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A formula is derived for the capacity of a multi-input, multi-output
linear channel with memory, and with additive Gaussian noise. The
formula s justified by a coding theorem and converse. The channel
model under consideration can represent multipair telephone cable in-
cluding the effect of far-end crosstalk. For such cable under large signal-to-
noise conditions, we show that channel capacity and cable length are
linearly related; for small signal-to-noise ratio, capacity and length are
logarithmically related. Crosstalk tends to reduce the dependence of
capacity on cable length. Moreover, for any channel to which our capacity
formula applies, and for large signal-to-notse ratio, there is an asymp-
totic linear relalion between capacity and signal-to-noise raiio with
slope independent of the channel transfer funciion. For small signal-to-
notse ratio, capacity and signal-to-noise ratio are logarithmically related.
Also provided is a numerical evaluation of the channel capacity formula,
using measured parameters obtained from an experimental cable.

I. INTRODUCTION AND STATEMENT OF RESULTS

Our problem is to calculate the capacity of a multi-input, multi-
output linear channel with additive Gaussian noise, and to justify the
formula by a coding theorem and converse. Specifically, we consider
the following channel. The channel input and output are sequences
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{2(n)} 2w, {y(n)} =« of real s-vectors* related by
yn) = 5 h(n = K)z(k) + 2(n), 1

where {h(m)}s-—= is a fixed sequence of real s X s matrices (the
indicated operations being ordinary matrix arithmetic), and {z(n)}Z.
is a sequence of Gaussian random s-vectors for which Ez(n) = 0, and

Ez(n)[z(n — m)]t =r(m), — = <n, m< =, (2)

where r(m) is an s X s matrix. The motivation for this problem is that
it is a model for a multipair telephone cable.

The first sections of this paper are highly theoretical; the formula
for channel capacity is carefully and precisely established by means of
several rather technical theorems. In the final section, Section IV, we
discuss some engineering implications of our formula in terms of its
asymptotic behavior, and evaluate the capacity numerically with
measured parameters obtained from an experimental multipair
telephone cable.

A code for this channel with parameters (M, N, 8, A) is a set of M
pairs {(x;, By)}}L,, where x; = (- -+, 2i(—2), zi(—1), 24(0), zi(1), ---)*
is a sequence of s-vectors that satisfy the following:

zin) =0, for n <0, and n = N, (3a)
1 N-1
T lamlr s S, (3b)
(where ||| denotes Euclidean norm) and the B; are (measurable)

subsets of ®*¥ with the following property. Let y; = (- -+, yi(—1),
¥4(0), y4(1), - - -)t be the channel output vector which results when the
channel input is x;, i.e.,

yi(n) = 2 h(n — k)zi(k) + 2(n)

k=—c0

I

N—-1
? h(n — k)zi(k) + 2(n).
=0
Let y™ = [44(0), - -, 4N — 1)]* € @*¥. Then By(1 < i < M) must
satisfy
P.. 2 Priyf € By} £\ 4)

* Vectors will be taken to be column matrices unless otherwise indicated.
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Thus the x; are code words and B;is the set of output N-vectors
which are decoded at the channel output as x,. Inequality (4) expresses
the requirement that the error probability, given that x; is transmitted,
does not exceed A,

A number p = 0 is said to be ‘““S-admissible” (8 = 0) if for all
A > 0 there is an N such that there exists a code with parameters
([2¥#], N, 8, ). The channel capacity Cs is defined as the supremum
of S-admissible rates. Our problem is the calculation of C's, which we
shall solve provided the channel satisfies the following conditions:

@)

(12)

The filter {h(m)}: We assume that the filter is causal, i.e.,
h(m) = 0, m < 0. We also assume that

)| < =, (5a)

and that there exists a B > 0 such that for m > 0,
[h(m)|| < Bm=1, (5b)

where the Euclidean norm “||-||”" of a matrix is the square root
of the sum of the squares of its entries. From (5), the (discrete)
transfer funection,

H@)= 3 h(n)ei?, —w <6=m, 6)

exists and is continuous. H(#) is an s X s matrix, We assume
that for —7 = 0 = «, det H(8) # 0.

The motise covariance: We assume that the covariance sequence
r(-) satisfies

S lIrmll < =, @

7 m=——

so that the (discrete) power spectral density

R(O) = 3 r(n)ent, —x <6

) ——l

A

T (8)

exists and is continuous. R(6) is an s X s matrix. We also
assume that for —r = 6 < =, det E(8) # 0.

We can now give the capacity formula. Let the s X s matrix'
I'(6) = H(6)"'R(6)H(6)~* and let \1(8), \2(8), - - -, As(6) be the eigen-

t For any nonsingular complex matrix A, A~* is the transpose conjugate of A-1
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valuesof I'(f), —w = 8 < w. Then};(6) > 0,1 = jSs, -7 =0 =m
Let 8 = 0 be given, and let K s be the (umque) positive number such
that

2l 3 [ domax[0, Ks — M(0)] = S. (9a)
Mji=1 J—nx
Then

Cs= 4% [ dsmax (o logs ;‘Eg) ) (9b)

4'“' i=

Our main result is the following. Consider the channel defined by
(1) with H = H,(6) and B = R(6). Then C5s is calculated from (9)
with T'(8) = H.(6)"'R.(6)H.(6)~*.

Theorem la (Converse): Let p = O be an S-admissible rate for this
channel. Then p = Cs.

Theorem 1b (Direct-Half): Let S = 0, ¢ > 0 and p(0 = p < Cs) be
arbitrary. Then for N sufficiently large, there exists a code with parame-
ters (M, N, S, \) where

M =eN and NS e

Sections II and IIT of this paper are concerned with the proof of
Theorem 1. Section IV is concerned with the asymptotic behavior and
numerical evaluation of the channel capacity formula (9), with specific
attention to multipair telephone cable.

