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The impulse response of multimode optical fibers is distorted because
each mode carries the signal at a different group velocity. Mode coupling
tends to reduce the width of the impulse response. Rayleigh scattering,
being the most fundamental scaltering process in optical fibers, serves as
a mode-coupling mechanism. However, it also causes radiation loss. The
penalty of a seemingly apparent improvement of the impulse response
through Rayleigh scattering s calculated in this paper. We conclude that,
because of the high loss penally, Rayleigh scattering is not a suitable
technique for pulse-width improvement.

I. INTRODUCTION

The term “Rayleigh scattering” describes light scattering from re-
fractive index inhomogeneities whose linear dimensions are much
shorter than the wavelength of light. Most of the scattered light
escapes from the core region of the fiber and enters the cladding or the
space outside of the fiber. Some of the scattered power goes into other
guided modes. Rayleigh scattering thus contributes to the losses in
the fiber and also influences the impulse response through mode
coupling.

Since mode coupling tends to improve the impulse response of optical
fibers,"? the question may be asked: How beneficial is Rayleigh
scattering for light transmission in multimode fibers because of its
mode-coupling ability? To answer this question we investigate the
loss penalty that is incurred if Rayleigh scattering is assumed as the
only mode-coupling mechanism.

For simplicity, our study is limited to a slab waveguide model (see
Fig. 1) assuming that there is no variation of the refractive index or
the light field in the y direction. Ignoring coupling between guided

705



N2

[}
d n
1 WAVEGUIDE CORE

Ny

Fig. 1—Schematic of slab waveguide. The scattering centers are distributed
randomly throughout the core and the outside medium. They are infinitely thin
threads of slightly different refractive index extending in the y direction.

modes traveling in opposite directions, we calculate the width of the
impulse response and the amount of scattering losses. These calcula-
tions allow us to establish the loss penalty. We find that the loss
penalty for any significant pulse-width reduction caused by Rayleigh
seattering is intolerably high. Thus, it is not feasible to improve the
pulse dispersion of multimode fibers by intentionally implanting
Rayleigh scatterers into the dielectric material of the fiber. However,
improved pulse transmission is obtainable by using other carefully
engineered mode-coupling mechanisms.?

Il. THE COUPLING COEFFICIENT

The even guided TE modes of a slab waveguide consisting of a
perfect dielectric are determined by the y component of its electric
field.?

E, = A cos xz x| < d. (1)
E, = A cos kd g~v(z—9 |z| > d. (2)
The odd guided modes are given by
E, = A sin «d |z| <d. (3)
B, = lﬁ—l Asinkd e 059 |z| > d. (4)

The magnetic field components are obtained by differentiation:

—1 9E,

2= o o2 (5)
and
i OE,
H, = o 0z (6)

The factor exp [i(wt — 8z)] is omitted from these and all subsequent
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field equations. The width of the core of the slab is 2d. The parameters
x and v are defined as follows:

x = (nik? — gt (7)
and
(B — nik?)}, (8)

with & = wVeopo, n1 = core index, and n, = cladding index. The
propagation constant 8 is obtained as a solution of the eigenvalue
equations:

[

v

tan kd = Zx for even modes (9
and
tan kd = — _i; for odd modes. (10)
The amplitude coefficient is related to the power P carried by the
mode .
2vwpoP )
A= ——— ). 11
(a5 ()

In addition to guided modes, the slab with infinite cladding has radia-
tion modes. The magnetic fields of the radiation modes follow from B,
by means of (5) and (6). The £, component of the even radiation modes
ist

E, = Bcos ez |z| <d (12)
and

B~ (288 Y coslollel ) +91  lxl>a (3

with ¢ defined by
o sin o‘d.
p cos ad

tany = (14)

The amplitude coefficient B is given by

B ( 2p*wpoP )4_ (15)

T3 (p? cos? od + o2 sin? ad)

The parameters ¢ and p are defined by

o = ikt — gyt (16)
and
p = (nfk* — gHL. (17)
Similarly, for the odd radiation modes we have
E, = Csin oz lz| < d (18)
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and

g " (%"ﬂp)*sin[p(m —d)+¢]  lzl>d (19)

¢ Tel \ B
Phase ¢ is defined by
tan ¢ = (20)

and the amplitude factor is given as

_ 2p’wpP v
¢= ( 78 (p? sin? ad + o cos? od) ) (21)

The coupling coefficient between two modes has the form®7

= %", (e nd) B, Eidz. (22)
E, and E, are the y components of the electric fields of two modes
labeled » and p. The index distribution n = n(z, 2) describes the wave-
guide with slight random fluctuations around the average value, and
no = no(z) is the index distribution that defines the ideal slab wave-
guide. It is no = ny in the core and no = 7, outside. The ensemble
average of n? — n§ vanishes,

K,,

(n* — nd) = 0. (23)
The power-coupling coefficients are obtained from the expression”*
1 L L . .
b= 7 | dz f 2! (K, () K (&) e Bu o) ="
0 0

L § [ d:c'fl'dzfdzf((nﬁ — md) (' — ngd))
B 16LP2 —o0 —o 0 0 o 0
X E,E,E, Eei b =) (24)

The prime indicates quantities depending on 2’ and 2'.

