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This paper discusses stresses and deflections in anisotropic solid struc-
tures of revolution. It presents two methods based on finite-element tech-
niques: one, a Solid-of-revolution method in which material properties,
applied forces, and temperatures are independent of angle, and two, a
long-cylinder method in which these properties are independent of the longi-
tudinal coordinate. These methods are postulated on uniform stress fields
within the element, rather than on the usual functional displacement
description within the elemenl. A Fortran program has been written for
both these methods, and ample test problems are presented to validate the
methods. An application is presented for thermal stresses induced during
the post-growth cooling stage of Czochralski-grown lithium tantalate
crystals.

I. INTRODUCTION

This paper considers two finite-element networks. The first network
consists of triangular annuli forming a solid of revolution of any
arbitrary eross section in the radial-longitudinal plane. The network
has 27 symmetry with regard to material properties, external loadings,
and temperatures. The second network consists of trapezoidal and
triangular elements in the plane of the circle forming a right circular
(actually, a polygon cross section) eylinder long in the longitudinal
direction. The restriction of 27 symmetry is lifted for the second
network and is replaced with the restriction that material properties,
external loadings, and temperatures are independent of the longitudinal
direction of the cylinder.

Both methods were programmed on the IBM 370 computer. For
the first method, two test plane strain problems are presented: one, a
hollow cylinder subjected to a negative radial pressure and two, a
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solid cylinder subjected to a linear radial temperature gradient. Com-
parisons of stresses and deflections with known plane strain solutions
are excellent in both cases. In the second method, the solution of a
long cylinder subjected to a linear radial thermal gradient is presented.
Comparison with a known theoretical solution again was excellent.

Results are presented for thermal stresses induced in a lithium tan-
talate crystal during the post-growth cooling stage. Lithium tantalate
is in crystal class Cs,. By aligning the trigonal axis of the crystal with
the longitudinal axis of the cylinder, the problem can be analyzed by
both methods. Comparison of thermal stresses obtained from the two
methods was very good.

1l. SOLID-OF-REVOLUTION METHOD

The basic element for this method is the triangular annulus shown
in Fig. 1. The element, defined in the radial-longitudinal plane (r — 2),
has 27 symmetry. A network of these elements will comprise any
desired solid of revolution, whether it is solid or hollow, cylindrical or
conical, or any combination thereof. Material properties, temperature
distributions, and external forces must be independent of angle. The
material properties are then limited to an orthotropic system with
isotropic properties in the plane of the circle. This limitation is lifted
in the case of the long cylinder method presented in the next section.
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Fig. 1—Properties of triangular annulus.
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Solid triangular elements have been used successfully by other
authors;!? however, a different approach is presented here. Rather
than to assume a displacement function,!-? a simpler and more direct
approach is to postulate uniform stress fields in the annulus. This
method was applied successfully in the mid-60’s by David B. Hall for
the triangular membrane, but unfortunately his work has not been
published. Hall’s triangular membrane is extended here to a three-
dimensional model by incorporating a uniform hoop stress in the
annulus.

The initial strategy is to relate equilibrium between forces at the
three points of the triangle 7, j, k, and stress fields parallel to the sides
of the triangle ¢y, oji, o:, and the hoop stress ¢s. Before we do this,
let us first compute a few properties of the triangular annulus. These
properties include the area of the triangle A, length of each side L,j,
etc., volume V, areas A;; etc. associated with the stress fields ayj
ete., and direction cosines a.j, by;, etc. These properties are presented
in Fig. 1.

In matrix notation, equilibrium for annulus n between grid point
forces and the four stress fields described above is given as follows.

{F.} = [Bllo.}, (1)
where
[Fﬂ] = {FirFiszerszkag},
lﬂo] = {Gﬁﬁjkﬂk.‘aa},
and
— Aijbi; 0 Arby; 27A/3
— A0 0 Api@rs 0
_ | Aubi —Aubi 0 27A/3
[B] = diai;  — Ajpa 0 0
0 Aubiy  —Abi: 274/3
0 Apaje  — Apitle; 0

The r and z subscripts attached to the forces F;,, Fi,, etc. refer to
the radial and longitudinal directions, respectively.

