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The coupling of modes in two parallel dielectric waveguides is studied.
The individual waveguides are assumed to be asymmetric and unlike each
other. If the individual waveguides support modes with nearly equal
propagation constants B» and Bs = Bs + 24, then the double waveguide
system will support two new modes with propagation constants B_=Bs—6
and B4 = Bs+ 6. The shift § is related to A and lo the shift & which would
occur if the original modes were degenerate; & is expressed in terms of the
parameters describing the asymmelric double waveguide system. The field
distributions of the new modes are approximarely even and odd combina-
tions of those of the original modes in the isolated waveguides; the relalive
amplitudes with which they are combined depend upon the amount of
mismatching A. As the modes travel down the waveguide system, they
partially cancel and add, thus transferring power. A power transfer ratio
F s defined and is shown to decrease rapidly as A/§ increases. The beat
length L depends upon both & and A/8; it also decreases as A/$ increases.
A numerical example is given to illustrate the effects of mismatching and
to demonstrate the feasibility of constructing a mode-coupling device.
Possibilities of tuning the device to reduce mismatching are discussed.

I. INTRODUCTION

Coupling of degenerate modes of parallel optical waveguides has
been discussed by Kapany! and, to a greater extent, by Marcuse.?
Such coupling is of particular interest in the field of fiber optics, since
it may cause undesirable crosstalk between adjacent optical fibers used
for light transmission. Marcuse® has applied the theory of degenerate
mode coupling to the problem of crosstalk between cladded optical
fibers embedded in a lossy medium and between cladded dielectric
slab waveguides. The fabrication of devices which would actually
take advantage of mode coupling, such as for light switching, modula-
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tion, or power transferral,? is fraught with practical difficulties, since
the specification of physical parameters must necessarily be stringent.
These difficulties require us to view the theory of optical waveguide
coupling from a new vantage point.

Let us first sketch briefly what is known. If two optical waveguides
each have a mode with the same propagation constant 8, then when
the two waveguides are placed parallel to each other, the double wave-
guide system supports two new modes whose propagation constants
are 8, = 8 + 8 and f_ = § — &. These two modes are approximately
symmetric and anti-symmetric combinations of the original modes in
the isolated waveguides. The shift in propagation constant, &, is
related to the coupling coefficients involved in a description of the
modes by means of general coupled line equations. It can also be ex-
pressed via a perturbation treatment of Maxwell’s equations. Since
the superimposed modes travel down the double waveguide system at
different phase velocities, they alternately add and cancel. If the wave-
guides are lossless, power is transferred back and forth over a beat
length L = x/(28). On the other hand, Marcuse shows that, if the
waveguides are lossy, they tend to equalize the power they carry,
provided the modes travel far enough. A lossy external medium also
causes mode loss. Marcuse further states that only degenerate modes
exchange a significant amount of power if their coupling mechanism
is independent of length.

With this abbreviated version of the present theory in mind, we see
several criteria which a mode coupling device should satisfy: (Z) the
core and cladding of each waveguide should be lossless, (i) the medium
external to the waveguides should be lossless, and (i4%) the two wave-
guides should have a degenerate mode. (There are also other criteria,
such as that the waveguide walls be free from imperfections, but they
are not discussed.)

The first criterion is an important one and certainly merits further
study. In this paper, however, we avoid the issue by assuming that the
device we fabricate has lossless waveguides. A subtler way to put this
is to say that the device is short enough that losses can be ignored.

The second criterion is satisfied by assuming that the claddings of
the two waveguides are contiguous and that there is no medium ex-
ternal to them. Instead of thinking in terms of two optical fibers, we
consider two dielectric slab waveguides placed next to each other.
Fabrication would be similar to that currently used in the production
of double heterostructure lasers and modulators.*® Each waveguide
will consist of a slab of high refractive index surrounded by two slabs
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of lower index. Since the double waveguide device will have a central
slab common to both waveguides, the device can be modelled by a
5-dielectric-slab model.

The third criterion, that the two waveguides have a degenerate mode,
motivates our present study. In practice, it is very difficult to fabricate
a device with degenerate modes. It is therefore quite important to
know how well the device will operate if the propagation constants for
the modes are slightly mismatched. We study the effect of mismatching
on the beat length and on the capability of the device to transfer power.
We also discuss methods of tuning the device after it is fabricated. The
tuning could be used to match the propagation constants more closely.
It might also be used dynamically, thus offering the possibility of
utilizing the double waveguide system as a light switch or a modulator.