The purpose of this calculation is to study Rayleigh scattering. For
this reason we may assume that the correlation of the index fluctuations
reaches only over distances that are much smaller than the wavelength
27 /B,. The following correlation function is used:

(2 — nd) (02 — ngd)) = DX(n — md))o(& — )bz — ), (25)

where D is the correlation length of the index fluctuations. Substitution
of (25) into (24) leads to

2 2 @
b = S8 D2 — ) [ |BL|?| B e (26)
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The remaining z integration (after integration over the delta function)
over the distance L resulted in a factor L that canceled from the
equation.

To evaluate the remaining integral in (26) we make the following
assumption. All modes are considered sufficiently far from cutoff so
that the guided mode fields are very weak at the core boundary, z = d,
and negligible outside of the core. For a guide supporting very many
modes, this assumption is justified for most of them. Thus, the integral
in (26) effectively extends only over the region of the core. The
integrals are of three different types:

I, = /Z cos? k,x cos? k2 dx, (27)
_d
I = [ sint s sint .z da, (28)
and
I, = f : cos? x,x sin? k,x dx. (29)

Since almost all modes have rapidly oscillating fields in z direction
inside of the core, we approximate these integrals by

d

I]_=I2=I;;%§' (30)
With the help of (11) and (30) we obtain from (26)
k'y,y.d

how = D*{(n* — ng)?). (31)

8(1 + y,d)(1 + Tnd)ﬁvﬁﬂ
In the spirit of our approximation, we may assume v,d>> 1 and
B, & mik, where n, indicates the core index. Thus, the power-coupling
coefficient can be approximated as follows:

kQ
h=ho = gozg DN — n)?). (32)

In this far-from-cutoff approximation, the power-coupling coefficient
is independent of mode number. Rayleigh scattering couples with
equal strength all of the modes.

With the same type of approximations, we obtain from (11), (15),
(26), and (30) the coupling coefficient between a guided mode labeled
» and an even radiation mode with propagation constant 3:

PRD (n* — nd)?)

(e) = )
h? (8) 8nim | B (o cos? ad + o? sin? od)

(33)
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Coupling to odd radiation modes leads to the same type of coupling
coefficient, h{” (8), except that cos ¢d and sin ¢d are now interchanged.
The power (scattering) loss coefficient for mode » is

a =2 [ @) +h 6 1n (34)

This expression can be justified as follows. The power-coupling co-
efficient indicates the amount of power flowing per unit length from
the guided mode to each individual radiation mode. The sum of the
contributions to all radiation modes gives the total loss. Since radia-
tion modes form a continuum, the sum becomes an integral. The
factor 2 in front of the integral indicates the doubling of the loss
caused by power flowing not only into forward but also into backward
traveling radiation modes. The integral over p can be converted to
integration over 38 as follows:

w=2 "R (8) + 1O (8)] 2 ap. (35)

The integration includes only propagating radiation modes. The con-

tribution of even and odd modes is very nearly the same, so that we

use only the coupling coefficient (33) and double the factor in front
of the integral:

(e Dl pif |

g 27, o p'cos?od + ofsin® od

(36)

To the approximation used in this analysis, the power-radiation-loss
coefficient of the guided modes is independent of mode number.

An exact solution of the integral in (36) is hard to obtain. If we
consider the fact that for large values of d the sine and cosine functions
pass through many periods throughout the range of integration, we
can replace the integrand by its average value over a few periods
of the periodic functions. This average is

P =1
( p* cos? od + o? sin? od ),,,,m o (37)
It now remains to solve the integral:
nak
f dp f _32 = aresin :—’: , (38)

In most cases of practical interest the ratio ny/n, is very close to unity
so that we can approximate the integral by =/2. We thus obtain the

710 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974



following equation for the radiation power loss coefficient

_ BDX(n* — nd)?)

i, = 2n,khd. (39)

v

The last part of the equation follows from (32).

IIl. CALCULATION OF IMPULSE RESPONSE

Pulse propagation in optical fibers can be described by the following
equation for the average power?’
P,  14P,

N
2 * oot = P+ L hn(Pu— Py, (40)

This system of coupled power equations holds only for modes traveling
in the same direction. Rayleigh scattering scatters power in forward
as well as backward directions; however, we must ignore the back-
ward scattered power flowing into guided modes. Physically, it appears
that this approximation should pose no difficulty, since only those
modes that travel in near synchronism have a chance to interact
thoroughly. Backward scattered power travels away from the pulse
that created it; thus, it cannot alter the shape of the impulse response
except, perhaps, by repeated reflections. Backward scattered power
contributes mainly to the scattering losses. We have taken backward
scattering into radiation modes into aeccount, but the additional loss
caused by backward scattering into guided modes contributes far less
loss and is ignored in our treatment. Thus, we recognize that the ap-
proximation may lead to a slight underestimation of the total scatter-
ing loss.
To solve (40) we use the trial solution

Pv — Aye—azeim[t—{nlzlc)]_ (41)
Substitution into (40) leads to

A, = h (‘élfi,.)/[a—cr+Nh+iw(-:—v—%):|- (42)

We used the fact that the loss coefficients and the coupling coefficients
are independent of the mode number. The quantity N is the total
number of modes.