Theorem 1 is very similar to the results on continuous-time Gaussian
channels due to Holsinger and Gallager.! In fact, for the special case
in which H(6) is the s X s identity, the theorem follows immediately
from the analysis in Ref. 1. We suspect that it might be possible to
obtain all of Theorem 1 by paralleling Gallager’s techniques for this
discrete case, although such an approach is somewhat more cumbersome
than the approach followed here. Furthermore, the present approach
lends itself immediately to broadening the model to consider the effects
of intersymbol interference from previous channel uses, as Gallager’s
approach does not.? In fact, to establish Theorem 1b for the inter-
symbol interference channel we require only to add in one of our
lemmas a term ‘“‘y;” (representing the effect of previous channel
uses), and to show that its norm [||ys||| = o(V}).

Careful analysis of the proof of Theorem 1 will indicate that the
conditions on the filter {h(m)} given in Section I can be replaced by
simply requiring that the filter have a causal inverse {g(m)}, such that
g(m) = 0, m = mo (i.e., finite memory). Thus, our results contain a
generalization of those given by Toms and Berger.?
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Il. NOTATION AND MATHEMATICAL PRELIMINARIES

Let If(a,b), s =1,2,---, — o < a<b< o, where a, b are
integers, be the set of sequences {x(n)}%—, where x(n) is a real s-vector.
Such sequences will often be written as column matrices x = [z*(a),
zt(a + 1), - -+, 2'(b) ] Let ||| denote ordinary Euclidean norm in
s-space, and for s X s matrices 4, let ||4|| be the Euclidean norm (i.e.,
the square root of the sum of the squares of the components of A).
For sequences x € I§”(a, b), the (Euclidean) norm is

lilll = [ £ =z (10)

The space 1§”(a, b) is a Hilbert space with the obvious inner product,
written (x, y) = Xh-a z'(n)y(n), x,y € l{?(a, b). Forx € lf’(— =, =),
denote by x™ & I£2(0, N — 1) the column matrix

xM = [240), z*(1), ---, z4(N — 1) ] (11)

We denote operators on I§*(a, b) by script letters, e.g., 5. We define
the norm of ¥ by

6l = sup ol

xEl6)(a,b) ”lel \ (12)

If |F| < », we say that F is bounded. An operator ¥ is said to be of
a convolution type if, for x € 1§ (a, b),

b
(Fx)(n) = 2 fn — k)z(k), n=a, b (13)
where { f(n) }3=3is a fixed sequence of s X s matrices and the indicated

operations are ordinary matrix arithmetic. Let L be the set of convolu-
tion-type operators on I§(— o, «) for which

£ Il < =. (14
For operators ¥ in L the transfer matrix
F6) = 3 fmer, —r<0<x (15)

is well defined. F(8) is an s X s matrix and is continuous (in Euclidean
norm) for —m = 6 = x. Concatenation of operators ¥, . € L,
defined by sequences { fi(n)} and { f2(n)}, results in a convolution-type
operator §; = F,-F; in L defined by the sequence {fi(n)} where
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fs(n) = Y —w fa(k) fi(n — k). Further, the corresponding transfer
functions satisfy Fs(6) = F2(6)F1(6). Other relevant properties of the
class L are given in the theorem below, the assertions of which are
generalizations of well-known scalar results. The proof is given in the
appendix (Section A.1).

Theorem 2: Given § € L, defined by { f(n)} or F(6), then
Yoo |l fm)]| < =, so that F is bounded on I§”(— =, =).

max [[F(6)].
—r<H=~T

a. |F|
b. |F|

IIA

IIA

c. If F is self-adjoint, then for all x € If?(— =, =),
> 21 ftn — mya(m)| = (_max 1F@)1 )il
d. § has a bounded inverse denoted F~' if and only if det F(6) # 0,

—7 £ 60 <, in which case the transfer matrixz corresponding lo
g-l4s [F(6) ], and ' & L.

Let z = [---, 2/(—1), 2¢(0), 2%(1), - - -,]* be a sequence of random
s-vectors with covariance

Ez(n)z(n — m)* = r(m),

where r(m) is an s X s matrix. Under the assumption that

Bl < =, (16)
the power spectrum
R(®) = ¥ r(mem, —w<0<m (17)

is well defined. Let & be an operator in L corresponding to the transfer
matrix F(8). ThenZ = Fzisasequence of random s-vectors with covari-
ance |{#(m)} and corresponding power spectrum R(6) = F(6) R(6)F(6)*.

Let z be a sequence of zero mean Gaussian n-vectors with covariance
7(m) satisfying (16) and power spectrum E(6). Let Amia(6) be the mini-
mum eigenvalue of the matrix R(6). Let z™) = [2(0), 2/(1), -,
2t (N — 1)]*be a segment of z of duration N. Then there exists an
(N-s) X (N-s) matrix T’y such that

w = Tyz'M, (18)

is “white,” i.e., Eww' = Iy.,. The indicated operation in (18) is
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matrix multiplication. The only property of Ty which we need here
is that for any N :s-vector u

7wl s | <y | Ml (19

min Am

—r<60<T

Finally, let 3¢ be the convolution-type operator on I§”(— =, =)
defined by {h(m)} (Section I). Note that by (5) 3¢ & L, so that by the
assumption following (6) and by Theorem 2d it has an inverse, say
G = 3¢, of the convolution type in L. Let {g(n)} 2. be the sequence
which defines Q. Let the operator Gy(N = 0, 1, 2, - --) be defined by

(gwx)(n)= jgl gln — k)a(k), — o <n< =, (20)

We conclude this section by stating as lemmas two known results.
We explain in the appendix (Section A.2) how to obtain these results
from published material.

Lemma 3: For the special case when H(8) = I, (the s X s identity) and
R(6) = R:(0) [ sothat T = H-'RH~* = R,(6)], say that x 7s a random
channel input sequence for which x(n) = 0, n <0, n = N, and E||[x]||?
=NS(8S>0, N=0,1,2 ---). Let y be the corresponding channel
output sequence. Then, the mutual information

Iix,y} = NCs
(where Cs s calculated with T(6) = R.(6)).