Il. FORMULATION

We adopt the standard slab model of an absorptionless dielectric
medium. The optical dielectric K (z), i.e., the square of the refractive
index, is assumed to vary only with = and to take the piecewise con-
stant form shown in Fig. 1. If the waves are assumed to travel in the

Ki{x)

X

Fig. 1—The optical dielectric profile K (z) for the five-slab model.
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z-direction with propagation constant 8, then the electric and magnetic
fields are independent of y and can be expressed as

E = e(x) exp 1(wt — B2),

H = h(z) exp i(wt — B2),
where w is the angular frequency of the light and ¢ is the time. Both

TE and TM modes exist. It follows from Maxwell’s equations that the
electric field e, (z) of a TE mode is described by

Il

d2
T+ [PK (@) — e, = 0, (1)
and that the magnetic field h,(z) of a TM mode is described by
a( 1 dhy oV =
K@ 52 ( g 5 ) + IPK@ + 830, = 0. (@)
It is required that
de,
€y, E )
o L
» K(z) dr

be continuous. Since K (z) is piecewise constant, solution of egs. (1)
and (2) subject to the above conditions is straightforward. The

solution of (1) is

e,(z) = A exp p1z z<0
= A[(p1/ps) sin psx + cos par] 0 <z < 2w
= AC,[1 + (p1/p2) T2][—X sinh ps(z — 2ws)
+ cosh ps(z — 2ws)] 2w, <z < 2(ws + ws)
= AC,C3[1 + (py/p2) T][1 — XTs]
X [(ps/pa)Y sin pa(z — 2wz — 2ws) + cos pa(z — 2w, — 2ws) ]
2('”—’2 + 'wﬂ) <z < 2w+ ws+ uu)
= AC:CyCi[1 + (py/p2) T2J[1 — XTs]
X [1 + (ps/p) Y T4u] exp ps(2ws + 2ws + 2ws — 7)
2ws + ws + wy) <z, (3)

with
pi(B) = (8* — k*K.)* 1=1,3,59, (4)
p:(8) = (kK. — g9} 1=2,4,
Cy(8) = cos 2pawse, T.(8) = tan 2pw,,
C3(B) = cosh 2p;zws, T3(8) = tanh 2paws, (5)
C4(B) = cos 2paws, T4(B) = tan 2paws,
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1+ (pi/p2) T

Y(8) = [—TM]- (7)

_ i P12 — pu

X(ﬁ)ﬁpa[—], (6)

1
pal 1+ (ps/p) T,

The amplitude 4 is arbitrary. Equation (3) satisfies the continuity
condition on e, () everywhere, and that on de,/dz at all but the point
2 = 2(wy + w;). The continuity condition at this point leads to the
eigenvalue equation

X(B) + Y(B)

Ta(B) = i+ X@YE)’ (8)

which determines the values of the propagation constant 8 for which
diserete modes can exist.

For TM modes, the analogous equations are formed by replacing
pi by p: and w; by @, where

K$:8) = (B* —kK)}  i=1,3,5,
Kb:B) = K. — Bt i =24,
TE",' = Ki‘w,‘ ’L = 2, 3, 4,

and f denotes the propagation constant for a TM mode. For simplicity
of exposition, we have mainly confined our analysis to that of TE
modes. It should be clear how to do the corresponding analysis for
TM modes.

We remark that the above analysis is quite general and makes no
assumptions about the relative heights or widths involved in the
dielectric profile K (z) sketched in Fig. 1. By making appropriate
choices of the parameters, we could deduce from eqgs. (3) to (8) the
corresponding equations for a single asymmetric or symmetric wave-
guide, for example. Two cases which interest us particularly are: (i)
Ka = K4 = Kﬁ with Kz > Kl and Kz > Ka, and ('H,) K1 = Kz = Ks
with Ky > K3 and K, > K;. Each of these models an isolated wave-
guide. We call the first of these (with high dielectric region K,) guide
II and the other (with high dielectric region K4) guide IV. The eigen-
value equation (8) then reduces to

X@B) =1 guide IT,
Y@ =1 guide IV.

These may appear more familiar to the reader when cast in the standard
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form for a single asymmetric guide®

_ (p1/p2) + (pa/p2) .
tan 2w.p, = T — (pu/02) (ps/22) guide II, 9)
tan 2wsp, = (pa/pa) + (ps/p4) guide IV. (10)

1 — (pa/pa) (ps/p0)

For the model of two adjacent waveguides, we place guides II
and IV adjacent to each other as illustrated in Fig. 1, with
Ky > max {K;, Ki}, Ki > max {K;, K;},and w; > 0 (z = 1, 2, 3, 4).

