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This paper presents a mathematical analysis of an adaptive quantizer,
a pulse code modulator, which is used for coding speech and other continu-
ous signals with a large dynamic range into digital form. The device is a
two-bit quantizer in which the step size is modified at every sampling instant
with the object of adapting the range of the device to the inlensity level of
the signal. In the adaptation algorithm analyzed in the paper, the encoded
information of the previous sampling instant is used either fo increase
or to decrease the step size by fixed, but not necessarily equal, proportions.

Initially, the stochastic stability of the device is established by construct-
ing a stochastic Liapunov function. Various basic identities and bounds
on aspects of the behavior of the device are obtained. The qualitative
results obtained indicate the nature of the trade-offs between the quality
of the steady state and the transient performance of the device. Also,
formulas are developed for the purpose of evaluating the mean time
required for the step size lo adapt from arbitrary initial conditions to
certain oplimal values.

I. INTRODUCTION

A mathematical analysis of an adaptive quantizer is presented in this
paper. The coding thresholds of the device, also referred to as the step
sizes, are not fixed but adapt according to a particular alogrithm. The
object of the algorithm is to modify the threshold to larger or smaller
levels, depending on whether the signal intensity level is high or low, in
a manner that allows a decoder at the receiving end to effectively re-
construct the continuous signal. The basic two-bit quantizer, i.e., quanti-
zers with four output levels with codes 01, 00, 10, and 11, is character-
ized by a particular function of the following form at each sampling
instant.
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Input refers to the nth sample of the continuous signal, z(n),
n =0,1,2, ---;output refers to the coded signal to be transmitted at
that instant; and A is the step size. In adaptive quantizers of the type
to be investigated here, the step size is variable and the step size at the
nth sampling instant is denoted by A(n). The step size uniquely defines
the entire function in the manner indicated by Fig. 1; hence, the com-
plete adaptive quantizer is associated with a sequence of functions.
The adaptive quantizers that are the subject of this paper are basically
characterized by the following adaptation algorithm

Aln + 1) = MA(n) if |z(n)| = A(n) (1a)
= M.A(n) if |z(n)| > A(n), (1b)

where M; and M., called multiplier coefficients, are fixed constants
satisfying* 0 < M; < 1 < M,. Variations on (1) are considered in
the main text, although the discussion in the introductory section is in
terms of (1). Results on adaptive quantizers with output levels more
numerous than 4 will be considered in a future publication.

The adaptation algorithm in (1) is due to Cummiskey, Flanagan,
and Jayant.l.? In Ref. 1 Jayant presents the results of extensive com-
puter simulations undertaken to determine the multiplier coefficients
which maximize various performance functionals. A class of random
inputs {z(n)} that is considered is obtained by passing a discrete,
white, Gaussian process through a filter with a single pole. In Ref. 2,
Cummiskey, Jayant, and Flanagan consider a differential PCM coder
in which the adaptive quantizer is used together with a fixed first-
order predictor in the feedback loop. Their work has its direct ante-
cedents in the various schemes?®*5 for adapting step sizes in delta-
modulators, a one-bit quantizer, and in the work of Wilkinson.® Wilkin-
son’s paper on a two-bit adaptive quantizer, largely concerned with
hardware implementation, is particularly interesting. In his scheme, the
step size is controlled by a moving fraction obtained by keeping a tally
of the number of times the input falls in the lower slot of the quantizer.
Goodman and Gersho? have independently looked at the adaptive
quantizer from a theoretical standpoint and their work complements
the work described here.

In this paper we make a number of simplifying assumptions about
the input sequence {z(n)}, the most restrictive being the assumption

*Since the absolute value of the input in Fig. 1 is partitioned into [0, A] and
I(A, ] ]l, we shall loosely refer to the event leading to (la) as ““the input falling in the
ower slot.
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Fig. 1—The quantizer function.

that it is a sequence of independent random variables. However, we
have obtained for the idealized model precise results which indicate
rather fully the trade-offs involved in the choice of the multiplier
coefficients. Also, we have developed formulas for efficiently computing
functionals as aids in the design problem. We believe that the broad
qualitative features of the device that are found to hold in this model
carry over for more realistic input processes. It is hoped too that the
techniques developed here will provide a point of reference for future
work.

The mathematical analysis, for the main part, is of a random walk
on the integers, whose complexity is due to the dependence of the state
transition probabilities on the states. The structure of the random walk
which is exploited here is rather general, and for this reason the model
is of independent interest; to our knowledge, the main mathematical
results have not appeared in the literature on random walks.

The organization of the paper is as follows. In Section 1.1 we con-
tinue the discussion on the adaptation algorithm in the context of a
particular idealized model of the sequence {z(n)}, and we discuss some
of the results to be derived later and what is already known about
optimal quantization in the nonadaptive framework. In Sections 1.2
and 1.3 we give the basic equations of the process arising from (1),
and certain modifications of it, when the input sequence {z(n)} is
independent and identically distributed. In Section II the stochastic
stability of the device is established under general conditions. The
existence and uniqueness of the stationary distribution of the step
size is proved by constructing a stochastic Liapunov function for the
random process. Section III examines in detail the stationary step
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size distribution. In Section 3.2 we prove an identity which explicitly
gives the stationary probability of the input falling in the lower slot
of the quantizer, i.e., Pr, [|z(n)| = A(n)]. In Section 3.3 sharp
bounds are obtained on the stationary probabilities. It is shown that
for almost all values of the multiplier coefficients there exists a natural
center of the distribution and that the stationary probabilities fall off
at least geometrically with increasing distances from the natural
center. In Section 3.5 results are obtained on a particular limiting
behavior, namely, the effect of the stationary distribution of making
both multiplier coefficients close to unity. Section IV is devoted to the
transient response of the device. In Section 4.1 we develop formulas
for the efficient computation of the time required for the step size to
adapt from an arbitrary initial value to the desired step size. Section
4.2 by giving an explicit bound on this time provides some insight into
the dependence of the adaptive time on the choice of the multiplier
coefficients. Finally, we report some computational results.