Lemma 4: For the special case where H(0) = I, and E(6) = R.(0), then
we have a stronger version of Theorem 1b: Let S = 0 and p (0 = p < Cy)
be arbitrary, where Cg is calculated with T'(0) = Ey(6). Then, for N=1,
2, .-, there exists a code with parameters (M, N, S, ) where

M =2 and \N= Ae BN, A, B> 0.

lll. PROOF OF THEOREM 1
3.1 Converse

Let {(xi, Bi)}{" be a code with parameters (M, N, S, A) for the
channel of (1) with H = H,(8) and R = R.(f). Let x be the random
sequence which results when x = x; with probability 1/M (1 = ¢ £ M).
Let y = 3¢x + z be the corresponding output sequence, and y’
= (y(0)t, -+, y(N — 1)%t. The theorem will follow in the standard way
from the Fano inequality (see, for example, Ref. 1) if we can show that

I{x,yM} = NCs. (21)
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But
Iix,y™} < Ifx,y} = I{x, 3"y} = I{x,x + 2}, (22)

where Z = 3¢~'z is a stationary Gaussian random process with power
spectrum I'(8) = H{Y(6)R,(0)H,~"(6). Thus, we can apply Lemma 3
(since x satisfies the required hypotheses) with R:(6) = T'(d) to ob-
tain (21). Hence, the theorem follows.

3.2 Direct-half

Consider again the special case of our channel where H(8) = I, and
R(8) = R.(6). The idea behind the proof is to construct codes for the
general case (H, R arbitrary) by modifying codes (whose existence is
guaranteed by Lemma 4) which are known to be good for this special
case. We proceed as follows. Let {(x;, B;)}{’ be a code for this channel
with parameters N = N, and § = 8. Then, for 1 = ¢ £ M, we have

v = ™M 4z,

where the superscript operation is defined by (11). Let Tw be the
whitening filter (discussed in Section II) for which T'yz'¥’ = w and
Ewwt = Iy, Letting v; = Txy®™ and u; = Tyx{", we have

vi=1u;+ W. (23)

Let us assume that the {B;} correspond to the minimum distance
decoder, ie., y™ € B; if ||[v— w|| <|||v — uj|| for all j =1,
where v = Tyy®). Then

P, = Priy™ & By} = Pr ,9,- e — willl[ =2 [llvs — wil[}

I

Pr ,-Lii Hwll] > [llw = (u; — a)[[}

= PrJ {{(w,u; —ug) = 3|[Ju; — u][*}. (24)

p=
Thus, in particular, for all j # 4,
P. 2z Pri{w,u; — u;) = §{[[u; — uil[|*}

= &,(3|[u; — i) = 2L Tw(x™ — x™)][|], (25)
where

. (u) = —ut /2y

=l

is the complementary error function.
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Let H,(6) and R(6) be arbitrary, and suppose that we are given a
code {(x;, B:)}}¥ with parameters (M, N, S, A;) for use on the special
channel with H = I, and R(f) = R. = T'(§) = H{ 'R\ H{". Assume
that the B; corresponds to the minimum distance decoder so that P,;
is given by (24). We now construct a new code {(x}, B})}!, with
parameters N = Ny = (1 4+ §)N; and S = 8; = o28,/(1 + §) for
use on the general channel with H,(6), E.(8) arbitrary. We set
arin), 0 =n=N;—1,

he (26)

#ln) = 0, otherwise,

where @« > 1 and 6 > 0 are arbitrary. Note that we have allowed a
guard-band or dead-space or width 8N, following the channel input
signal. The decoding sets B} (1 < ¢ < M) are described below.

The channel output is as in (1)

y = itx + z,

where x is the channel input, z is the noise, and 3C is the operator corre-
sponding to Hy(6). Let Gy, be the operator defined in (20), and let

¥ = Gny= Gn.3x + Gn,Z
=x4+z+ &+ &,

where §; = Gy,3x — X, Z = Gz, and & = Gy,Zz — Z. Let us note that
y is calculable from y™¥ = (y¢0), - -, y*(N, — 1))¢. Further, the
noise % has power spectrum T'(§) = HiY(6)R.(6)H ' (8). (In fact, if
& = & = 0, the channel would be equivalent to the special case, and
the direct-half of the coding theorem would follow from Lemma 4.
Although this is not the case, of course, we will show that ¥, and &, are
sufficiently small so that Lemma 4 can be applied anyway.) The
decoding sets B} are defined by: y V2 € Bjif ¥ € B, 1 <1 < M.

Letting yi = x; + 2 + & + & (1 £ ¢ £ M), and letting Ty, be as
above, we define

vi = Tyyi™ = Ty xi™ + Ty V0 4 Ty ¥V + Ty BV
= all; + W + y1 + 72, (27)

where u; and w are exactly as in (23) and y; = Ty E¥ (¢ = 1, 2). The
decoder for the derived code is the minimum distance decoder for the
v*'s. Now, following the same steps as in (24), we have

P2 Priyi & By = Pry (IIv: — a2 v — o]
J#i
= Pr _l;J_ (W41 + y,u;, —up) = g“l“:' — u|]?}. (28)
j#E
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Now, according to (9), the channel of Section I [with arbitrary
H1(6) and R1(6)] and the special channel with H(¢) = I, and R(6)
= H,(6)"'R,(0)H,(6)~* = T'(6) have the same Cs. Let ¢ S > 0 and
p (0 < p < Cg) given, and let {(x;, B:)}i’ be a code with parameters
(M, Ny, 8, M) (as guaranteed by Lemma 4) such that

M =2Y and A = e

We will show that with N, sufficiently large, the derived code has
parameter A < \; + e. Thus, we will have found a set of codes with
parameters (M, N, Sy, A\) with

a?S;

8y = 1+

I > . pl\fvz
M= e)\pz‘ —l+5]
and
A= 2e

Since (g is continuous in its arguments, and @ may be chosen arbitrarily
close to 1, and & arbitrarily close to 0, the direct-half of the coding
theorem (Theorem 1b) will have been established.