The skew stress field ¢.;, o;i, o4; is merely an artifice to allow us to
readily establish the equilibrium relationship. We are actually inter-
ested in the orthogonal field o, o,, 7,., as shown in Fig. 2. The relation-
ship between the two fields including the hoop stress is given below.

{on} = [D]{oo}, 2)
where

{Uﬂ} = {a'la'rfrlﬂ'ﬂ}
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and
ak az ai 0
b7 bl bl 0
aibij apbp  arbii 0

0 0 0 1

After inverting eq. (2) and substituting it into eq. (1), the following
relationship is obtained.

[D] =

{Fa} = [F1{ed}, (3)
where

[F]=[BILDI™

A conjugate relationship to eq. (3) by an application of the principle
of virtual work can be stated as

1
(ea) = 3 LFIULL, @
where the strains are
{En] = {E,E,.’Y,-,Ea},

the deflections conjugate to {F.} are
{ Uﬂ-} = { UirUizUerj:Uk,-U}u},

and the superscript ¢ denotes a transposition.
The stress-strain relationship, including the thermal strains /adT,

is given as
loa} = CCI(lex) = UadT}), (5)
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where [C] is a symmetric 4 X 4 stress-strain matrix such that

Cu = Clg, 014 = 024, Cls = 023 = Cﬂ = O,

lfadT} = [[a,dT [a,dT Ofangl, .

Substituting eq. (5) into eq. (4) obtains the stresses in terms of the
unknown deflections and known thermal strains as

fadT})- (6)

Substituting eq. (6) into eq. (3) obtains contributions to the network
stiffness matrix and thermal load vector for annulus » or

{F.} = [KJ{UA = LB, )

and

(o) = [CY HLFIUA) =

where

[K.] = yPICICF

is a symmetric 6 X 6 stiffness matrix and

(8.} = P3| fair]

is a 6 X 1 thermal load vector.

Annuli contributions to the network stiffness matrix and thermal
load vector are additive, and hence eq. (7) can be written for the net-
work as

{F} = [K]{U} — [E}, (7a)
where

[K]= T [K.] and [B} = % [E.),

and where the number of equations equals twice the number of points
of the network (one longitudinal and one radial degree of freedom per
point).

The [K] matrix in eq. (7a) is singular, as there is no constraint to
prevent rigid body motion in the longitudinal direction. Rigid-body
motion in the radial direction is prevented by the hoop stress field, as
can be seen in eq. (1). (Note that in Eq. (1) o4 is the only non-self-
equilibrating stress field.) In addition to at least one reference longi-
tudinal constraint, radial constraints must be provided for solid
cylinders at points of zero radius to prevent radial (or hoop) motions
at these singularities. The degrees of freedom can now be partitioned
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into an unconstrained set denoted by “a’’ and a constrained set de-
noted by “b.” This partitioning can be represented schematically as

F.| _ [Ka,,K[.bH Us | _ |Ea| ®)
Fo|  [KuKe J|Us =0 Ey
From the upper equation of (8), the previously unknown deflections

can now be obtained in terms of known external forces and thermal
loads, or

{Us) = [KaaI"'({Fa} + {Eu}). (9)

From the lower equation of (8) and with the help of eq. (9), the
forces of constraint, if desired, can be obtained as

{Fb] = I:Kub]t[Kau]_.l{Fn} - {F‘;} - ({Eb}
- [Kab]‘[Kaﬂ:I-l{Ea})a (9a)

where {F3} represents external forces applied at the constraint points.

u:tan"[lrnﬂll sin %Hiu—fi]] a =e-e, b =% 8,
®,4 = [—cosla—f)e,, sin (a—0)e,] ag =€y ¢, bg = €p -8,
By = [—cosla+0)E,, —sinfa+ 01, ] 43" €38  bj3= €38,
22 =[sin’ % (rg+ )2 + (rg )21 4= B8 byyT By By
€, =(cosfe,, sinfe) A=(rg—r) (rg+r) sinATb| cosATﬂ {AREA)
By =(-sinfi e, cos 0 &) 2= {rg—r;) ms% f=Aldc

Fig. 3—Properties of the trapezoidal element.
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Fig. 4—Properties of the triangular element.