It is also a relatively straightforward procedure to write down
precisely how many modes can exist with a given dielectric profile
K (z).” Although we omit such expressions here, we do comment that,
just as a single asymmetric guide may not be able to support a propa-
gating mode, so also an asymmetric double waveguide structure is
not always capable of mode propagation. If K; = K; = K;, though,
so that the structure is composed of two parallel symmetric (but not
necessarily identical) waveguides, then there is always at least one
mode.

lll. NEARLY DEGENERATE MODES

Let 8; and 34 denote solutions of X(3) = 1 and Y (8) = 1, respec-
tively; 8, and B, then, are propagation constants for modes in guides
II and IV if the guides were isolated from each other. We need make
no assumption about the order of each mode. In practice, though, both
propagation constants are likely to be associated with zeroth order
modes. For definiteness in notation, we assume that 8, = 8. and write*

ﬂ4 —‘Sg = 2A

We now assume that A is “small,” i.e., that the two modes are nearly
degenerate. This assumption, which is fundamental to the remainder
of the analysis, is stated more explicitly later [eq. (18)]. Frequently,
it does not matter (to the order of approximation used) whether 8, or
B4 is used in the evaluation of an expression. In such instances, it
sometimes is helpful to use the notation Fo(= 82 = B.).

Our task is now to determine values of 8 which satisfy (8). Our
experience with the degenerate case (A = 0) leads us to expect that

*In the numerical example of Section VI, we relax this notation to read
|Bs — Ba| = 24, where it is not known e priori whether 8: or g, is larger. This
should not be confusing when taken in context.
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there will be two solutions 8; and 3_ close to 8. A study of the coupled
line equations® for the two modes would demonstrate that 8, = 84 + §
and B_ = B» — &, where § is expressed in terms of the (unknown) cou-
pling coefficients.® We prefer to attack (8) directly; we shall verify the
expressions for 8, and §_, prove that § > 0, and give an explicit formula
for é.

We first show that, if 3; and 84 are close enough together, then (8)
has no solution B such that 8, < B8 < B. Since X(8.) = 1 and
X'(8) <0 for all 8, we know that if (8—p8,)/8.<1, then 0 <X (8) <1.
Similarly, ¥ (8) = 1. Thus,

X@B)+Y®B _1+XBYPB)
1+ X@YE@ X@ +Y'@ —

But T3(8) = tanh 2w;p; < 1 for all 8, so (8) is not satisfied.

Next, suppose (8) has a solution g, = 84 + 8, with § > 0. Then if
5 is small, we know that 0 < X(8,) < 1land 0 < Y(8,) <1, so (8)
may be written as

T(B) = tanh wyp; = tanh [§(tanh—' X + tanh—' ¥)]

X[+ (0 =VY)g+ V1 4+ (1 — X3
XY +[1+ 1 —X)0 4+ (1 — ¥y

(11)

We have

X(By) = X(B:+ 24 +8) = 1+ (24 + §)X'(8d),

_ - 12
Y(8.) = Y(8s+ §) = 1 + 5V (80). (12)

If we substitute (12) in (11) and perform a perturbation analysis
under the two assumptions,

[6(2A + )X’ (Bo)Y' (B ' K 1, (13)
[—(2A + X' (B) ] + [—3Y'(B0) ] < 1, (14)

we find

T(Bo) = 1 — [—(2A + &X' (B) P[5 (Bn) ],

so that

F= —a+ (a4 &)Y, (15)
where
_ 1 -—-T(@)

= XY BT (16)
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On the other hand, if we suppose that (8) has a solution 8_ = 8, — §,
with § > 0, then X(8.) > 1, Y(8_) > 1, and (8) becomes

T(8) = tanh wsp; = tanh [$(tanh—! X! 4 tanh—! ¥-1)7]

X+ X1V (-1
TIFIX @ - DAY + (= DY)

By a procedure very much like that used to determine § = 8, — B4,
we find that § = §, as anticipated. Here, the roles of X’ and ¥’ must
be interchanged in (14).

The effect, then, of placing guides II and IV next to each other is to
shift their (isolated) propagation constants 8, and 84 symmetrically
outward by & to 8_ and .. The physical meaning of & in (16) is clear:
it is the magnitude of the shift which would occur if guides II and IV
had degenerate modes (A = 0). We shall call § the “degenerate shift.”

Let us consider assumptions (13) and (14) in more detail. By means
of (15) and (16), (13) becomes

1 — T(Bo) =1 — tanh wp; K 1. (17)

This, then, is essentially a restriction on the separation between the
two waveguides. If they are too close, our approximations will break
down. Assumption (14) and its counterpart with the roles X’ and ¥’
reversed are, by (15), satisfied if

[A + (& + &) H[-X"(Bo) ] + [-Y' ()]} 1. (18)

This tells us how large A can get without invalidating the approxi-
mations.