To show that A for the derived code = A; + ¢, we must show that
foreachi=1,2, ---, ’

PriyiWo & Bi} < Priy™ & By} + e (29)

Inequality (29) will follow directly from the following lemmas, the
proofs of which are given at the end of this section.

Lemma &5: Inequality (29) is satisfied if

1)

Prilllys + vl = &5 min fu —wil} 21—« GO

Lemma 6: For the codes {(x;, B)}Y, as N — o,

min ||[u; — uyf[[? = O(N).
175

Lemma 7: For arbitrary a > 0,
Pr{l|ly1 + y:/||? £ aNy} — 1, as Ni— =.

Now, from Lemmas 6 and 7, condition (30) in Lemma 4 will be
satisfied for N, sufficiently large. This establishes Theorem 1b.

Proof of Lemma 6: Let

8 = [l + walll s @52

min [|[u; — wyf|[ - (31)
17
By hypothesis, Pr{S} = 1 — e Since B; and B} correspond to the
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minimum distance decoder, we have from (28)

Pr{yi™ & Bl} = Pr{S N {yi" & Bi}} + Pr{Sc)

SPrUSA (W vty —u) = Sl — Pt + e (32)
P

Now if S ocecurs,

[+ o 0 = w) [ = llvs + velll-[[Ju; — ud]
— 1
s (55 )i = wl

Thus, the event in the right member of (32) satisfies

SO {or v+ v = 2§l — wil

< fow = w2 Sl = wil = (52 i, — ]
< Hw,uy —ui) 2 3wy — uif[?,
and (32) becomes
Py € B} S Pr U (w0, - u) 2 Hllu; — wllf) + ¢
= Priyi™ & Bi} + ¢,

where the last equality follows from (24). This is (29) so that we have
proved Lemma 5.

Proof of Lemma 6: For the codes {(x;, B;)}}, and N; — =,
Pei é Ae—BNI)

so that from (25),
®o(3[u; — uil]) = Ae=mM

Since, as n — ©, ®,(7) = e~ (/2 [+e(D] e have
[[lu; — wil|[* = 8BN[1 + 0 (1)],
which implies Lemma 6.
Proof of Lemma 7: First note that by (19)
[y + elll
~ 7w (e + 8| < |

min Am,

1 H
™) ] (1€ + |

< | mrmimg | TN + g

min A
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Thus, it will suffice to show first, [||E"[|| = o(N1) as N1 — =, and
second, for arbitrary a > 0, Pr{|||E:"7||* = aN:} —0, as Ny — .

1. Let x be one of the code vectorsin {(x3,B3)}. Then & = Gn,4X—X,
so that for —o <n < o,

bn) = 2 g(n — k)(3x) (k). (33)

k=N2

Now, since x is one of the code vectors {xi}}!, z(n) = 0 for
ng [0, N1 — 1]. Also since IC is causal, we have (3cx)(k) = 0,
k < 0, and

bn) = 5 gtn — )50 ()

- T gtk 3 Ak~ a(). (4

k=N3
Next, define the sequence 1 by

o) = { £ bk — Dai), k= N,
k< N,

Then (34) is
) = 3 gn — k),

ie., & = Gy, and
&l = gl -l (35)

Now |G| £ ¥ |lgn)|| < = from Theorem 2d, and

Ni—-1
5 k= ()|

iz = = le@l? =
k=Na

Ny

I

< 3 (g e - 1) 1),

=

where in the final step we have used the following form of the
Schwarz inequality: if a is a sequence of s X s matrices, and x is
a sequence of s-vectors, then

IZ atwell? S T la@]* T el
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But since 2725 [|z2(5)[1* = |[[x[||* £ a*SiN1, we have
w N;—1
lllle < @S 58 Ich = I (36)
We will now show that, as N; — o,

Ny— @
£ k- alr= £ F pk- -0, @D

k=N j= =Nz ;=0
where f(k) = ||h(k)|. Expressions (35), (36), and (37) together
imply that

[E¥0)* = [|[&]]* = o(NY), as Ni— =,

which is what we set out to establish. It remains to establish (37).
Now, from (5), 25 f(k) < =, and f(k) < B/k. Setting

Fb) = £ 7,

we have
A2 N;—-1 .
R= 2 X fuk— )
k=Na j=0
=¥ T pw= 5 [Fl—Ni+1)—F®)]
k=Ng i=k—N1+1 k=N3
Ni_l Na
= X Fk)=s X Fk).
k=N3g—Ni1+1 §N1+1
Now*
S B = kG| + 2 (k= D — 1)
But

k)|, < NPy =N 3 1) s BED S kp),

* We have made use of the formula (summation by parts)
b

i v(k)Au(k) = v(k)u(k) — i u(k — 1)av(k),

a-1

where Au(k) = u(k) — w(k — 1). Here v(k) = F (k) and u(k) = k.
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and

S - Dfk-D S 3 EPE.

§N1+1

Thus,

os (M2 +1) Sarn s (52 )B 5 st —o,

since 3¢ f(k) < o. Thus, (37) is established and we have
finished the first part.

2. Since for any a > 0,

N1 ]2
Pr{|[|E8*][|* =z aN.} = &%%I”_ ’

and since Ny = (1 + 8)N,, it suffices to show that
E|||EY]]|2 = o(N2), as Ny— .
Now & = G,z — Z, where Z = 3¢~'z. Hence,

E[£s(n)i(n)] = I_ED g(n — Or(i — fg'(n — ).

1,y Z2N2

Let 8 denote any fixed s-vector and define a sequence 1 of s-
vectors by
. |gtn —4)8, i <0 and iZ Na
V=9 = 0, 0=<i<N.

Then
B Blamim1s= 5 v(n — G — o = 9.

Since r(-) is a covariance, (k) = r‘(—k) for all k. Application of
Theorem 2¢ shows that the double summation above is bounded
by

_max (RO vt =)

Since
Ng—1 s

gl = £ @ = X X damme,
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where e, is the s-vector with jth entry é,; (v, j = 1, - -+, 8), the
desired result will follow if we show that

8 5 ELEMEMm S = o)
for any 8. Thus, it suffices to show that

o Z > ¥t — 92 = o(1).