1Il. LONG-CYLINDER METHOD

In this section, the 2r symmetry requirements as to material proper-
ties, external loadings, and temperature are lifted and a two-dimen-
sional model is constructed in the plane of the circle. The cylinder is
considered long in the z-(longitudinal) direction and material proper-
ties, external loadings, and temperatures are assumed independent of z.
Shear stresses r,, and 7., are assumed to be zero. The most general
stress-strain relationship considered is the 4 X 4 submatrix bounded
by the dashed lines of eq. (18) (appendix) with the additional proviso
of no coupling between the stresses o, oy, 0z, 72y and the strains y,.,
.z Tentatively, we let ¢, vanish during the initial phase of the analysis.
This restriction is subsequently removed in a manner similar to that
described by Timoshenko? for long isotropic cylinders.

The basic building blocks of the long cylinder is the trapezoidal
element (Fig. 3) and the isosceles triangular element (Fig. 4, solid
eylinders only). The trapezoidal element is subjected to three constant
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stress fields: a radial stress o,, a tangential stress o4, and a shear stress
r,0. The triangular element is likewise subjected to three uniform
stress fields, each parallel to a side of the triangle. Equilibrium between
forces collected at the apices of the elements and three uniform stress
fields are obtained as shown below (see Figs. 3 and 4 for the properties
of the elements).

Trapezoid:
(Fa) [ far —cas  lais
F-y]_ fb,- - Cba lblx
Fo fa, cag —lag .
Flﬂ _ fbr Cbﬁ —_ lb24 r
1 an (= — fa,. [s1 ¥] —lala a6 (10)
Fys —fb,  cbs —lbys| """
F:! - far —CQg la%
LFIM, \—fbr —Cba lﬂz.h
Triangle:
Fa —gaiz 0 gasz
Fu —9512 0 gbal 10
F:l:2 _ gz - Ta/2 0 .
Fp[ = | gbn —r/2 0 [:’“} (11)
Fs 0 Tn/2 — gz u
Fva 0 T,,/2 - gbal

The relationship between the orthogonal stress field (e¢,007.0) and
the skew stress field (o2 o235 031) is given below for the triangle.

-l

cos? A6/2 0 cos? Af/2 o12

= sin? Af/2 1 sin? A§/2 gas - (1la)
—gin A8/2 cos A8/2 0 sin A8/2 cos AG/2] |oa

After inverting eq. (11a) and substituting it into eq. (11), equilibrium

is established between the orthogonal stress field and the forces (de-

noted as {F.}) at the apices of the element or the points of the network.
Denote this relationship as:

{Fa} = [Hal{os}. (12)

Similarly, for the trapezoid, eq. (12) will be the shorthand matrix
notation for eq. (10).
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Conjugate to the forces {F,} are deflections {U,} and therefore the
conjugate relationship to eq. (12) can be constructed as

{fb] = I/A[Hn]‘{Un}r (13)

where A is the volume (area times unit thickness) of the trapezoid or
triangle.

Upon substituting eq. (13) into eq. (26), the stresses in the element
in terms of the unknown deflections at the apices and the known thermal
strains are obtained.

(ol = Le)(1/ALH (U] [Bﬂ[ / adT})- (14)

Upon substituting eq. (14) into eq. (12), contributions to the net-
work stiffness matrix and thermal load vector are obtained for the
element

{Fa} = [K.J{Ua} — {E.}, (13)
where

[K.]=1/A[H,][CI[H.]*

is a symmetric 8 X 8 or 6 X 6 stiffness matrix and

(Ba] = [H.ILCUE:]] fadr]

isan 8 X 1 or 6 X 1 thermal load vector.