By using eqs. (4), (6), and (7) cleverly, we see that the expressions
for X'(8o) and Y’ (8,) reduce to the simple forms

—Bo(p} + p3)

X'(Bo) = P 2pww: + 1 + (p1/ps)], (19)
_ 2 2
Y8 = LB EP) ron 41k po/p)]. (20)
P3DiDs
Thus, by (16),
. papaps[1 —tanh waps] . (21)

H
Bo L (p§+p§)(p§+p§)[2plw2+1+—p‘][2p5w4+1+—”“]}
P1Ps P3 Pa
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If we take the case of two identical symmetric waveguides
(pr = ps = ps, P2 = P4, W2 = wy) and use the approximation

tanh wsp; = 1 — 2 exp (—2wsp1),

then (21) reduces to

5 = Pips exp (—2wsp1)
Bo(pi + p2) (1 + paws)

which is in agreement with results of Marcuse.? For TM modes, we
arrive at

(22)

ﬁ+=;§4+5, 5—=Ez—5, 3=E4—52,

where
5= —A + (&2 + 8
3\ _ 1— tanh 'Zasﬁg
[X'(Bo) V' (B) ]’
I — BBE+ DT o
X@) = st B [oxikipa,
Kipt + Kzﬁﬁ) P (Kﬁﬁﬁ + K3p3 )]
ge Spi T Bapa ) | Py Aepp - Agpy
- “‘( 7r5 ) P2+ P '
A (R2 T r
P30 = il Y | 2K,
) KE§§+K§§§) Bs (K§5§+Kz§s)],
“‘3( arn )R\ mtR

IV. A LOOK AT THE MODES

We now discuss what the modes e, (x) associated with B, are like in
guides IT and IV. The expressions for e, (x) are given by (3). Both the
shapes of the modes and their relative amplitudes will be of interest.

We see from (3) that the shape of e (z) in guide II is given by

S(Bx, ) = [(p1/p2) sin paz + cos pax]|s,. (23)

Since
1B ) = [, 0) + @6+ L
af

A2

J(B-, z) = f(Bo ) —

the shapes of both modes differ just S]ight.ly from the unperturbed
shape f(8., z); furthermore, the shifts for the two modes are unequal
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and are in opposite directions. The unperturbed shape can be deter-
mined with the aid of (9). We find

P1 _ tan [szz + é(tan—l P1_ tapn-1 P8 )] = tan U
P2 - P2

D2

for even-numbered modes and

Pr_ _ ot U
D2

for odd-numbered modes. Thus,

f(B2, z) = tan U sin pox + cos pax

sec U cos (p.x — U)

2 2\ 4
= (Ih_‘l:_?{i cos [pgsv — WaPs
2

_1 P 1 Psa
5 (tan De tan pe (24)

for even-numbered modes and, similarly,
2 244
f(Bs, @) = %‘M sin [Pix — WaP2
2

— % (tanﬂ%—: — tan™! %z )] (25)
for odd-numbered modes. The mode shapes in guide IV can be deter-
mined in an analogous manner, with perturbations performed about
84 instead of 8.. We leave the details to the reader.

The above results are not surprising. If the double waveguide
system has a mode with propagation constant 8, or 8_ which is close
to the propagation constants 8 and 84 of modes that can travel in the
individual isolated waveguides, then we would indeed expect the shape
of that double waveguide mode to deviate only slightly in each wave-
guide from the shape of the mode that could propagate in the isolated
waveguide.

The amplitudes of e, (z) in guides II and IV prove to be more inter-
esting. Let the arbitrary amplitude A in (3) be written as A for
e+ (z), and let BY and BY denote the amplitudes of the modes in guides
II and IV, respectively. Then (3) and (24) or (25) show that the mode
amplitudes in guide II are given (to our order of approximation) by

2 PATY
2
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In guide IV, the amplitudes are, by (3),

2 211
BY — A, [czca (1 +o Tz) (1 — XTy) (l%p*)_]
2 4

(27)
By
Care must be taken in the evaluation of C3(1 — XT3) at 8. Since
X(-8+) < 11 Y(ﬁ‘l-) < ]'r and bV (8)1

X+Y

— — —1 —1
T, ey tanh (tanh—' X 4 tanh™ ¥),

we have

1+ XY

C3 = cosh (tanh™' X 4+ tanh™' Y) = T = X911 = 79

so that

et = X7 s, = (

1— X*\}
=)

1 [ (2A + HX' ]*l
R T §Y'

We find in a similar manner that

X’ J

.1 - XT = | ——= | -

N I el
Thus the mode amplitudes in guide IV are

(p3 + pd)} [(QA =+ S)X']’_
N Y’

_ 4 Py ) (P8 + Pi)*[ 5X’ ]i.
ACy (1 + D T”) i (24 + §)Y” (28)

BY = A,C» (1 + %1 Tz)
2

BY

We observe that the mode amplitudes will have the same signs in one
waveguide and the opposite signs in the other. Thus, e, (z) might be
termed quasi-even and e_(z) quasi-odd. More startling, however, is
the realization that, if A > 0, then the ratio |B}/BX| = A,/A_ may
be quite different from the ratio |BY/BY| = (A,/A_)[(2A + §)/8].
As we see in the next section, this will have serious implications when
we consider the double waveguide system as a device for transferring
power.

