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Bent Optical Waveguide With Lossy Jacket

By D. MARCUSE
(Manuscript received December 20, 1973)

The influence of a lossy jacket on the curvature losses of a bent optical
waveguide s studied for the special case of the TE modes of a slab wave-
guide. This paper presenls an approximate theory of curvature losses of
the TE modes of dielectric slabs that can be used to obtain numerical
answers with the help of a computer. We conclude that the presence of a
Jacket can inerease the curvature losses very substantially. A jacket whose
refractive index is larger than that of the waveguide cladding is most
effective in increasing cladding losses. It is advisable {o keep a jacket al a
safe distance from the waveguide core.

I. INTRODUCTION

To avoid crosstalk between adjacent fibers in a cable and also to
suppress unwanted cladding modes, optical fibers for communication
purposes need lossy jackets.! Each fiber thus consists of a core of
refractive index n; and a cladding with index 7.. Since core and cladding
are made of low-loss materials, we consider n; and n, real constants.
The refractive index of the lossy jacket is considered complex :

ng = Ngr — N3 (1)
The negative sign is necessary since we use the time dependence

giot (2)
for the optical waves.

The guided-mode fields decrease in intensity exponentially with
increasing distance from the fiber core. At the boundary between the
cladding and the lossy jacket, the intensity of the modes should de-
crease to insignificant values. If the cladding is too thin, so that the
modes arrive at the cladding-jacket boundary with appreciable field
intensities, considerable amounts of power would be dissipated in the
lossy jacket, resulting in intolerably high waveguide losses. The de-
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signer must provide for a cladding of sufficient thickness to keep the
fiber losses low.

So far, we have considered a fiber that is perfectly straight. How-
ever, an advantage of optical fiber systems is that light transmission is
maintained as the fiber is curved. Since curvature of the fiber axis
distorts the shape of the guided modes,? it is necessary to study the
effect of the lossy jacket in the presence of fiber curvature. A curved
fiber radiates a certain amount of power even if its cladding extends
infinitely far from the core.?* The amount of radiated power is modified
by the presence of the lossy jacket.

It is the purpose of this paper to investigate the influence of the
lossy jacket on the curvature losses of optical waveguides. Because of
the complexity of the problem, we use the TE modes of the symmetric
slab waveguide as a model.

The following sections are devoted to the derivation of the theory.
Readers not interested in the theoretical details are advised to turn to
Section VI, on numerical examples.

Il. OUTLINE OF THE METHOD OF SOLUTION

A curved slab waveguide with lossy jacket is schematically shown
in Fig. 1. The core with refractive index n; has the full width 2d. The
center line of the core is curved with radius of curvature R. The clad-
ding with index n, has the thickness D — d. The refractive index of
the jacket is assumed to be a complex quantity. A straightforward
solution of this problem would involve writing down sclutions of
Maxwell’s equations in the five different regions of the structure.
These solutions can be expressed in terms of cylinder functions. The
waveguide modes are obtained by joining the solutions in the different
regions with the help of boundary conditions. This straightforward
procedure is not practical for the determination of the fiber losses. To
understand the difficulty, we must consider that the eylinder functions,
expressing the solutions of Maxwell’s equations, have very large order
numbers and arguments that are of the same order of magnitude as
the order numbers. The problem consists in finding the order number as
a solution of an eigenvalue problem. Since we expect to compute the
waveguide losses, the order of the Bessel functions must be a complex
quantity. We are thus faced with solving a determinantal equation
whose elements are cylinder functions of very large complex order.
Cylinder functions of this type cannot be computed with the help
of power series expansions. The functions must be obtained from
approximate asymptotic expressions. The solution of the complex
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_Fig. 1—Schematic of the bent slab waveguide with lossy jacket. The z-axis is
directed normal to the plane of the figure.

transcendental eigenvalue equation thus not only is a difficult numerical
task, but also may be expected to yield poor accuracy since we expect
the imaginary part of the eigenvalue (the order number of the cylinder
functions) to be small so that it could be obtained with high accuracy
only if the functions themselves are known to high precision.

Since the straightforward approach seems to present an almost
insurmountable obstacle, we use a different approach. Instead of
solving the problem sketched in Fig. 1, we begin by solving the simpler
problem that results if we let D — . The exact solution of the bent
slab with infinite cladding thickness still results in a complex eigen-
value, since radiation losses occur. However, we are not interested in
computing the radiation losses at this point and modify the eigenvalue
equation so that its imaginary part is neglected. We are now left with
a relatively simple eigenvalue problem. It is still necessary to compute
cylinder functions of large order and argument. But since only a real
eigenvalue is computed with the help of real cylinder functions, the
usual asymptotic approximations of the eylinder funetions can be used.