Contributions of each element to the network stiffness matrix and
thermal load vector are additive, and hence eq. (7a) can represent the
force balance at all the points of the long-cylinder network as well as
those of the solid-of-revolution network.

Noting the material restrictions outlined in the beginning of this
section, a network of triangles and trapezoids need only occupy one-
quarter of a circle with planes of symmetry at § = 0 and =/2. Hence,
tangential deflections must vanish at all points along these planes. The
previously unknown deflections and constraint forces can now be
solved in terms of known external forces and thermal loads in the same
manner as was accomplished in the preceding section [see eqs. (8)
(9), and (9a)].

We are not quite finished. Recall that we have let e, = 0 throughout
the cylinder, resulting in an axial stress o. [eq. (23)] applied to the
ends of the cylinder. If we superimpose a uniform axial stress (g.)
such that the resulting force on the ends of the cylinder is zero, the
self-equilibrating distribution remaining on the ends will, by St.
Venant’s principle,? give rise only to local effects at the ends. The uni-
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form axial stress correction to be added to eq. (23) is given as
j 0. [eq. (23)1d4
(U' =) = - '
f dA

This correction results in added radial and tangential strains ob-
tained from eq. (22).

(,(0)) = E13(8){c.) = (E..cos?@ + E,. sin?)(c.) (16a)
(ea(8)) = E23(8){s.) = (E..sin?0 + E,. cos?0)(v.). (16b)

(16)

E =10x 108
L v =025
0 o =75x 1078/ 8000
T =144 R/12
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Fig. 5—Thermal stresses plane strain problem.
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The resulting correction to the radial and tangential deflections are
next obtained.

(U, (r, 8)) = r{e,(8)) = r(Ezy cos?d + E,. sin?§){c.) (17)

[ @) — (U.tr, 0))a0

(Us(r, 6))

v f " (Eaa(6) — E1s(6)) {02}
= rsinf cosd (Ey. — E..). (17a)

Note that the correction (Us(r, 6)) vanishes at § = 0 and 6 = 7/2,
agreeing with the stipulated boundary conditions stated previously.

IV. COMPARISONS WITH THEORETICAL SOLUTIONS

Two plane strain problems are presented for the solid-of-revolution
method: one, a linear radial thermal gradient applied to an isotropic
solid eylinder (Fig. 5) and two, a negative pressure applied to the out-
side circumference of a hollow cylinder (Fig. 6). Comparisons were
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Fig. 6—Plane strain solution—thick-walled cylinder.
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made of the finite element computer results with known theoretical®
solutions. The agreement was excellent.

A thermal problem is presented for the long-cylinder method in
which an isotropic cylinder is subjected to a constant temperature
plus a radial thermal gradient (Fig. 7). Comparisons were made of
the finite-element computer results with a known theoretical solution.?
The known solution on page 410 of Ref. 3 was found to be in error. In
the expression for radial displacement (U), insert (1 — 3»)/(1 — »)
for (1 — 2») and in the expression for o., replace 2r with 2. After the
above corrections were made to the theoretical solution, excellent com-
parisons resulted as shown in Fig. 7.

V. THERMAL STRESSES IN LITHIUM TANTALATE CRYSTALS

Thermal stresses were computed for a lithium tantalate crystal,
class C3,, during the post-growth cooling stage. The crystal was ana-
lyzed by the two methods presented in this paper on the IBM 370
computer. For the solid-of-revolution method (Fig. 8), the model con-
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Fig. 7—Thermal stresses—long cylinder.
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0.4375—-INCH RADIUS
10 SPACES

__ 3-INCHCYLINDER _____ 0.875—INCH_
< 10 SPACES T " Ccone ‘)‘l

Fig. 8—Network of triangular annuli—lithium tantalate crystal—solid-of-
revolution model.

sists of a right eylinder of radius a = 0.4375 inch and length b = 3
inches plus a cone of length 0.875 inch attached to the far (cold) end.
Radial constraints are provided at all zero radius points. For the long-
cylinder method (Fig. 9), the model comprises one-quarter of a circle
with tangential constraints at all points along the two planes of sym-
metry (8§ = 0 and =»/2).