For future reference, we write ey (x) for a system consisting of two
symmetric, but not necessarily identical, waveguides (K, = K3 = Kj).
In this instance, (9) and (10) imply that

Ca[1 + (py/p2)T:] =1,
Cif1 + (pr/p)Td] =1,
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so that we have by (3) and our previous analysis
er(z) = Ayexppizr <0

2 241
= A+(pll'+p2)|305pg($—’fﬂ2) 0 <z < 2w
2

= A,[—X sinh pi(z — 2w:) + cosh pi(z — 2ws)]| s,
2w, < & < 2(wg + wa)

s (A B 2 24
=A+[(2A.+a)£] (pl-;m) cos pu(T — 2ws — 2w; — wy)
4

) Y’
2(ws + ws) < x < 2(we + ws + wy)
8 X'
= A, [ L;) ¥ ] exp p1(2w: + 2w; + 2w, — z)
Z(UJQ + Ws + 'U)4) < iz, (29)
e_(x) = A_exp ;1 z <0

2 211
= A_(p—l;jﬂcospz(x — Ws) 0 <z < 2w
2

A_[—X sinh py(z — 2w:) + cosh pi(z — 2ws:)] 5.
2?.02 < x < 2(‘102 + 'L\'J3)
[ 5X ]* (pi + pi)}
“L(2a + 8y’ P4
2wy + ws) < x < 2(we + ws + W)

cos pa(z — 2ws — 2ws — wy)

8X }
= — A_ [ W] exp p1(2w, + 2w; + 2w, — )
2(’[1)2 + ws + 'lU4) < z. (30)

V. BEAT LENGTH AND POWER TRANSFER

Suppose the two modes B, = ey (z) exp i(wt — B.2) travel down the
double waveguide device. Since they travel at different phase velocities,
the quasi-even and quasi-odd modes will alternately add and (par-
tially) cancel in each waveguide. Hence, power is transferred between
the two waveguides.

The beat length L over which this transfer takes place is given by

m

L=sG+m B0+ @

Note that, if the degenerate shift § is fixed, then as the mismatching A
increases, the beat length L decreases. We can conceive of ways to

(31)

728 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974



tune the double waveguide device and thus to change the beat length.
This might be useful for light switching or modulation.

It is important to learn just how much power can be transferred
in the waveguide system. Suppose, for definiteness, that we excite just
one waveguide at z = 0 (say, guide IV), with the intent of transferring
power to guide II via the mode-coupling mechanism. If guides IT and
IV have degenerate modes (A = 0), then as the modes travel down
the waveguide system, they will alternately add and then cancel (to
order §°) in each waveguide, with addition occurring in one wave-
guide when at the same position cancellation occurs in the other. If
guides IT and IV have nondegenerate modes (A > 0), however, then
complete cancellation cannot take place in both waveguides: by (27)
and (28), we see that if the amplitudes of e, (x) and e_(z) are adjusted
so that the modes cancel at z = 0 in guide II, then they will never
cancel fully in guide IV.

From a practical point of view, a parameter which is likely to be of
interest in this matter is the fraction of the total power introduced into
the system which can be transferred into guide II. If the modes are
poorly confined, an appreciable fraction of the power carried by a
waveguide may actually be outside the high dielectric guiding region.
If the reader is interested in the fraction of the power which can be
transferred not only to the guiding region of guide II, but also to its
vicinity, we would need a power transfer ratio G to be defined by

6= [ [e+@ + (@) Fi / [ @ + & @,

where a is some number between 2w. and 2(w, 4+ ws) which defines
the “boundary” between guides II and IV. The numerator of this
expression, then, is proportional to the power carried by the entire
guide II.

Unfortunately, for a general asymmetric waveguide system, it is
not at all clear how to define the position of the “boundary’” between
the two waveguides. If the system consists of two symmetric wave-
guides which are nearly identical (except for a small deviation if the
modes are slightly mismatched), then it seems clear that the boundary
should be midway between the two dielectric regions, i.e., at
a = 2w, + w;. By using (29) and (30), we find in this instance that
we have to first order

G =[1+4 (a/8)]
Thus for perfectly matched waveguides (A = 0), the power transfer
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is complete, to first order. As the mismatching increases, the power
transfer ratio decreases rapidly.

Complete power transfer (to first order) is a direct consequence of
assumption (17), which implies little overlap between the field as-
sociated with guide II and that associated with guide IV. A higher
order perturbation analysis would show that in fact there is some field
overlap and that, even if A = 0, the power transfer is not complete.
As the waveguide separation increases, there would be less field overlap
and the power transfer would be more nearly complete.