1.1 Background

In an idealized model for the samples, z(n), of the continuous signal
process, assume that {xz(n)} is a sequence of independent random vari-
ables with zero mean. Assume further that the distribution of z(n)
for every n is an element of the same equivalence class of distributions
in which the distributions are equivalent to within a scaling operation.
The scaling or intensity level changes slowly with n. For instance, the
equivalence class of distributions may be the family of Gaussian
distributions and only the variance, indicating the intensity level,
changes with n.

It is necessary to recall at this stage some known facts concerning
the design of quantizers in the nonadaptive framework® where {z(n)}
is a sequence of independent, identically distributed random variables
and the step size is fixed. Suppose that E[ {y(n) — z(n)}?] measures
the performance of the quantizer where y(n) is the nth output of the
device.* The step size which minimizes this functional, 4, is in principle
easy to establish, and A is uniquely characterized by the probability
of the input falling in the lower slot, i.e.,, Pr[|2z(n)| = A]. Another
observation that is equally easy to verify is that the optimal step size
has the property that if the distribution of {z(n)} is scaled, then the
optimal step size is obtained by an identical scaling of the previous
optimal step size. A convenient way of stating this observation is: a

* It is not essential that the performance functional be of that form.
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property of the optimal step size that is invariant to scaling of the
distribution of {z(n)} is the probability that the absolute value of the
input z(n) does not exceed the optimal step size. For instance, when the
distribution is Gaussian it is known that this probability is close to
0.68.8

An intermediate step in proceeding from the nonadaptive case to the
more general model described prior to it, in which the identically
distributed condition does not hold, is provided by the following model.
Assume that the sequence {x(n)} is indeed independent and identically
distributed, and that the equivalence class of distributions to which
the particular distribution belongs is known. However, the scaling
parameter is unknown. It is relatively straightforward to state the
requirements on a well-behaved algorithm operating in this simple
framework, and, if these requirements are always satisfied, then it is
possible to conclude that the device will operate satisfactorily for the
more general model. The requirements are: (i) for arbitrary initial
step size guesses, the step size rapidly converges to the optimal step
size, and (7z) it is thereafter localized in a small neighborhood of that
point. This paper separately analyzes the two requirements in the
simple framework just described. Considerations related to (z) and
(#7) are lumped respectively under the terms “transient response’” and
“steady-state response,”’ since the latter property is effectively investi-
gated in terms of the stationary distribution of the step size, assuming
one exists. A good reason for the division is that they lead, in some
ways, to quite opposite requirements for the multiplier coefficients.

Consider, in the light of what is known about optimal quantization
in the nonadaptive framework, what is required for the localization
property, requirement (iz), to hold. When the stationary distribution
has both of the following properties, it is possible to establish an effec-
tive correspondence and infer that (¢7) holds: (a) the stationary proba-
bility of the step size falling in the lower slot, i.e., Pr, [|z(n)| < A]
equals the known value associated with the particular family of dis-
tributions; and (b) the mass of the stationary distribution is concen-
trated in the small neighborhood of a point. In Section III we show that
by appropriate choice of the multiplier coefficients it is possible to
achieve both requirements.

1.2 Basic assumptions and equations

We consider only quantizers with multiplier coefficients having the

following structure:
M, =+~"% and M, = v}, (2)
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where v is some real number greater than 1 and k and [ are positive
integers. We shall further make & and [ relatively prime, i.e., their
greatest common factor is 1. If, as we shall assume, the initial step size
is of the form ¢, with 7 an integer, then the step size is always of that
form and the space of possible step sizes forms a lattice.*

There is a step size with, as we shall see, certain claims to being the
central step size for a particular distribution of {z(n)} and choice of
parameters k and I; this step size is used as a reference point. There
exists an integer 7 such that’

Prlla] S v1< g S Prlleml S ¥ @)

We denote v by C and refer to it as the central step size; all step sizes
are considered to be of the form Cv% 7 = 0, =1, £2, ---.

Obviously, it is more convenient to work with the log transform of
the step size, so let

w(n) = log, A(n) — log, C. (4)
From the original algorithm we have

w(n + 1) = w(n) —k if Ia;(n)l g C’Y""(")
=w(n) +1 if |z(n)| > Cye. (5)

We have in (5) a Markov chain with states 0, &1, £2, - - -. The state
transition probabilities are obtained from the distribution of z(n):
for all integers 7 let
b & Pr[|a(n)| < Cv'] (6)
and
a; 21— b

The “b”’ is a mnemonic for backward probabilities since it is associated
with a transition backwards from the generic state ¢ to (z — k). The
diagram in Fig. 2 represents the Markov chain. Denoting by pi(n)
the probability that w(n) = 7, we have

pi(n + 1) = bippira(n) + aiipiaa(n). (7)

Although the transition probabilities depend on the distribution of
z(n), the two following properties of the sequence {b;}, on which we

*D. J. Goodman suggested the above structure on the multiplier coefficients with
the object of obtaining a discrete Markov process.
T We are tacitly assuming that Pr[|z(r)}| =01 S l/(k +1) — ¢, e > 0.
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Fig. 2—The Markov chain.

base our results, hold irrespective of the distribution:

0=b;<by1 =1 forally (8)
and
l
b—l < m g ba- (9)

That the strict inequality in (8) holds for all 7 is a mild restriction on
the distribution of z(n); however, certain straightforward modifications
may be made to obtain corresponding results when the strict inequality
does not hold for all 4.

The property of the 0 state to which we alluded earlier may be loosely
stated, thus: there is a net drift to the left (right) from states to the
right (left) of the 0 state. Formally,

l

Elw(n+1) |w(n) =i]—i=—(k+1) [b"_m

]<O if ©>0
(10)

>0if 7<0.

The above super- and submartingale properties are the basis for the
existence of a stochastic Liapunov function (Section 2.2) and the
bound obtained in Section 4.2.

Remarks: The random walk in (5) with £ = { = 1 is also the model
for the delta-modulator subject to random, independent, identically
distributed inputs. The stationary behavior of the model was treated
in an elegant paper by Fine.? Gersho™ has established the stochastic
stability of the delta-modulator for a larger class of input processes.
Some of our results, particularly those in Section IV on transient re-
sponse, appear to be new and of some interest in this context.