”;.4-
L-—— 0.4375 — INCH RADIUS——-)I

10 SPACES

Fig. 9—Network of triangles and trapezoids—lithium tantalate crystal—long-
cylinder model.
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Elastic properties* of lithium tantalate are shown in Fig. 10. Axis
1 is perpendicular to the vertical mirror plane and axis 3 corresponds
to the trigonal axis of the crystal. If we strike out the small shear
coupling terms, ¢4, in Fig. 10, then we have met the stress-strain
relationship [egs. (5) and (18)] requirements of this paper. The
coefficients of thermal expansion will be assumed constant in the 1, 2
directions and piecewise linear along the trigonal axis 3. These co-
efficients® are given below.

a; = a; = 21.9 X 10~¢/°C
az = 8.35 X 10~%/°C  625°C and higher
— 3.1 X 10%/°C  500°C — 625°C
0 400°C — 500°C
1.16 X 10—¢/°C  room temperature — 400°C.

The crystal is assumed to be in a stress-free condition at an elevated
temperature distribution 7'1, and elastic material behavior is assumed
linear from the initial state of strain at temperature distribution T'1
to the final state of stress and strain at room temperature (26°C).
This assumption rules out plasticity and stress relaxation. It is felt
that ignoring these nonlinear effects plus ignoring the initial state of
stress at T'1 does not distort the qualitative picture of the stress
pattern after the cooling-down process. The elevated temperature
distribution in degrees centigrade is given below.

T1 = 1500 — 100 (r/a)? — 500 z/b, for solid of revolution
= 1500 — 100 (r/a)?, for the long cylinder.

The addition of the longitudinal gradient for the solid-of-revolution
method was found to induce negligible stress in the crystal.

For the solid-of-revolution method (z-growth), material axes 1, 2,
and 3 correspond to r, 6, and 2, respectively. For the long-cylinder
method, two cases were investigated: one, z-growth where material
axes 1, 2, and 3 correspond to z, y, and z, respectively, and two, y-
growth where material axes 1, 2, and 3 correspond to z, z, and y,

€a3 =2.75 x 10" N/m?

T €11 Cyp 3 0 0 €, €y =233
Ty Cyg €y n13—>1< o 0 €, cy =01
o _ | t13 €13 ca33 o o 0 €4 €y =047
Tag - M 0 cyy O O Y23 c,;3 =080
T3 0 0 0 0 o447 Y31 cqq =094
T2 0 0 0 0 g cq Y12 cgg =093=Yy(c; 1 —c )

Fig 10—LiTa0; stress-strain.

840 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1974



30,000

20,000

10,000

I
a
-
(%]
w
w
=
“ _10,000

—20,000

~30,000

—— LONG-CYLINDER METHOD
O SOLID-OF-REVOLUTION METHOD
—40,000 | | ] |

0 0.0875 0.1750 0.2625 0.3500 0.4375
RADIAL COORDINATE IN INCHES

Fig. 11—Thermal stress comparison z-growth LiTa0, crystal.

respectively. A plot of thermal stresses for the z-growth crystals by
both methods is compared in Fig. 11. Agreement is very good. A
comparison of thermal stresses by the long-cylinder method of both
z-growth and y-growth is shown in Fig. 12 at 0 = 45°. (Typically,
f-stress variations are less than 5 percent.) The maximum stress
recorded in absolute value is about 39,000 psi for both z-growth and
y-growth. The z-growth (material axis 3 corresponds to x) would yield
the same results as y-growth. This can be inferred from examination of
the material properties of Fig. 10.