For a general asymmetric waveguide system, we might define the
“boundary’ between the two waveguides to be, say, at the position
where the “quasi-even” field attains its minimum. Such a definition
can be cumbersome to apply mathematically. In general, though, we
would expect results similar to those obtained for the symmetric
system. If the modes are degenerate and one waveguide is excited, then
virtually all the power can be transferred to the vicinity of the other
waveguide. The power transfer ratio decreases as the mismatching
increases.

It will be instructive to introduce a second power transfer ratio F,
which can be defined precisely. It will be the fraction of the total power
introduced into the system which can be transferred into the high
dielectric region of guide 1I, the waveguide which was originally un-
excited. If terms of order A/B, are neglected, this power transfer ratio
is defined by

F = j;ﬁwi Les(z) + G_(z):l?dz/ fj [ (z) + € (z)1dz, (32)

where the mode amplitudes A and A_ are equal.

If the modes are poorly confined in guide II, the power transfer
ratio F may be considerably less than unity even if the waveguides
are perfectly matched (A = 0). The definition of ' is concerned only
with the power which can be transferred into the high dielectric region
of guide II; hence, F depends upon the confinement factor of the
waveguide (to be defined below) as well as upon the amount of mis-
matching A.

Evaluation of (32) can be very messy for the general case of two
asymmetric waveguides. We simplify the subsequent analysis and yet
retain its essential flavor by assuming that the double waveguide
structure is composed of two symmetrie, but not necessarily identical,
waveguides (K; = Ki = K;5). The modes ey (z) are then given by (29)
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and (30). For the numerator of F, we find
f [es () + e_(x) Jde = 44% (v '+ ) f cos? pa(x — w.)da
0

= 44% (Pﬂ_t_m_) [pows + § sin 2paw, .

P2
But since (9) implies that
. 2P1P2
sin 2pew, =
Pl =

for a symmetric waveguide, we have

2wy 2 2 2
,[o Les(z) + e_(x)JPdx = 4‘;—"' [pgwg (W) + E].
2 P2 P2

Similar procedures can be used in the evaluation of the denominator
of F. Special care must be taken in evaluating the integral in the
interval 2w, < z < 2(w2 + ws;), where e;(z) and e_(x) have the same
functional description, but the function is evaluated at A and 8-,
respectively. In the resulting analysis, C'; and S; must be evaluated at
By. Procedures similar to those used following (27) are helpful. The
power transfer ratio turns out to be

F o= 4(Pr1/p2)
20(Pu/p2) + (1/p0) ]+ 2[(Piv/ps) + (1/p0)1(1 + 24%/8) X'/ V"’

where

2 2
Pu=P2we(pl+p2)+E,

+ P (33)

Py = P4'w4(p

The expression for F can he simplified. By using (19), (20), and
(33), we find that

Pn 1 X’(PIV 1)
—=—4+ =), 34
pz+p1 Y’ p4+'px 34)
so that
Pll/lh

F = (35)

[(Pu/p) + (1/p0 Il + (A% ]

Both (34) and (35) have interesting physical interpretations. In
order to discuss them, we make a brief digression. Suppose that,
instead of the double waveguide system, we just have an isolated
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guide II, which for generality we assume is not necessarily symmetric.
(In the notation of Section II, we have K3 = Ky = K;.) If the electric
field is given by e(x) exp i(wi — Bs2), then the power carried by the
entire waveguide is proportional to

P= L : ¢ (2)dz

and the fraction of the total power which is confined to the high
dielectric region is given by

C = f ez(:c)dx/f et (x)dz.

It is not difficult to show that

P =P B pn + 1+ (pu/w),
where e(z) was assumed to have unit amplitude at z = 0. Upon
comparing this expression with (19), we find that

2»30 (Pz + pa) P,
P3 (Pl + pz)

so that X’ is related in a simple manner to the power carried by the
waveguide with which it is associated. Now if the isolated guide II
happens to be symmetric, then it is also true that

X = -

P 1
p=-Y4 -
P=+P1’
x = —p
D1

Since a similar relationship holds for an isolated guide IV, (34) follows.
The physical implication of (34) is that, if a single waveguide is ex-
cited in a matched double waveguide system (A = 0), then the power
is distributed between the two modes in such a manner that

f e (x)dz = f e* (x)dx.
If an isolated guide II is symmetric, then the confinement factor C
can be shown to be given by

_ P11/ps .
B (Pnfpz) + (1/py) (36)
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Hence, the power transfer ratio F is simply given by
F = C[1+ (a/8)1 (37)

Note that I" is completely independent of the parameters of guide IV,
as well as of w; because of assumption (17).