1.3 The saturating adaptive quantizer

For the algorithm in (1) and, say, Gaussian distributions of the
input, there is a small, positive probability of the step size exceeding
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any large prespecified level. A model which reflects more accurately
the practical algorithm for adapting the step size is one which does not
allow the step size to become unbounded. One way of implementing
this is to make the step size saturate at some suitably large level,
ie., if A(n) < |z(n)|, then

A(n + 1) = min [MzA(n), L]; L>0; (11)
i.e., in the log transformed variables,
w® + 1) = min [w(n) + 1, L]; L>0. (12)

The model of this device, which we shall refer to as the saturating
adaptive quantizer, is useful not only for the reasons given but also
on theoretical grounds since the results obtained for the saturating
adaptive quantizer yield, in the limit as L — =, corresponding results
for the adaptive quantizer. We carry both models with us throughout
the paper and at least indicate along the way the main correspondences.

For similar reasons we expect that in practice the step size will also
be bounded from below in the obvious manner. This case is not for-
mally dealt with in the text since the main results may be readily
inferred from the saturating adaptive quantizer.

For the saturating adaptive quantizer, the following equations
govern the evolution of {pi(n) = Pr [w(n) = ¢]}, ¢ = L:

pi(n + 1) = biupiae(n) + aimpia(n) i =L —k
p,‘(ﬂ + 1) = a,:;p,-_;(n) L—k+1=7= L—1 (13)
pr(n + 1) = j—%—l a;p;(n).

The important super- and sub-martingale properties of the random
walk, as expressed by the inequalities in eq. (10), apply as well to the
saturating adaptive quantizer.

Il. THE EXISTENCE AND UNIQUENESS OF THE STATIONARY DISTRIBUTION

We examine in this section questions related to the stochastic
stability of the adaptive quantizer. We establish theoretically that
certain acute types of erratic operations such as the unboundedness of
the evolving random variable, namely, the step size, do not occur. We
begin by establishing that the process has the basic properties of a
well-behaved process, namely, irreducibility and recurrence. We
thereby establish the existence and uniqueness of a finite stationary
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distribution. We then proceed to the saturating adaptive quantizer,
the more realistic model of the adapting algorithm, which in addition
to the above properties, is also aperiodic. Here, the entire state space
is a single ergodic class. The main result of this section is obtained from
the construction of a stochastic Liapunov function for the process; and
the theory of stochastic Liapunov functions is fairly well known.!*:1?

2.1 Irreducibility of the Markov chain
The chain is irreducible if and only if every state communicates
with both the neighboring states. This occurs if and only if there
exists nonnegative integers m, m’, n, n’ such that
ml —nk =1 (14a)
and
m'l —n'k = — 1. (14b)

It is an elementary fact from number theory that this occurs if and
only if k and [ are relatively prime, i.e., their greatest common divisor
is unity. In fact, Euclid’s algorithm yields the unknown quantities
in eq. (14).

2.2 Recurrence

Consider the following nonnegative function of the states:
V@) = |i] i=0, £1, ---. (15)

This function is a stochastic Liapunov function'? if the following
holds: if D(z) is defined as follows,

E[Vie(n + 1)} |e@®) = i] — VG = D@), (16)

then (7) D(7) is uniformly bounded from above and (i7) D(z) = — ¢ <0
for all but a finite set of states 7. Condition (2) is trivially true for the
process. Also, for all 2 = k

D(i)=—(k+l)(b.--k—§ﬁ)§—(k+1)(bk—ﬁ)<0(17)

and, forallz £ — [,

DG) = (b + 1) (b,—— k_-l?z) < (k+1) (b_, - E*-ZTI) <0. (18)

Therefore, condition (i) is verified, and V(z) is a stochastic Liapunov
function for the process.

ADAPTIVE QUANTIZER 875



From Kushner’s Theorem 7!2 we have recurrence* and we can infer
further, from Theorem 4, that there exists at least one finite invariant
measure, i.e., stationary distribution. Also, as we have shown earlier
there does not exist two or more disjoint self-contained subsets of the
state space; hence, we have from Theorem 5 that there is at most one
invariant probability measure. Thus, the existence and uniqueness of a
finite stationary distribution for the step size of the adaptive quantizer

is established.

2.3 The saturating adaptive quantizer

We will circumvent the technical nuisance! posed by periodicity by
proceeding to the saturating adaptive quantizer. In this case the above
arguments leading to irreducibility and recurrence are intact. In
addition, the end state L has period 1 and, since periodicity is a
class concept (i.e., every state in a particular communicating class
has the same periodicity), the entire Markov chain is aperiodic. We
have, then, p(n) — p for any p(0) and p; > 0 for all ¢. Also, the state
space is a single ergodic class. Hence, the statistical average of the
step sizes approach a limit given by the unique, finite, stationary
distribution.

Ill. SOME PROPERTIES OF THE STATIONARY DISTRIBUTIONS

In this section we investigate in detail properties of the stationary
distribution of the step size. In eq. (7) if we set pi(n + 1) = pi(n) = ps,
then the stationary distribution is given by {p;}. Thus, the stationary
probabilities are the solutions of

Pi = biskPisr + GiciPict (19)

with, of course, the normalization,

rpi=1 (20)

—00

For the saturating adaptive quantizer, we have from eq. (13) that
the basic recursion in (19) holds for all ¢ < (L — k). The remaining

* A Markov chain is recurrent if and only if every state is recurrent; and state ¢
is recurrent if and only if, starting from state , the probability of returning to state
1 after some finite length of time is one.

T Feller®® writes: ‘“The classification into persistent and transient states is funda-
mental, whereas the classification into periodic and aperiodic states concerns a
technical detail.”
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eqﬁations are (20) and the following:
Pi = Qi—1Pi-1 L—k+1§’&§L—1 (21&)

L
PL = LZ—:l a;p; (21b)

and, of course, p; = 0,7 > L.