{=—o

But from the definition of 1, the last expression can be rewritten
as

1 Nt = 2 2
¥ =, 2 Ow®l+ =R

Since G is in L, Theorem 2a implies 4 is in #fY (— =, =). In
particular, as n — @

2 Llw®+e(=k)*] = o

=?l

and the desired conclusion follows immediately.

IV. ASYMPTOTIC BEHAVIOR AND NUMERICAL EVALUATION OF THE

CAPACITY FORMULA

In this final section, we discuss some implications of the channel
capacity formula given in (9). As in the prior sections, the channel is
assumed to be a multi-input, multi-output channel with memory,
and with additive Gaussian noise. But in contrast to the previous case,
instead of a discrete time channel, we consider an equivalent continuous
time bandlimited channel.

Specifically, the channel inputs or code words (in a T' second block
coding interval) are vector-valued functions z(-) of dimensions s,
bandlimited in frequency interval [— W, W] such that the samples of

z(-) satisfy

n n
3,(27,)—0, for QV_V<O or EW'>T

We also have the average power constraint
[ lz@lae < ST,
where || -|| denotes Euclidean norm.
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The channel has s inputs and s outputs and has transfer function
matrix H(f) for f & [—W, W]. The additive noise is also vector-
valued and has power spectral density matrix R(f). Let {\(f)}
denote the set of eigenvalues of H=()R(f)LH(f)]*.

The capacity of this channel is determined as follows. Let S > 0
be given and let K be the unique positive number satisfying

él “‘; max[0, K — A(f)1df = S. (38a)
Then
1 s w K
C= 3 i; - ma,x(O, log, () )df (38b)

with C in bits per second.

Formula (38) can be obtained from the analogous formula (9) via
application of the sampling theorem. The somewhat tedious derivation
is carried out for the scalar case (s = 1) in the appendix (Section A.3).

We consider several implications of (38). Specifically, for large
signal-to-noise ratio, C' is linearly related to signal-to-noise ratio; a
change in C is proportional to a change in signal-to-noise ratio (in dB).
Furthermore, the constant of proportionality depends only on the
product sW and is independent of any other characteristic of the
channel. For small signal-to-noise ratio, C is logarithmically related to
signal-to-noise ratio; a change in logioC is proportional to a change in
signal-to-noise ratio (in dB). The constant of proportionality is 0.1
for any channel. In the case in which the channel represents multi-
pair telephone cable with small far-end crosstalk, we show that for
large signal-to-noise ratio, C' is linearly related to the length of the
cable, and for small signal-to-noise ratio, C is logarithmically related
to length. Furthermore, the effect of the crosstalk is to reduce the
dependence of C on cable length. Finally, we present a numerical
evaluation of (38) using realistic parameters obtained from an experi-
mental cable consisting of two twisted pairs of wire.

4.1 Dependence of channel capacity on signal-to-noise ratio

Deﬁne a numbeI 1\ o 48

Then N, represents the noise power per hertz, per dimension, and
sWN, represents the total noise power. We define the following
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normalized quantities:
Ni(f) = 2M(f)/N,
K* =2K/N,
P = 8/sWN,
P* = 10 (logi P).
Now P* is a measure of signal-to-noise ratio in dB. By substituting

the above quantities into (38), and using the fact that each \} is a
symmetric function, we have

p=_L ): " max(0, K* — Ni()df (39a)
and
S 1 39b)
c=Z “"”‘(0’ °g“x(f)) . (

We will determine the asymptotic behavior of C for both very large
and very small P. For this purpose we define for every number K*
sets A;,1 =1, ---sas

A= {f:N(f) = K* f20}.
Let 3; be the measure of A; and define § = (1/s) 2 8:. In addition, we
require the definition of two average channel characteristics, A and
log A. Let

>
H

2, [ N
and
logh= ;3 [, logaNi(Nir.

sﬁ,=

Note that §, A and log \ are all functions of P. Let Amin = min{Ai(f):
0= f<W;1 £ 17Z= s}. Recall from Section I that Ay, > 0.
Now, from (39),
WP _ k= 3,
é

and

= logs K* — log A
These equations combine to yield

C WP :
= = log: (F + 1) + loga A — log A. (40a)
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We investigate (40a) for large P. Assume all the AYs are bounded.
(Actually, boundedness follows from the hypotheses in Section L)
From (39a), K* is an increasing function of P. Let P be sufficiently
large so that A(f) < K* for all f€ [0, W] and ¢ = 1, ---s. Then
§ = W and (40a) yields

£ (f+1)+(10 % — log N (40b)
s = leer | % g2 og \).
Note that for given &, s, W, and P, C is minimized when all the \Y’s
are equal and constant. Now, for P>>)\, we have from (40b),

C ~ sW(log: P — log )\),

or
C ~0.3322 sWP* — sWlogA. (41)

Now (41) represents a line in the C — P* plane with intercept
—sW log X and slope 0.3322 sW, and the region of validity of (41) is
P> . Note that the slope is independent of the AYs; the intercept
and region of validity are determined by the average channel character-
istics A and log A evaluated over the whole interval [0, W].

We now investigate (40a) for small P. Observe that (WP/&\) + 1
= K*/A, and as P approaches zero, both K* and X approach Amin.
Hence, WP/sA — 0, as P — 0. Then (40a) is approximately

g%—nglogge + loga A — log A,
which can be rewritten as

(40c)

AMloga A — log A) ] P
K* — X\ A

We show in appendix Section A.4 that for any channel characteristic

with Amin > 0,

C

. loga A — log A
et =S ) 42
O S 42
Hence, for small P,
e (logs e)sW P ,
Amin
or in logarithmic terms,
P*
].Ogm C ~ m‘ + ].Ogm (SW logﬂ 8) - loglﬂ Amin. (43)
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Now (43) represents a line in the logis C — P* plane with intercept
logio (sW logs €) — logio Awmin, and slope 1/10. However, the region of
validity of (43) is difficult to specify because the location of this
region depends not just on A, but on the shape of the channel charac-
teristic in a neighborhood of Awin.