We remark once more that these results are first-order approxima-
tions. If a higher order perturbation analysis were undertaken, it
would show that F is also dependent upon the amount of field overlap
between the two waveguides.

It is important to note that the amount of mismatching A can have
a significant effect on the power transfer ratio: as A increases, F de-
creases rapidly. We might remark that, while the beat length L
depends upon § and the ratio A/$, the power transfer ratio F depends
only upon A/8. Thus, by proper device design, it may be possible to
adjust 8§ and A/8 to get both appreciable power transfer and a desirable
beat length.

VI. A NUMERICAL EXAMPLE

To illustrate our results, let us give an example, using parameters
which could be realized in a GaAs— Al,Ga;_.As heterostructure. We
consider two waveguides which are each symmetrie, but which have
different widths and dielectric step heights. Our intent is to excite one
waveguide and then to transfer power into the other by means of mode
coupling. The parameters of one waveguide, say guide II, are taken to
be fixed. The width of the other waveguide is considered a variable.
For any given width 2w, we adjust the dielectric height K, so that
the propagation constants 3. and 34 for the zeroth order TE modes of
the two waveguides match.

We learn how the degenerate shift § varies with the spacing 2w;
between the two waveguides and with the width 2w, of guide IV. We
look at the beat length L and the power transfer ratio F for an idea of
how much mismatching of the propagation constants 8. and 84 can be
tolerated. We then discuss the amount of mismatching 2A = |8y — B:|
which might occur in a practical situation and show how tuning can
reduce this.

To be specific, suppose that

K, = 11.868,

K, = 09K, = 10.681,
ws = 0.1 um,

k = 5.4494 X 10* em™.
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The dielectric constant K, corresponds to an index of refraction
K} = 3.445 of GaAs at a wavelength X = 27 k™' = 1.153 um. The
halfwidth w4 of guide IV will be assumed to vary between 0.1 pm and

0.8 um.
For the zeroth order TE mode of a symmetric waveguide, we find

that (9) reduces to
tan psws = p1/pa,
p = (B8 — KK},
p: = (K*K, — B3). (38)

The above parameters for guide II give us

B2 = 1.8049 X 10° cm™,
p; = 2.9311 X 10* em™,
pp = 5.1631 X 10* em™.

Equation (38) holds for guide IV if each subscript 2 is replaced by a 4.
For any given value of ws, we adjust K, so that 84 is the same as 8.
Some values of K4 and p, are given in Table 1.

The parameters for K, K, w; and any given pair K, ws then define
two waveguides which have a degenerate mode at the given wave-
length \. The degenerate shift § is given by (21) for symmetric wave-
guides:

_ pipaps(1 — tanh wapy) _
26:L (0% + p3) (pF + P (1 + prwa) (1 + prws) I

Figure 2 shows & as a function of ws for various values of ws. We see
that the coupling decreases rapidly as the waveguide separation in-
creases or as the width of guide IV increases. The beat length L, then,
will increase rapidly with ws or w if A is small enough. If, however, the

8

Table | — Values of K, (and hence p,) needed to match g, for the
zeroth order TE mode in guide IV (of halfwidth wy)
to the 8 for the corresponding mode in guide |l

wy (um) K, P4 (10% em™)
0.1 11.868 5.1631
0.2 11.381 3.4917
0.3 11.222 2.7340
0.4 11.145 2.2763
0.5 11.100 1.9619
0.6 11.071 1.7295
0.7 11.051 1.5494
0.8 11.037 1.4048
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Fig. 2—The degenerate shift § as a function of half the distance between the two
waveguides w;, with the halfwidth w, of guide IV as a parameter.

waveguides cannot be fabricated to mateh as closely as desired, the
story can be different. If we take, quite arbitrarily, A = 100 em™?, we
would find for example from (31) and the data in Fig. 2 that if
wy = 0.6 pm,

0.113 0.4
_ 0137 . )05 _ .
L = 0.150 [ ™M if w; = 0.6 [ #M (A = 100 em™?)
0.157 o
while if A = 0,
0.162 0.4
L=:027 mm if w;=1<0.5}um (A =0).
0.490 0.6
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Thus, L is reduced significantly and changes less rapidly with w; if A
is large enough. Similar results are found if ws is fixed and w varies.

Next, suppose we wish to excite one waveguide and to transfer
power to the other one. If the propagation constants for the two
waveguides were perfectly matched (A = 0), then by (35) to (37)
the power transfer ratio # would be the confinement factor C which
is plotted in Fig. 3. The upper curve is used if guide II is excited and
power is transferred to guide IV ; the lower curve is used if guide IV is
originally excited and power is transferred to guide II. The power
transfer ratio is larger if power is transferred from a narrow guide II
to a wide guide IV than if the power is being transferred the other
way, since the power is more tightly confined within the guiding region
in the wider waveguide.

