periods along x and y, k., is the
propagation constant in the x direction within the slabs, and W, is
the equivalent width of the core. W, is somewhat different from W
because of the field penetration from the core into the slabs.

To calculate W,, we imagine the core divided by the dotted line in
two regions, a and b. In region a the width is W. In region b the elec-
trical width ¢ = kW is given by the slab equation’®

)
koW

With the value of k., deduced from (90) and (91) and considering that
W.= W, eq. (92) becomes

™ = ¢ + 2tan™! . (92)

™ = ¢ + 2tan™ — qu - (93)
JOT) - ()~ o
and its asymptotie solution is
6= —p———— (94)
1 +

W A qT \?
-(7)
Following the procedure described in Appendix A, the equivalent
width of the region b of the core results in

Wy =W 1+%#}- (95)
V- (%)
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We will assume the equivalent width of the core W, to be a linearly
weighted average of W and Ws. Therefore,

CW(H —T) + W,T
- i

w,

or
W.=W(+c¢p), (96)

in which
2T 1

H
From (90), (91), and (96), we derive the explicit values of the prop-

agation constant of a mode and the penetration depth dp, in the slab
over which the field decays by 1/e:

R e T e € ) B

These results apply not only to the guides in Figs. 6(b) and 6(c)
but also to the somewhat more general guide in Fig. 6(a) provided
that (i) the curved edges depart only slightly from those in Fig. 6(b),
(43) no exponential decay of the field or, equivalently, no turning point
is introduced by the wall deformations, and (i%2) h and w are chosen
to be

(97)

and

hm ax
b= s (100)
and
w = Z:::s, (101)

where hmax and wnax are the maximum height and width of the core
portion of index n in Fig. 6(a) and s, its cross-sectional area.

If exponential decay of the field were introduced by the wall de-
formation, the simple expression (98) developed for k. would not be
applicable.
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The choice of h and win (100) and (101) are derived from the WKBJ
method!® or from the almost obvious demands:

hw = s
and
{L_ — hmax
W Wmex

which mean that both portions of core with index # in Figs. 6(a) and
6(b) have equal surface and equal aspect ratio.

After so many approximations one wonders about the percentile
errors in the final results (98) and (99). We can have some impression
of the precision achieved by checking (98) against the more exact
results developed elsewhere' in order to dimension an optical fiber of
circular cross section at cutoff for the second mode, assuming small
difference of refractive indexes between core and cladding.

Calling a the radius of the fiber core, the pertinent values for (99)
are

Ny = N2 = Ng,

t =0,
h=w=ra from (100) and (101),
2
Ch = Cw = —— from (79) and (86),
A ot (79) (86)
2
W=H=4ho+ﬁﬁ) from (83) and (84),
Cq = from (97),
and
dm = 0;
where
V = kavn® — nl. (102)

Substituting the values of d,, ¢, H, and W in (99), one obtains for
p=1landg=2 orforp=2and g =1,

V =283,

while the exact result is 2.4. The error of 18 percent is small indeed
considering that at cutoff the assumption of negligible field outside
of the guide is crudely violated.
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