4.2 Dependence of channel capacity on cable length

Suppose that the channel characteristic is a function of a length
parameter [. Let [; and {; be two values of [ and suppose that P* is
large and the channel capacity vs P* characteristic is in the linear
region for {; and l5. Then, from (41),

C(ly) — C(ly) ~ sW[log A(l) — log A(l2)],

or

—~ = [V :(11- )
Cw) — cwy~ [ logs ( s )df, (44)

where in these relations we have explicitly shown the dependence of
\: on length. If P* is very small so that (43) is valid, then

logio C(l2) — logw C(l:) =~ Iogm( immg:; ) (45)

Now consider a multipair cable of length I, with s twisted pairs,
small far-end crosstalk, and additive white noise. We assume that the
crosstalk voltage on a single pair due to all disturbers is proportional
to I}f. Assume also that the attenuation on any pair is proportional to
Lfi. If the crosstalk is very small, then a reasonable form for A} is

. B ebitst

Ai(l’ f) - 1 + cilf2,
where b; and ¢; are constants related to attenuation and crosstalk
coupling.* Define the averages band cas b = 3 bi/sand ¢ = X ¢:/s.
Now A} can be expressed as

N = exp[bilft — In(1 + ¢ f)],
and for small crosstalk, we have ¢;f% < 1 for all 7 and all fand ! in a
range of interest. Then we have approximately
N e:(a.-f;—c.»ﬁ),
and, from (44),
AC _|

a7~ — log(e) Z . (b S = eif?)d],
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which can be evaluated as

AC ~ — 0.96 bsW? (1 -

EH
Al = ) (46)

26
(for large P). Thus, C and [ are linearly related. Note that the effect
of the crosstalk is to reduce AC/AL If cW1/2b = 1, then C is effectively
independent of length. It is theoretically possible to have cWi/2b =21
and yet have ¢W?* < 1 as required by our analysis. These relations
imply that 2Wilb < 1 is a necessary condition that very small cross-
talk significantly reduce AC/Al. However, we expect that for realistic
cable parameters, the reduction in AC/Al due to small crosstalk will
not be significant.

Now assume that the channel does not pass de; i.e., the channel
characteristic is that given above for f & [fo, f1], a band of strictly
positive frequencies, and is infinite for frequencies outside this band.
Let b, = min; b;. Then, for small crosstalk,

Amin 22 exp Ubefl — cxf3),
and
log10 Amin =7 0.434bkf3( - % )l-

Thus, for small P, we have from (45),

AloguC o.434bhf3( - 5A ) "
Al "

As in (46), the effect of the crosstalk is to reduce the dependence of
channel capacity on cable length.

4.3 Numerical example

We consider a two-twisted-pair cable with white additive noise. The
transfer function matrix H(f) is given by

_ a1 dexkis
H(j) = ![izquuf 1 ]

with [ in feet and f in hertz and
v = aV2rft + b2 f.

The off-diagonal terms in the matrix H(f) represent far-end cross-
talk. This model is an approximate representation of an experimental
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4.8

44—

4.0|— £=CABLE LENGTH IN
THOUSANDS OF FEET

CAPACITY IN UNITS OF 108 BITS / SECOND

0 10 20 30 40 50 60 70 80 a0 100
SIGNAL-TO-NOISE RATIO P* IN DECIBELS

Fig. 1—Channel capacity for experimental cable. Capacity C in units of 108
bits per second is plotted as a function of signal-to-noise ratio P* for various values of
cable length L.

two-pair cable. Parameters obtained from measurement are

k= 1.26 X 10712,

a = 0.23 X 107¢,

b = 1.48 X 10~
This model is valid in the range 10% < I < 50 X 10? feet, and 10%/2
< f £ 10" Hz.

Since the noise is assumed white, the \}s are the eigenvalues of
(H*H)~! and are given by

X« — ?\* - )\* - exp(2\/§ (If*).
e 1+ (2m)%f%k2
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The capacity equations (39) become

I
L7 hax[0, K* — A*(f)Jdf = P (48a)
w fo
and
1 K*
C=2 max (0, log: F )df, (48b)
fo

where fo = 10%/2 and f, = 10"

Numerical evaluation of (48) for various values of P and [ has been
performed and the results are given in Figs. 1 and 2 and Table I. The
figures show C vs P* for various values of I. The C axis is linear in

109

108}—
= £ = CABLE LENGTH IN
THOUSANDS OF FEET
107} —
-
—
-
wf
[a] -
= —
<]
Q
g
~ 105— L=2 P
w
= 6
@ 8
= r 044
Z 10%— 14
- 16
s F 18
E 70 27
5 r 24
103—
102—
0=
100 | ] 1 ] 1 ] | ] I R
—60 -40 -20 0 20 40 60 80 100

SIGNAL-TO—NOISE RATIO P* IN DECIBELS
Fig. 2—Channel capacity for experimental cable. Capacity C in bits per second is

plotted as a function of signal-to-noise ratio P* for various values of cable length L.
The C axis is logarithmic.
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Fig. 1, and is logarithmic in Fig. 2. The linear regions discussed above
are evident in these figures. The asymptotic estimates for large P
given in (41) and (46) are AC/AP*=6.3 X 10° (b/s/dB), and
AC/Al = — 70 X 10? (b/s/ft). For constant C, AP*/Al~z 11 X 107
(dB/ft) or about 58 dB/mile. This is the amount of increase of signal-
to-noise ratio necessary to maintain a fixed level of C as length is
increased. The asymptotic estimates for small P given (43) and (47)
are AlogiC/AP* =~ 1/10, and A log,C/Al~ — 0.353 X 10~% For
constant C, AP*/Al~3.53 X 10~3(dB/ft), or about 19 dB/mile.
These asymptotic estimates are borne out in the numerical evaluation.
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APPENDIX
A.1 Proof of Theorem 2

a. Let y(n) = (Fx)(n) = i f(n — k)x(k), and let 3. [ f(n)
=( < «. From the triangle and Schwarz inequalities,

lym)lI* = (Z 17 — B Alz®))? = € X Ml fn — DIRIEGI

Hence,
liylll* = Zllym* = €2 X [f(n — )| -llz(®)]|* = C2|x[][*
and |F| = C.