Lest the reader become confused, we recall that F is defined as the
fraction of the total power introduced into the system which can be
transferred into the high dielectric region of the guide which was
originally unexcited. F does not concern itself with how much power
in the high dielectric region of one guide can be transferred into the
high dielectric region of the other guide.

1.0
oI-—»I¥
0.8 =
06 I~
C
NN—1
04—
0.2 -
0 1 1 | |
0 0.2 0.4 0.6 0.8 1.0

w, IN gm

Fig. 3—The confinement factor C for degenerate modes. Guide II is fixed, and the
halfwidth w, of guide IV varies.
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Again, the mismatching A can have a significant effect. If, for ex-
ample, we assume that w; = 0.6 pum and transfer power from guide II
to guide IV, we find from (35) (evaluated with the parameters for
guide IV) that if A = 100 em™,

0.66 0.4
F=4044} if wy= {0.5 pm.
0.22 0.6
(The maximum value of F is 0.91 for A = 0.)

If we know that the fabrication procedure will likely make A of
significant size, then the only way (for given waveguide parameters) to
get good power transfer is to make & large enough. A trade-off thus
must be made between good power transfer and a long beat length.

Fortunately, tuning can be a viable alternative to making such a
trade-off for badly matched waveguides. To tune a device which has
already been fabricated, we would need to alter one or more slab
widths or dielectric heights.

Some possible methods of tuning are to change K, or K, by altering
the free carrier density or using the electro-optic effect, or to change the
outer slab levels K; or K; by diffusion or ion implantation. This ean
be achieved, in principle, by growing at least one waveguide with a
small gradient in the slab width. Phase matching then can be achieved
by lateral positioning of the light beam, which travels approximately
perpendicular to the gradient of the slab width.

We compute a possible value of A for a specific example and then see
how much tuning is needed to reduce A to zero. Suppose that (for any
given w,) the double waveguide device is fabricated according to the
specifications for matched propagation constants, but that there are
slight errors in w,, wy, Ky — K,, and K4 — K,. Assume the following
errors, which are probably reasonable if the device is fabricated by
molecular beam epitaxy:® the ratio w:/w, is nearly constant, and w;
varies by +0.02 um; the ratio (K. — K,)/(K, — K,) is nearly con-
stant, and K, — K; varies by +0.10. We shall take K. to be fixed.
Then the extreme cases would be given by ws = 0.12 (0.08) um,
K\ = 10.781 (10.581), and

wy = (we/wa)ws,

i (K K K, - K,
K, = K, (KQ_KI)K1+(K2_K1)K.,,

where the primed parameters refer to the values in the fabricated
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Fig. 4—The mismatching A as a function of the ratio of the guide widths.

device. We just treat the extreme case for which w; = 0.12 ym and
K37 = 10.781, since the other gives changes of comparable size.

We find from (38) that, with these fabrication errors, 8, = 1.8156
X 105 em™ and B varies from 1.8156 X 10°® cm~! for wy = wa to
1.8119% 10% em™ for w; = 8ws. The resulting values of A=%|8:+—B8:| are
plotted in Fig. 4. Although both 8. and 8. have changed significantly
from the value 1.8049 X 10° ¢m~! for which the device was designed,
they both change in the same direction, so A reflects a less radical
change.

In tuning the system, suppose we consider guide IV, and hence 8,
as fixed for any given w.; we shall alter either the dielectric height or
the symmetry of guide II to adjust ..

If we lower K, to make 8, match g4, we find by (38) that the altered
values K, are those given in Table II. The change in K is thus less
than 0.4 percent. Such a change is feasible with free carrier injection

Table || — Values of K, needed to tune the mismatched
waveguide system

wi/wh K3 % change

11.868
11.846
11.840
11.831
11.829
11.825
11,824
11.823

coocooooe
wwwwwﬁr—
=]

00~ L=

O~ U W LoD =
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Table |ll — Values of K; needed to tune the mismatched
waveguide system

w/w, K; % change

10.781
10.716
10.697
10.670
10.663
10,657
10.647
10.643

QO~1C: Ui QU b —
mEEEEooo
NN~ O

and is about an order of magnitude larger than can be handled com-
pletely by the electro-optic effect.

Another possible method of tuning would be to make guide II
asymmetric. If we keep K, = 11.868, K3 = 10.781, wy = 0.12 pm, and
alter K, to match 8. to 84, we use (9) in the form

_ _pa2tan 2waps — Pa
1 + (ps/p2) tan 2wyp,

to get p; and then use (4) to find K,. The altered values K are given in
Table III. The change is thus no more than 1.3 percent. This can be
handled by diffusion or ion implantation.

P
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