We obtain the group velocity of the modes from an approximation of
the propagation constant. Using?

]

Kl RS v § , (43)
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we obtain from (7)
B [n?k” — (v —2% )2]’- (44)

The inverse group velocity of mode v is
1 dg _1d8 _nik

5 de cdk of (45)
Using nik >> vw/2d we obtain approximately
1 m 2
LR 1+ G»?), (46)
with
_ow
¢ = Sukar 4

The solution of the equation system (42) is accomplished with ease,
gince we realize that the sum term in the numerator is independent of
the mode label. Thus, the coefficients A, must be of the form

C

. (48)
a—cr—!—Nh-{-‘iw?Guz

4, =

Substitution of (48) into (42) leads to an eigenvalue equation for the
determination of ¢:

N
> L - (49)
"-la—a-i-Nh-i-'inlG.u’

The sum can be approximated by the integral

[“’ dz _ 1
° a—a-i—Nh-I—'iw%G‘zﬂ [m?a(ag—.1+Nh)]i

m%GNﬂ '_ (50)
X arctan pr———

Thus, we obtain from (49) and (50) the eigenvalue equation

w™Mane \
— ¢ ) —tam l(z‘w"—‘G(a—a+Nn) 1.6
a—oa+ Nh h c

Fortunately, we need only the lowest-order eigenvalue since it has the
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significance of the steady-state loss of the system of coupled modes
and also determines the shape of the impulse-response function.?
The solution of (51) is accomplished by using the fact that the lowest-
order eigenvalue must be close to the loss coefficient a. Thus, we set

c=a-+ 1. (52)

Next, we expand the tangent function in series and solve for 4. In
this way we obtain the approximate solution

4 :N? .
a=a+E(?G)Tw2+m:%GN“. (53)

For our purposes the coefficient p of w? is of most importance. We
obtain the general pulse shape by substituting (53) into (41) and
integrating over w from — @ to «. Neglecting the w dependence of
A,, we find a Gaussian-shaped pulse whose width is??

8 ﬂ] Ni
= 4+pL = L. 54
P Tm e YWY 34
The width of the signal in the absence of mode coupling is
AT=(—1———)L——GN2L (55)
UN U1

The relative improvement of the width of the steady-state pulse in
the presence of mode coupling is expressed by the factor®?

Al 8
R=—F=—_. 56
AT Va5NhL (56)
Using (39) and (56), we define the loss penalty by the expression?7’
ReaL, = 2.8 ™52, (57)

The number of modes is obtained from (44) with the help of the cutoff
condition 8 = n.k for v = N; thus,

N = gﬂii \‘??1 - n2 (58)

The expression for the loss penalty thus assumes the form

Ral = 4 31 (59)
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IV. DISCUSSION

We can now answer the question that was asked in the introduction:
Is Rayleigh scattering significantly beneficial because of its ability to
shorten the width of the impulse response? Let us assume that we
have a slab waveguide with a core-to-cladding index ratio of ni/n,
= 1.01. From (59) we obtain in this case

R*al, = 31.2 = 135 dB. (60)

We may now ask how much loss is associated with a relative decrease
of the width of the impulse response by a factor 2, or B = 0.5. We see
from (60) that the amount of scattering loss associated with this
“improvement’’ is

ol = 540 dB. (61)

This shows that if we are hoping for a reduction in the width of the
impulse response with the help of Rayleigh scattering, we have to pay
an intolerably high price in added loss. Since Rayleigh scattering
losses are known to be quite small, (59) indicates that this mechanism
does not help to reduce the width of the impulse response under
ordinary conditions.

We are thus forced to consider Rayleigh scattering as detrimental
to light transmission in optical fibers. Fortunately, it is a small effect
that does not provide prohibitively high losses at visible or infrared
wavelength.

It is easy to understand why Rayleigh scattering is not more effec-
tive in reducing the width of the impulse response. It has been shown
that a very carefully shaped power spectrum of the function describing
fiber irregularities is required to reduce the loss penalty for pulse
width reduction.? Rayleigh scattering is particularly poorly suited for
this purpose since its power spectrum is flat. Only a very small frac-
tion of the total amount of scattering is used for mode mixing, most
of it is used for light scattering into radiation modes leading to scatter-
ing losses.

Our calculation was based on a slab waveguide model. However,
the result is expected to be representative of round optical fibers.
Experience has shown that estimates of the performance of round
fibers can be obtained from scattering data calculated on the basis of
a slab waveguide model.
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