b. From Parseval’s theorem,
. [ IFOX @
[ 1x@)ras

c. If ¥ is self-adjoint, then
[, 75)] S (51 llllF 5 _max [F@-[lx]E

d. The essence of this result is a matricized version of Wiener’s
well-known theorem on the reciprocal of an absolutely convergent
Fourier series (see Ref. 5, p. 430).
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Suppose det F(8) # 0. We show that F has a bounded inverse in L.
Now det F(6) is a scalar function consisting of a sum of products of
functions each possessing an absolutely convergent Fourier series.*
Hence, det F(6) and, by Wiener’s theorem, [det F(6) ]! have abso-
lutely convergent Fourier series. Each element of F~!(f) is the ratio
of a minor determinant to det F(8) so each element has an absolutely
convergent Fourier series. Hence, F~1(6) hasa Fourier series Y, g(n)ein?
with 3, [lg(n)|| < =. Consequently, § has a bounded inverse F-!
in L

Conversely, let § have a bounded inverse ' Then there exists
an a > 0 such that for all x in If (— =, =), |[|5x]|| = «f||x]||.
Let X(6) = >, z(n)e™’. From Parseval’s theorem,

[ IF@ X020
0 <a?= inf—_
O [ 1x)as

which implies, since F(f) is continuous, that F(8) is one-to-one; i.e.,
det F(0) ## 0 for —m = 6 < . This completes the proof of Theorem 2.

There are other interesting properties of the class L, which are not
directly relevant to the main results of this paper. For the sake of
completeness, we mention two generalizations of Theorem 2d, that
also have well-known scalar counterparts:

(7) Let ¥ € L and let o (F) denote the set of all eigenvalues of
F(8), —m = 6 < x. Let I be the identity on I§?. For A any
complex number, AI — F has a bounded inverse in L if and
only if A o(F).

(77) Let g(-) be any function analytic in a neighborhood containing
o(F). Then there is an operator g(¥) in L which has as its
transfer matrix the function g[F(6)].

A.2 Lemmas 3 and 4

These lemmas apply to the special case where H(8) = I,, and
E(6) = R.(6). Let x, y, and z be the channel input, output, and noise
sequences respectively, and let x(¥), y¥ z(¥) be the corresponding
finite sequences. Thus,

y(N) — xu\” + z(N].
* Note that 3 .[|f(n)|| < = if and only if Xa|fij(n) |<= for1 <4, < s.
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Letting Tx be the whitening matrix defined in (18), we have
v 2 Tuy®™ = Thx™ + w,

where Eww! = Iy.,. This is precisely the discrete-time version of the
problem treated in Chapter 8 of Gallager.! The results obtained there
apply here exactly when we use, instead of his Lemma 8.5.2 (the
Kac-Murdock-Szego theorem), the following discrete-time version:

Theorem. Let {c;} i = 0, £1, --- be a sequence of s X s malrices such
that the Ns X Ns matriz Cx = {ciy}, %, 7 =0, -+, N — 1, ¢s Hermat-
ian, and Y |lexl| < . Let vf™, v, - -, v be the eigenvalues of Cx
(each counted according to its multiplicity) and let X1(0), M2(6), - -, As(6)
be the eigenvalues of C(8) = X cre***. Let g(-) be any continuous funciion
defined on an interval containing the values {Me(0): —7 = 6 = m, k = 1,
2, ++-, 8}. Then

lim L 3 g0 = 5= & [ gDn6)1as
Now N 21 ¥ 21 =1 J - .

Furthermore, let Dy(z) = 1/N (number of eigenvalues vf™ < x). Then

lim Dy(z) = &= 3 L e, 0
k _1

Now 2m =1
In the scalar case, s = 1, this theorem represents well-known results, ®
a simple account of which can also be found in Ref. 7. The validity of
the theorem for s > 1 follows on verifying that the arguments em-
ployed in Ref. 7 are valid in general for s = 1.

A.3 Derivation of (38)

We show how to obtain the capacity formula given in (38). We will
do this for the scalar case; the result for vectors follows similarly. The
capacity formula justified in Theorem 1 can be stated as follows.

The channel input and output are sequences X = {z.}Z. and
¥y = {ya} =« respectively, related by

Yo = 3 hnoi@i + 2n (49)

k=—00

where h = {h,} - _. is a fixed sequence and z = {2.} 2« is a stationary
sequence of Gaussian random variables for which Ez, = 0,

Ezpmn =ty —@ <mym < o, (50)
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We write (49) symbolically as
y = hxx + z, (51)

where “*" denotes vector convolution. The capacity of this channel is
given as follows.

For codes of block length N, say that the code vectors x must
satisfy

zn =0, n&E[0,N —1]. (52a)
1 N-1
¥ Z‘,O zi < Sp. (52b)
The capacity is then given by
_ L rv KIHD(f)I”)
C = oW f—w df max (0, log. _Rn(f) , (53a)
where
Hp(f) = % haeSmnr, | f| S W, (53b)
and
Ro(f) = % raeSeimns, |f| < W, (53¢)

are the discrete Fourier transforms of {k.} and {#,} respectively, and
K is the unique solution of

_ 1 ¥ _ Ro(f) .
8> = o f_w df max (o, K W) (53d)
A.3.1 Some facts about band-limited functions

Before discussing the continuous-time channel, we digress to mention
several facts about band-limited functions.