3.1 A useful reduction of the equations for the stationary probabilities

To provide some insight into the motivation for the step we under-
take here, consider the recursion, analogous to (19), that would arise
from a Markov chain with uniform transition probabilities:

pi=bpigx +apiy, a+b=1 (22)
A particular solution of the above recursion is p; = ¢, a constant. Since,
in probability theory, interest is restricted to solutions with bounded

sums, one would proceed in the case of (22) by factoring the root at
unity from the characteristic polynomial:

bAMYL — Nt 4 a = 0,
and thus obtain a new, and reduced, polynomial and an associated

recursion. This operation is paralleled for the more general recursion
in (19) by the following : from (19),

Pi — Pi—1 = b.—+k’P¢+k - b.'—zp.'—z-
Hence, for all j,
i i
_Zm (pi — pia) = _zﬂ (bigkDive — biapi) (22a)
which reduces to
itk i
Z b-’ID.' = Z (1 - b.‘)’p.'- (23)
J+1 J=l+1

Remarks:

(f) Observe that we are justified in carrying out the operation in
(22a) in the case of solutions of (19) for which 37 . p;is bounded and
which we have established, in Section II, to be the case for the station-
ary probabilities.

(72) The reduction alluded to earlier refers to the fact that the largest
difference in variable indices in (23) is k + [, while the largest differ-
encein (19)isk + 1 + 1.
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(#ii) Observe that when k = I = 1, (23) gives the solution in closed
form: pju = (a;/bs1)p; and Yp; = 1. This is a previously knawn
fact; see Feller'* and Fine.! However, neither author gave any indica-
tion of the possible generalization to the form in (23).

For the saturating adaptive quantizer, (23) holds for all j < (L — k).
Hence, the range over which (23) is valid is such that every state is
included in at least one component of the recursion.

3.2 An identity involving the stationary distribution

We use eq. (23) to show that the stationary probability of the nth
input sample, z(n), falling in the lower slot, Pr, [lz(n)| = A(n)]
= I/(k + 1). The significance of this identity from the point of view
of optimal steady-state operation (see Section 1.1) is that by appro-
priate choice of k and [ the above quantity may be matched to the
corresponding probability for the optimal nonadaptive step size. This,
of course, has the effect of locating the central step size, eq. (3), close
to the optimal nonadaptive step size. In the case of independent
Gaussian inputs, the above quantity is close to 0.68 and a reasonable
approximation is obtained by making ¥ = 1 and I = 2.

From (23),

J+k i
2 bipi= 2 pa
—i+1 J—I+1
Hence,
0 Itk ) i
X X bpi= X 2 P (24)
j=—m 1=j—1+1 j=—0w0 {=j—I+1

The left-hand side equals (k + 1) ¥ =« b,;p; while the right-hand side
equals I. Hence,

kil l
_Zm bip; = FET (25)

Consider what the above equality implies in terms of step size
behavior. The stationary probability of the input falling in the lower
slot,

Pr.[|z(n)| = A(n)] i Pr.[A = Cy' and |z| = Cy*]

i=—00

I

i b; Pr,[A = Cy*] (26)

i=—00
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from the independence of {x(n)}. Hence, from (25),
—l .
k41
Immediately on substituting M; = y=* and M, = 4! we have an
identity with a rather appealing and natural interpretation*:

MPME =1 (28)

Pr.[lz(n)| = A(m)] = (27)

where p;, and p, are respectively the two stationary probabilities of
the input falling in the lower and upper slots.
For the saturating adaptive quantizer, it can be shown that

l
‘_5 b.p; < k—+ i (29)

However, the quantity [(I/k + 1) — 3_ bip;] depends only on (k + 1)
terms involving the end probabilities pr, -+, pr—r—: and it goes to
zero with these probabilities. Now we will prove in Section 3.3 certain
results which indicate that these probabilities are relatively small if
L is large.

3.3 Geometric bounds on the stationary probabilities

In this section we prove a fundamental property of the stationary
distribution of the step size which holds for all values of v. We obtain
sharp bounds on almost all of the stationary probabilities—the bounds
apply as well to the saturating adaptive quantizer—which show that
the stationary probability of the random walk being in a particular
state falls off at least geometrically with the distance of that state from
the 0 state. The actual bounds obtained are substantially stronger and
they indicate that a localization property on the stationary distribu-
tion is inherent for the random walk. As discussed in Section 1.1 this
localization property is important in understanding the basis for the
satisfactory behavior of the adaptive quantizer.

We obtain the following point-wise bound: for every 7 > 0 we give
positive constants » > 1 and ¢ such that for all j = 4,

p; < C(l)"'“". (30)

7

The quantities r and ¢ depend on 7. The quantity r which we call the

* D. J. Goodman first conjectured the existence of (28) in the context of the adap-
tive quantizer. Earlier, N. S. Jayant® made a related conjecture in connection with
an adaptive delta-modulator.

ADAPTIVE QUANTIZER 879



local steepness factor is a monotonic increasing function of 7 for non-
negative 7. Of course, a corresponding result holds for ¢ < 0 and all
I=

Let P; denote the (k + I — 1)-dimensional column vector* with the
following components

P: £ [pi, Disyy = -, Pivipi-2 ]’ (31)

Then, from (23), we obtain (k+1— 1) X (k+ 11— 1) transition
matrices A;, where

P = AP, (32)
The leading (k + [ — 2) components of P;;; are obtained from P; by
merely shift operations. The nontrivial information in A; is in the
last row which is obtained from (23); clearly, A; depends on <.

We will show that there exist a constant weight vector %, every
element of 2 being positive, and a constant r > 1 depending only on
A; such that forall j = 7

QAT =t (33)
in the sense that every element of the left vector is not less than the
corresponding element of the right vector. Since P;, is a vector with
nonnegative elements, we have

2Py < MAT'Py = APy (34)
Hence,
2Py s (1) oR) iz (35)

Remarks: Equation (35) is a strong result if A‘P; is viewed as a norm of
the vector P; of the Ly-type: |x| = X A\i|z:|, which is a valid inter-
pretation since the latter reduces to Ax whenever every element of x
is nonnegative. By standard methods we can obtain upper bounds for
P, in norms other than the one used in (35). In particular, (30) follows
trivially.

It is necessary now to discuss the structure of the matrix A7
Directly from (23) we obtain the first row:t

(I — 1) terms k terms
- N
I W
a; ’ a; '’ ! a; ’oag U PR ! a; :

* The superseript ¢ denotes the transpose.
t Observe that neither A; nor A;'is a stochastic matrix (nonnegative elements,
columns sum to unity).
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The remaining rows of A;"' reflect shift operations: form = 2, 3, -- -,
(k+1—1),
(AT Y =0 if ns(m—1)
=1 if n=(m-—1).