VI. CONCLUSIONS

Excellent comparisons were obtained for stresses and deflection in
isotropic cylinders between the methods described in this paper and
known theoretical solutions (Figs. 5 to 7). Stress comparisons again
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Fig. 12—Thermal stress comparison z-growth and y-growth (at 6 = 45°) LiTaO;
crystals—long-cylinder method.

were excellent between the two methods described in this paper for
z-growth LiTaO, crystals (isotropic in the plane of the circle) during
the post-growth cooling stage (Fig. 11). Comparisons of thermal
stresses between a y-(or 2-) growth LiTaO; crystal (both anisotropic in
the plane of the circle) and a z-growth crystal are presented (Fig. 12).
Differences in the stress distributions were not great enough to favor
either growth direction; the more important consideration is to slow
the cooling process down enough to keep radial thermal gradient to a
minimum.
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APPENDIX
Stress-Strain Relationships—Long Cylinder

The most general stress-strain relationship considered is the 4 X 4
submatrix bounded by the dotted lines of eq. (18) as shown below,
with no coupling between the stresses (o,, oy, ., 7z,) and the strains

('sz; 'Yzz)-

N r ~

s (

[P C:r:: Czy sz 0 | 0 0 €
Ty C‘r:l.'y Cuy Cw 0 |0 O €y
oz sz Cyz sz 0 | 0 0 €z
{Teypr = |0 0 0 Ces 10 0|9 7ay r (18)
Tys 0 0 0 0 Yye
Taz) L0 0 0 0 J (Va2

After inclusion of thermal strains, eq. (18) can be restated as

fout = L0 = | faar}), (19)

{0'0} = {a'z Ty 0Oz "':ru]:

{50} {€z €y €2 Yau),

UadTl - Ua,dT Jear [aar 0},

and [C,] is the 4 X 4 submatrix of eq. (18).

Now consider a rotation about z by the angle 8, and let {o.}
= |, 0o 0z 7,6 be the radial, tangential, longitudinal, and shear stress,
respectively. The relationship between this rotated stress field and
{oo} can be expressed as

where

{oa} = [Bl{ao}, (20)
where
cos?f sin?6 0 2 siné cosf
sin?6 cos?@ 0 —2 sind cosf
[B]= 0 0 1 0 ’
—sinf cosf sinfcosd 0 cos2f — sin?f
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Conjugate to eq. (20) is the following relationship between the strains

{e] = [B]*{ea}, (20a)
where
{eﬂ} = {fr €9 € 'Yrﬂ}-

Eqgs. (19), (20), and (20a) can be combined as
{7a} = [Cal{ea} — [BI[Col{edT}, (21)

where

[C.] = [BILCoILB]"

After multiplying eq. (21) by [C.]™" and rearranging, the following
result is obtained.

(e = [ETloa) + (€819 fadr}, (22)

where

[E] = [C.T = ((B]9'[Co]'[BI™ (22a)

Tentatively, let e, = 0. This results in a longitudinal stress applied
at the ends of the cylinder. From the third line of eq. (22), the longi-
tudinal stress can be obtained as

g, = 1/E33(E31 or + Exzos + Egs 70 + [ﬂfsdT); (23)

where, from eq. (22a),
Ey = E..cos* + Ey.sin%,
E3; = E,.,sin% + E,, cos?f,
Eyn = E,,
E;, = 25in8 cosé (By, — E..),
and E,,, E,., and E,, are obtained from [Co]™™
From eq. (23) we obtain

fou) = [DTios} = {00 /B fa of, (24)
where
{cn,} = {0’,-0’9 1‘,-9}
and
1 0 0
_ 0 1 0 .
[D] - _Esl/Esa _E32/E33 _Ea‘/E“
0 0 1
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After substituting eq. (24) into eq. (22) and premultiplying by [D7]¢
(remember ¢, = 0), we obtain

(] = [E(w) + (8] faar], (25)
where
{eo} = {ereayrel,
CE:] = [DI[E]ID]
and
[B:] = [DI{[B]9)*
cos2d sin%f —E5/Ey siné cosé
= sin2f cosd —E2/E3;  —sinf cos@

—2ginf cosf 2sinf cosd —Esi/Es; cos? — sin2

Let [C] = [E:]~". After inverting eq. (25) we obtain a desired result.

(4] = re3(tel - [B,,][ [ adT}) (26)

subject to the restriction e, = 0, which will be removed after an initial
solution is obtained.
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