We denote time functions by lower-case letters, e.g., u(t), and the
corresponding Fourier transform by upper-case letters, e.g., U(f).
Thus

U(f) = f Z w(t)er ridt, (54a)

and

u@) = [ " U(f)errdf. (54b)
We shall assume that all functions are square-integrable, and all
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integrals and infinite sums are limits in the mean. We say that u is
band-limited to W Hz if U(f) = 0, [ f| > W. Let

. n
sin 2rW (t ~ oW )

ga(t) = r(t_z%) )

be the sampling functions. Note that for k, n = 0, %1, - -+,

EY [0 k#n
9“(277)' {2W k=n, (56a)

g("ﬂ?rl'w)f

G.(f) = f_: gu(t)ei2™Itdt = [ o m ;

n=0,+1,+2 ---, (55

and
(56b)

(so that g, is band-limited), and for k£, n = 0, =1, - -~
[* stonrae = [ auneinas
0) n # kl

w
= Grti W) (n=k) ] f —
f_w" df [ZW, n=k 969

Further, the well-known Sampling Theorem implies that any band-
limited function, u(t), can be written as

uf) = 3 uagall), (57a)

where
1 n
Further, from (57), and (56¢),

f_"’ w(dt = 2W % ul (57¢)

n=—w

Let u(t) = 3 tnga(t) and v(t) = T vaga(f) be band-limited functions.
Then their convolution is

w®) = [~ utt = NoO@ = L wigald), (58a)
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where

@

Wp = 2. Up-mlmy, — ® <N < ®©, (58b)

m=—u0

le., W = uxv,
Finally, let z({) (— «<t < =) be a random process with Ez(t) = 0,
and covariance

Ez()z(t — 7) = (1) — o <t 1< =,
Let

R(f) = fj r()ei*redt

satisfy B(f) = 0, |f| > W, so that r(t) is band-limited. Then, from
(57,

0 = g5 (57 ) 00,
and from (56b),

R = g7 (53 ) 6) = g7 £ (G ) e (59)

Further, the random process z(t) is a band-limited function so that by
(57) we can write

20 = T 20:0) = T 372 ( 7 ) 9-0-
Thus,
fa 2 Brutnns = s B2 (7 ) # (m?;vn) = (2’;')”(%)’

Thus, the discrete Fourier transform of {#,} is, using (59),

Ro(f) = Zﬂ: FaeliTiWinf = (2W)2 S (QW) elin/Winf — —%R(f). (60)

A.3.2 The continuous-time channel

The continuous-time channel is defined as follows. The channel in-
put and output are functions z(f) and y(t), respectively, where

y(t) = f” Rt — Nz d\ + 2(t), —= <t<w, (61)
where Ah(t) is a fixed function and z(f) is a Gaussian random process
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with covariance as described above. We assume that z(f), h(t), and,
therefore, y(t) are band-limited to W Hz. Let us expand z, &, z, and y
into series in g.(t) as in (57). Using (58) we obtain

Yn= 3% humln+ 2 (62)
Since knowledge of the sequences of coefficients {z.}, {y.}, etc.is
equivalent to knowledge of the time functions z(f), y(?), etc., the
continuous-time channel is equivalent to the discrete-time channel
discussed at the beginning of this appendix. It remains to find the

corresponding parameters.
Now the code words (in a T-second block-coding interval) are

taken to be band-limited functions z(¢) such that the samples
z(n/2W) = 0, for (n/2W) <0 or (n/2W) 2 T, ie, z(n/2W) = 0,
n€[0, N — 17, where N = 2WT. Thus, z, = (1/2W)z(n/2W) = 0,
n@-[0, N — 1]. The condition

f_” 2(t)dt < ST

is, in the light of (567¢),
(63)

The quantity
Ho(f) = 3 haetn/™ns = ¥ hGo(f) = H(),

n=—u

and by (60), Rp(f) = (1/2W)R(f). Thus, the continuous-time channel
is equivalent to a discrete-time channel with Sp = S/2W, H o(f)
= H(J), and Rp(f) = (1/2W)R(f). Thus, from (53)

g @WEK) |H()|*
C—W'[_Wdfmax(O,logg 70 ),

where K is the solution to
8 _ 1 (¥ _ 1 _E({ Y.
@y = g |y 4 max (0% - g7 IH(f)Iz)
Letting K* = 2WK, we have

S = f_: dfmax(O, K* — —ITIIB((f—f))IE)
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and

C= %V /_: dfnlax(O,Iog,}f*_}efg)Aﬂ).

The expression for C is in bits per sampling time. To obtain € in
bits per second, multiply by 2W.

A.4 Proof of equation (42)

Equation (42) follows at once from the theorem below if the func-
tions Xj, 7 = 1,2, - - -s, are replaced by a single function f representing
a concatenation of the functions Aj; f will be bounded away from zero
since the same is true of each A}

Theorem: Let f(-) be a measurable function on a finite interval and
ess inf f(x) = fo > 0. For any K > fo define A = {z; f(z) = K}
and let 5 be the measure of A. Define

log% /A flz)dz — 715 L log f(z)dx
K- [ f@as

I;(K) =

Then
lim I,(K) = 0.
K-fo

Proof: Without loss of generality we can take the log to be the natural
log and can assume fo = 1. Let f = 1 + g and K = 1 + k. For each
n = 1 define

- 1
gn = 5.[ g™(z)dx.
A

For all z € A, g(z) £ k and g < k. For k < 1, the log may be ex-
panded in a power series. After some rearrangement of terms, we have

= 1 = 1 —
Z [_ (gzn — an) — (gzrl+1 — g-2n+1) ]
I,(K) — n=1 n 2n + 1 )

k—g

But § < k and by Jensen’s inequality §* < g~ for all n = 1. Then
=1
2 on

(k2a — gzn)
n=1
1K) s =2
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Now for all n

a

kn_

nd

1%

n—1
g‘.n = (k —_ g) ;o kn—i—lgi é (k e g)nku—l,

0 k!’l—l k

l ]
I(K) = ngl 5 (k" +g") = Engl k=1 —ao

or, since K = 1 + k,

K-1
1;(K) él_—(K'—:l—)g.

and the result is proved.
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