Before proceeding to prove (33) we need the following lemma.

This lemma concerns the matrix A;! which is obtained from A;! by
merely replacing the first (I — 1) elements of the first row by —1.

Lemma 1: For every 7 = 0

(#) A;7! has a unique positive real eigenvalue 7, say. Furthermore,
r> 1.

(i) Every element of the corresponding left eigenvector 2 is of
the same sign and nonzero; hence, 2 may be taken to be a
positive vector.,

(#33) r, which depends on ¢, is monotonic, strictly increasing with 7.

We give the proof of Lemma 1 in Appendix A.
We need one further observation to prove (33) with the help of the
lemma. For j = 1,

MAT! = AHAT — A7) + AAT
= M(A7' — ATY) +
The bound in (33) follows if A:(Aj* — A;") 2 0. Since 2. is a positive
vector it is sufficient to show that the elements of the matrix

(A7 — A7Y) are nonnegative. The only nonzero elements of the

matrix (A;! — A7) are in the first row. That every term of the first
row is nonnegative is implied by the following: for s = 1

_ Gits 5
1 a 2 0 (36)
and
Iﬂ' — t&* > 0. (37)
a; a;

This concludes the proof of (33) and, hence, of (35).

Remarks:

(¢) The reader may now appreciate the reason for replacing some of

the elements of A, by —1 to form A7 ': a;;./a; although bounded by
1 can come arbitrarily close to 1.
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The reader is also due an explanation for our having worked with
Aj! after defining the natural transformation Aj; especially since
(34) may be put in the form A‘[I — rA;]P; = 0. The reason is that
r and A, depending only on %, do not exist such that for j = 4,
21 — rA;]=0, although, as we have shown, % and r do exist such
that I — rA;]JA;' = 0. In working this step the assumption of
P;.; = 0, rather than P; = 0, appears to be critical.

() The interesting quantity » = r(Z) may reasonably be called the
local steepness factor, since for 7 = 0 it is a local measure of the rapid-
ness with which the stationary distribution falls off. From statement
(441) of the lemma we have the fact that the distribution tends to get
steeper with increasing distances from the natural center of the dis-
tribution, the 0 state.

(i47) The theoretical interest in the inequality in (35) results from
the fact that we cannot expect to obtain a significantly better value
than r for the geometric factor in geometrical bounds on p; for all
j = 4. The reason for this is that by making b;;. very close to b; over a
fairly large set of j’s, it is possible to make the solution of (23) close to
the stationary probabilities of a random walk with uniform transition
probabilities, which in turn may be obtained in terms of 7 as the unique
positive real root of the characteristic polynomial C(u) given in
eq. (56), Appendix A.

(7v) From symmetry we expect results similar to (35) to hold for
i < 0. Perhaps the simplest way to show this is by means of the follow-
ing transformations which have the effect of making the direction of

decreasing 4 the forward direction. Let
p:—t = Pi bl = a;, a_; = bs
The basic recursion (23), stated in terms of the new variables, is

i+, i .,
Ybpi= 2 (1—b)ps

1 i—k+1

Now {b;} is a monotonic, increasing sequence with ¢ and 7 > 0= b;
> ka;. (Observe the interchange of I and k, i.e., ' = k and k' = [.)
This transformation makes the transfer of results holding for 7« > 0
to 1 < 0 fairly straightforward.

(v) In considering the application of (35) to the saturating adaptive
quantizer we note that the basic recursion (23) holds over the entire
range of states, i.e., (23) holds for all j < L — k. Hence, (35) holds for
L—(+k +2=j=1i=0. This observation is the basis for a
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statement made earlier in Section 3.2, namely, we expect the tail
probabilities of the stationary distribution of the step size for the
saturating adaptive quantizer to be small.

From (35) we obtain a rather simple point-wise bound on the
stationary probabilities. Let A,, denote the largest element of the vector

. Clearly,*
AP; = N, 1P,

and, hence, from (35), forall j = 7= 0

AmPism_t < AP; < (% ) T, < ( %_) (1P,
ie.,
1)~
piner = (7).
Hence,

Prirsia < (%) oy < (}, ) Toizizo | 38

where r = 7(2).

3.4 Lower bounds on the steepness factors, r(i)

We have associated with every state ¢ a local steepness factor r(z).
Here we go back to the definition of 7(z) as being the unique positive
root of the polynomial C(), eq. (56), to obtain the following bound
which has the advantage of being explicit.

[kb?] N o) < 1(6), i>o0. (39)

la;

Observe that p(7) > 1 for all 2 > 0 and itself forms a monotonic
increasing sequence with 7. To prove (39) it is enough to show that
C[(kb;/la;)] £ 0. The proof is straightforward but tedious and we
omit it.

3.5 The effect of v on the stationary distribution

We show here that the mass of the stationary distribution of the
step size can be localized about the central step size to an arbitrary
extent by making v sufficiently close to unity. To do this, we first put

* The column vector with every element equal to unity is denoted by 1.
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together from the results of the preceding sections a rather explicit
bound on the stationary probability of the step size exceeding a par-
ticular value for a given v, i.e., Pr, [A = Cv*]. This bound is in a form
which allows direct comparison with the corresponding probability
arising from the choice of v" = vy. By successively taking ¥ to be
the square root of the preceding value, the bound on the probability
can be made as small as desired. As before, we shall restrict our at-
tention to step sizes which exceed the central step size, i.e., 7 > 0 since
a parallel argument holds for 7 < 0.
For 7 > 0 and r = 7(¢), we have from (35) that

] @ o0 1 Fi r
> <y ap, =P Y () = .
(2x) —=+§+a 2p1_fz=:flpj_ghpj'§ﬂ(r) r—1 (40)

Now, as in (39),

kb, \ V(=D
> 1 — —_—
rz 00 - (%)
and
AP;
Thi = max [P-’; Tty pi+k+l—2]'
Since
Pr,[A = Cy#tH+i—t] = )3 Pi
J=it+k+1—2
we have, from (40),
Pr.(a 2 Oyt s A0 maxpy o pneiad | (4D
Finally, from (38), for¢e = £k +1—1,
:I < ( 1 )a—k—-l+l (42)
max [pu *r 0y Pitkyl—2] = o(1) .

Equations (41) and (42) give the bound for the mass of the distri-
bution to the right of a particular state, which we shall now compare
with a similar bound that holds for v/ = Vy. The prime superscript
will be used on symbols to denote the functional dependence of the
associated quantities on v'. In establishing the reference (central) step
size [see eq. (3)], minor differences exist depending on whether

@)  Prllz(m)| = ¥1] <3 + ;S Prlz(m)| < v7]
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or

@) Prlla| < v < g < Prlztn)| < 7]
We consider only (sz), in which ecase: w'(n) = 2i < w(n) = 7 and
bos = b; forallz = 0.

Repeating the arguments leading to (41) and (42) we have

) (21 , ,
Pr’ [A ; C\f;2t+(k+l—'2)} é ﬁ% max [pzi’ ceey p2i+k+l—2:| (43)

and

, , 1 2i—k—I
max [pa, « - ) p2i+b+t—2] = [ m ] . (44)

Since p’'(27) = p(), we have

254 (k+1—2 _M L i—k=—1+1 _1_ i1
roa 2 o) s b0 | s [T S5 1T )

Comparison with (41) and (42) completes the demonstration.

IV. TRANSIENT RESPONSE

The preceding section discusses various aspects of the stationary
distribution of the step size which effectively describes the steady-state
behavior of the device. However, as stated before in Section I, the
steady-state response is only of partial interest since the adaptability
of the device is tied to quickness of response in the following situations:

(7) Start up—we are forced to consider situations in which the
initial step size is fairly arbitrary.

(7%) Changes in the scaling of the input distribution—the scenario
here is that the device has adapted to a particular intensity level
(scaling) of the input distribution when a jump occurs to a new
intensity level.

In common with both situations, we have an initial step size and a
waiting time for the step size to adapt to the desired step size. Recall
that with k¥ and [ appropriately chosen, the desirable step size is the
central step size, which corresponds to the 0 state in the random walk,
eq. (5). This aspect of the behavior of the device is also related to the
rate at which the evolving step size distribution approaches the station-
ary distribution.

The main contribution of this section is the development of formulas
for the efficient computation of the mean time required for the step
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size to first reach the central step size for various values of the initial
step size. The designer can use the information generated by the
methods given here in the following manner. Assuming that the de-
signer has some understanding of the rate of variation of the intensity
level of the input distribution, he is in a position to determine the
smallest value of v for which the adaptation algorithm adequately
tracks the input process. The parameter v has to be made sufficiently
large for the mean waiting time (time, of course, is used synonymously
with number of transitions) for adaptation to be small compared to
the changes in the location of the desired step size arising from changes
in the intensity level.

4.1 The mean time for first passage to the origin

We will consider the random walk, eqs. (5) and (12), for the satur-
ating adaptive quantizer since in the limit, as L. becomes large, the
functionals obtained for this model yield corresponding quantities for
the adaptive quantizer. Also, we shall consider only the case of the
initial state w(0) > 0 since the results obtained can be transferred to
the case of negative initial states in a fairly obvious manner (see
Remark () of Section 3.3).

Let the initial state «w(0) = 7 > 0 and let A/; denote the mean time
required for the first occurrence of the event w(n) = 0. We observe
that for all values of L, not necessarily finite, the time to first passage
i finite with probability 1 as a consequence of the properties of recur-
rence and irreducibility established earlier in Section II. If the first
transition results in a decrease of the step size, the process continues
as if the initial state has been (2 — k). The conditional expectation of
the first passage time, therefore, is M; ;. + 1. From this argument we
deduce that the mean first passage time satisfies the recursion*

M;=b(Mi—s + 1)+ a:i(Mia + 1) (46)
for (k+1)=i=(L-1.

The relation in (46) may be used to generate the entire sequence {1}
provided the initial conditions are known. Now, by the same argument
that led to (46), we have that (46) holds for 1 < ¢ = % with

Myy=Myp=+--=My=0.

" There is some similarity between (46) and the equations arising in gambler’s
ruin problems!s and sequential analysis,!® in which generally & = ! = 1 and the transi-
tion probabilities are not variable.
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The remaining I boundary conditions, namely,
My, My, -+, M,

are hard to obtain and it is necessary to look more deeply into the
dynamics of the process to obtain these quantities.

For every sampling instant we define the L-dimensional vector z(n)

with components z;(n), 1 < j = L, where

z;(n) £ Prlw(n) = j and w(s) =21 foralls =n] (47)
These vectors, z(n), evolve with time according to

z(n + 1) = Dz(n), n = 0. (48)

These equations are given in Appendix B. Here we reproduce the

structure of the L X L matrix D:

k
—r

(0 -+ 0 bpya
141 biya
0
a .
= az .

D= _ by
' 0

. 0
{ ar-1 Qr—-i41 - 4L

Putting together various properties of the matrix D and the random
walk, we obtain, in Appendix B, the following result: for z = 1

M= % af,
iz1 (49)
where [I — DJx® = e;

and the elements of the vector e; are zero everywhere except at the
ith location where it is unity. In Appendix B it is shown that [I — D]
is nonsingular. We observe parenthetically the virtue of the recursion
given in (46) in that it allows us to generate rather easily all the M/s
once the [ inversions necessary to evaluate M, - - -, M are carried out.

The matrix inversion in (49) may be viewed as a mixed boundary
value problem with the first [ and the final k equations providing the
boundary conditions. The bulk of the elements of the vector x(
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satisfy a recursion that was encountered previously in Section III:
2 = b + e, (50)

Furthermore, we show in Appendix B that the elements z{® are all
nonnegative. Hence, we are in a position to usefully apply, even for
infinite L, the techniques and results of Section III.

First, we carry out the reduction of the equations as stated in
Section 3.1 where the motivation for this step is discussed. We obtain

r+k r
> b= X (1—bz, 1=r=(L—k). (51)
jmrtl J=r—t41

The superscripts on the z’s have not been used since (51) holds for
allx® 1711

One benefit of the above form is that it involves one less variable
than the original recursion (50). In the important case of k = 1 and
I = 1, this reduction is sufficient to transform the original mixed
boundary value problem (49) to an initial value problem, i.e., the solu-
tion to the matrix inversion problem (49) satisfies a recursion with
specified initial conditions. Exact computation in this case becomes
quite trivial. The details of this solution are given in Appendix C.
Apart from its independent interest, this result is of particular interest
in the adaptive quantizer when the distribution of the input sequence
is Gaussian. As discussed previously, it is desirable to have in this
case I/(k + 1) = 0.68, and k = 1 and ! = 2 will suffice.

Another property of the solutions z‘® of (49) which holds for all L
is that with increasing j, z{ decreases at least geometrically. This con-
clusion may be drawn from the bounds obtained in Section 3.3, egs.
(35) and (38). From the point of view of numerical inversion of
[I — D] for large L, this is a critical property in that it is a necessary
condition for most numerical techniques. The reader is referred to
Richtmyer and Morton!? for one such technique that we have used
successfully and found to be efficient in that it effectively exploits the
band structure of the matrix [I — D].

Finally, we remark that while we have dealt exclusively with first
passage across the 0 state it is clear that generalizations to first cross-
ings across states other than the 0 state is straightforward.

4.2 Bound on the mean first passage time

Two formulas, egs. (46) and (49), have been given for computing
the mean time required for the step size to adapt from an arbitrary
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initial value to the desired, and also central, step size. However, by
examining these formulas it is not easy to gain insights into the rate
at which this adaptation time grows with the distance separating the
two states and its dependence on y. Here, by probabilistic reasoning, we
obtain an explicit upper bound on this time and this bound does pro-
vide some insight. As we have done before, we consider here only the
case of positive initial states, i.e., w(0) > 0. Let M;;, 0 < 7 < j, denote
the mean first passage time under the following conditions: the initial
state w(0) = 7 and first crossing occurs after 7 transitions if w(7) < ¢
and w(n) > ¢ for all » < 7; then M,; = E(7). In this notation the
quantity M ; defined in Section 4.1 is equivalent to M,;.
In Section 1.2, eq. (10), it is given that

Blo(n + 1)]w(n) = ] — i = — (k-+]) [b.- - ﬁi] (52)

Denote the quantity on the right by —S; and observe that for z > 0,
Sit1 > Si > 0; hence, the supermartingale property. [For the saturating
adaptive quantizer, the supermartingale property holds even more
strongly, i.e., for ¢ > 0, (52) holds with the equality replaced by =.]
In fact, the supermartingale property holds for the transformed
process: w'(n) = w(n) + nSi. ie,

Elw'(n + 1 ]'(n)] = o'(n) (53)

for all w'(n) = (¢ 4+ 1) + nSi;1. For the crossing problem, (53) holds
for all (n + 1) < 7, the crossing time. We can now apply a theorem
due to Doob!® on optional stopping on supermartingales. In this case,
the theorem states that

E[w'(r)] = E[o'(0)]. (54)
Since
(T+1—k)+ SinE(r) £ E['(7)] = E[o'(0)] = j,

we obtain

M, = E(r) < il[u — )+ (k- D] (55)

We gain some insight on the role of ¥ in determining the transient
response of the device by observing the dependence of the above bound
on v. Suppose we are interested in M;, the waiting time for the initial
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step size A(0) = Cy’ to reach the central step size C. Consider the
effects of making v/ = Vv on this waiting time (the multiplier coeffici-

ents of the device are therefore Vy—* and Vy!). We let the prime
superscript on symbols indicate a functional dependence on v'. In
establishing the new central step size [see eq. (3)], minor differences
exist depending on whether

® Prllam| s v=1< 5 S Prilam)]| S v
or

@) Prllem)] <7< g0y S Prllam)] < v

We consider only (z), in which case the central step sizes are identical:
w'(n) = 2 & w(n) =1 and by = b; for all ¢ = 0. The waiting time

40 —

30—

20—

MEAN TIME FOR FIRST ARRIVAL OF STEP SIZE TO CENTER

INITIAL STEPSIZE

Fig. 3—Transient response of the adaptive quantizer.
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a0

0

20—

MEAN TIME FOR FIRST ARRIVAL OF STEP SIZE TO CENTER

-0.1 0 0.1 0.2 0.3 0.4 0.5
LOG g (INITIAL STEP SIZE)

Fig. 4—Transient response of the adaptive quantizer.

for the step size to adapt from identical initial step size Cy’ to final
step size C is Mg2;. From (55),

M = Lrej — k= 1)1
5]

Now, Sy = S; = Si; hence, making v/ = vy and keeping k and [ un-
changed has the effect of making the bound on the waiting time at
least twice as large for j >> k. This is a conclusion which is plausible
in the light of the linear form of the bound (55) since the effect of
making v/ = V' is to introduce twice as many transitions between the
initial and final step sizes.

4.3 Computational results

We present here a sampling of our computational results. It is
assumed that for every n, x(n) is normally distributed with unit
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variance. The optimal step size A in this case has the property that
Pr {|z(n)| < A} = 0.68. To center the stationary distribution of the
step size close to the optimal step size, we choose & = 1 and [ = 2.
Figure 3 plots the mean time for first passage to the optimal step
size vs. initial step size, and the initial step sizes chosen for this figure
exceed the optimal step size. Various values of y(M; = v7%, My = +%)
were used. Figure 4 provides the same information except that the
horizontal axis corresponds to logio A(0), rather than A(0) as in Fig. 3.
The mean first passage times M and M, were obtained by the method
outlined in Appendix C, and M, i = 3 were generated by using the
recursion in (46). To give some idea of the rate of convergence for
zM, eqs. (70) and (71), we tabulate some values of z;” for the case of

50

40

30

20

MEAN TIME FOR FIRST ARRIVAL OF STEP SIZE TO CENTER

0.1 0.3 05 0.7 08
INITIAL STEP SIZE

Fig. 5—Transient response of the adaptive quantizer.
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v = 1.1:

1 2 3 4 5 6 7 8 9 10
14 0.53 0.66 0.31 0.20 0.08 0.03 0.92 X 10~? 0.24 X 10~* 0.41 X 1073

x;“J' i

j: ‘ 11 12 13 14 15 16
zM: | 0.59 X 10~ 0.53 X 10~% 0.35 X 107¢ 0.13 X 10-7 0.30 X 10~ 0.31 X 10™™
Figure 5 is similar to Fig. 3 except that here the initial step sizes are
less than the optimal step size. Figure 6 plots the same information
with logie A(0), rather than A(0), on the horizontal axis. The mean
first passage time M, was obtained by solving (49) by the method
given in Ref. 17 and all other first passage times were generated by the
recursion in (46).

a0

30

20

MEAN TIME FOR FIRST ARRIVAL OF STEP SIZE TO CENTER

0
-1.2 -1.0 -08 -06 -0.4 -0.2 0
LOG 4p (INITIAL STEP SIZE)

Fig. 6—Transient response of the adaptive quantizer.
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APPENDIX A
Proof of Lemma 1
Proof:
(7) A" being in the form of a companion matrix, the coefficients of

the characteristic polynomial of the matrix are the elements of the
first row:

Clw) = (—1)*t det [A7" — uI]
= gkl oo gk — [apht a2 4 - o], (56)

o] = b:.:; oy = Ez;l_i_u’ rrry, O &= b—"+:;:_k_1' (57)
By Descartes’s rule the polynomial C(u) has at most one positive real
root. Since C(0) = — ax < 0 and C(p) — = as u— o, there exists
exactly one positive root. Let r denote this root.

Now C(l) <0 if la‘~ < (b,urz + b".|.1+1 + e b"+1+kf1). The latter
condition holds for all 2 = 0. Hence, r > 1.

(43) The left eigenvector A corresponding to the eigenvalue r satisfies,
by definition, aA;! = 9t Examining the component equations we
find that

=M1 d ) 1=iSL (58)
Also,
Mokt = S ot 4 b ] 1S PS ko (59)

Finally, rA\iyx—1 = axhr. Since the o’s are positive quantities, the state-
ment is clearly true.
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(72) The statement can be verified by inspecting the characteristic
polynomial C(u) and using the fact that the coefficients ay, - -, a;
each increase with 1.

APPENDIX B
Derivation ol equations (48) and (49)

The derivation of the equations governing the evolution of the
vectors z(n) defined in eq. (47) proceeds as follows. For convenience,
let X(n) denote the event 1 = w(r) = L for all r, 0 < r < n. Hence,
by definition,

zi(n) = Pr[wn) =7 and X,] 1=<j= L.
Since

Prlwn) =37 and X,_;]

zj(n)

¥ Prlw®) = jlom — 1) = 4, Xoalaln — 1)

i=1

biyjzieiin — 1), 1= 5=1,
aj-1 zi-i(n — 1) + bjzi(n—1), (I+1)= 7= (L—k)
aiizian—1), (L—k+1)=j=<(L-1),

f aiziln — 1) j= L.

i=L—Il

The above equations define the matrix D which relates z(n) to z(n — 1)
as in eq. (48).

For the derivation of eq. (49) we proceed as follows. For 7 = 1, 2,
-+, L, let

Fyn + 1) £ Pr [first passage occurs at (n + 1)|w(0) = 1]
=Prlow(n+1) 20, X,|w(0)=1]

= i bj zj(n) with z(0) = e, (60)

The vector e; has every element equal to zero except for the 7th element

which is unity. To express eq. (60) in vector form we let b £ [byby- - -by
0 - -- 0]J% Then, from (60),

Fin + 1) = b%z(n) with z(0) = e,.
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By definition, we have that the mean first passage time conditional on
the initial state being 7,

M;

Il

> (n+ DFi(n+1)

n=0

bt %D (n + 1)z(n)

Il

= b? §0 nz(n) + bt Zé:uz(n). (61)

Now the second term in the above expression is unity since the proba-
bility that passage occurs at finite time is unity. Now consider

[I —D] %1 nz(n) = 2 nz(n) — szlnz(n +1)

n=1

= 2 z(n) - z(0). (62)

Hence, denoting by 1 the column vector with every element equal to
unity, we have from (62) that

1[I — D] Z:,l nz(n) = 1* 2 z(n) — 1 (63)
= bt 3 nz(n), (64)
nzl

since 12(0) = 1 and b* = 1[I — D]. It only remains to consider
2 z(n) = [ > D"] z(0).
nz0 =0

The above series converges since every eigenvalue of the matrix D
lies strictly within the unit circle in the complex plane. The proof of
this follows from an old matrix theorem'® which states that if the
diagonal elements of the columns weakly dominate the sum of the
absolute values of the off-diagonal elements with strong dominance
holding for at least one column and the matrix is irreducible, then the
determinant is nonzero. Applying this theorem to [D — A[J, [A| = 1,
we note that the irreducibility of the original Markov chain implies
irreducibility of the matrix [D — AI] and that the weak column
dominance property holds everywhere while the strong column
dominance property holds for the first k¥ columns. Hence,

2 z(n) = [ ,é:o D‘] z(0) = [I — D]'z(0). (65)

nzl
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Putting together the above results we have (49), namely,
M;= % 2 where [I— DJx® = e,

izl

Observe that x¥ = 3z(n) and, from the definition of z(n), it follows
that every element of x is nonnegative.

APPENDIX C
Mean first passage times for the case k=1, =1

We have as our starting point eq. (49), namely,

M= 3 z2, (66)
J

where [I — DJx® = g; (67)

and we are interested onlyin1 <7 <L

The transformation that was made in Section 3.1 is equivalent to
the following: add to each row, r, of [T — D]allrows» + 1,7 + 2, - - -}
and do the same to the vector e;. This operation makes the matrix
[I — D] lower triangular, the reason being that with the exception of
the first column, the elements of all other columns of [I — D] sum to
zero. The resulting equations are as follows: the first component
equation yields

blei) = 1, (68)

and the next (I — 1) equations: 2 = r =< [,

1 if r=2

r—1
— X g’ + b, = (69)

=1
0 if r>aq.
Finally,

r—1
2 agz® for r>1L (70)

rj =l

| =

i =

The boundary conditions to the basic recursion in (70) are in (68) and
(69) which are, of course, solvable:

1<r<i 2 =1/ILb;
=1 . (71)
G+D=r=1 zf = (@ —-1) II b,
J=i+1
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