The next step of our approximate procedure consists in determining
the reflection and transmission coefficients of a cylindrical wave im-
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pinging on a cylindrical dielectric interface. Once this problem is
solved, we apply its solutions to the evanescent field tail of the guided
wave in the cladding. In this way, we obtain approximate field ex-
pressions for the field reaching into the lossy jacket. It is now a simple
matter to calculate the amount of power flowing from the guided mode
into the lossy jacket and to use it to determine the waveguide losses.

In the following sections, we outline the mathematical details of our
approximate procedure. The only difficulty encountered consists in
producing the cylinder functions of large order and, at least inside
the lossy jacket, of complex argument.

lIl. BENT SLAB WAVEGUIDE WITH INFINITELY WIDE CLADDING

We are interested in the TE modes of the curved slab. Using the
coordinates indicated in Fig. 1, we can express the z component of the
electric field in the three regions as

AJ, (nokr)e—**¢ O0<r<a
E, = {[BJ,(nikr) 4+ CN,(nikr)Je~*¢ a1 <r < as (3)
FH® (nokr)ee as <r < o,

The z coordinate is directed perpendicular to the plane of the figure.
The Bessel and Neumann functions of order » are J, and N,. The free
space propagation constant is defined as

k= %:I = WY €otto- (4)
The r and ¢ components of the magnetic fields are obtained from the
E. component by differentiation.!

i 10B, _ 1 »

B = oher a8~ omor @
_ —i9E.
qu“a;u ar (6)

The remaining field components E,, E,, and H, vanish. Since the waves
travel along the curved slab in ¢ direction, we can define the propaga-
tion constant of the guided mode

B=7 @

The requirement of continuity of the E. and Hy components at the
core boundaries r = a, and 7 = a; lead to the determination of the
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amplitude coefficients

nid (21N, (211) — nad, (211N, (211)

4 = T )N (an) = nad @)V, (@) ®)
nlJp(le)J;(xn) - an,:(xm)J,(xn)
= — 7 7 B
¢ nyd , (2) N, (211) — nad, (Z2) N, (211) ' ®
and
1

F = m;) [BJy(-UH) + CN..(:E12):I- (10)

The definition
Ty = nika; (11)

was used. The prime indicates the derivative of the functions with
respect to the argument.

The Bessel and Neumann functions are real. The Hankel function of
the second kind appearing in (3) and (10) is complex,

H® = J, —iN,. (12)

Because of the complex value of H{, the eigenvalue equation (that
results from the requirement that the determinant of the equation
system for the determination of A, B, C, and F vanish) is itself com-
plex, leading to complex solutions for ». However, for well-guided
modes we have

v > nokas 3> 1. (13)

The inequality (13) results, in turn, in
[Jy(229) | < [N, (222)]. (14)

The Hankel function is thus predominantly imaginary with a very
small real part. By replacing the Hankel function with the approxi-
mation

H® = —iN, (15)

in (3) and (10), we obtain the real eigenvalue equation

[nad ,(z1)d o (221) — oy (zan)d 2 (201)]
X [ﬂ1N.-(3322)N;($12) — n2N:($22)NM($]2):[
+ [, (@) N, (x11) — nad o (22) N, (211)]
X [nlJ,:(Ile)Ny(Iu) — naod,(T12)N,(222)] = 0. (16)

This eigenvalue equation has real solutions of » ignoring radiation
losses caused by waveguide curvature. However, the mode problem
that we have formulated describes the distorted fields in the curved
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waveguide accurately. The curvature losses are obtained later by ac-
counting for the amount of power that is lost in the form of radiation.
The power carried by the modes can be expressed as

P= [Aﬂ [ o (T = )+ J?] §

4w dv d
+ B [a: (J,H o, _, ‘”’*‘) + J”] N
dv d z
+ 2BC I:x (Jv+1 LN’ —J, ‘M) + J..N,,]m
arv dv .
N, 6N,,+1 5 | 712
+ C [ (Nv+1 61: N# 6?—' ) + Nr]zu
aN, ON 11 2 |
2 Ve _ LY vt1 .
+ |F| [x (N,+1 Ve v 2 ) + N] (17)

The notation [ ]2 indicates that the value of the bracket evaluated
at 2, must be subtracted from the expression evaluated at .. Since the
ratios of the amplitude coefficients are real quantities, A, B, and C are
assumed real. However, with approximation (15), F becomes imagi-
nary. The contributions of the lower limit 0 of the first bracket and of
the upper limit « of the last bracket may be neglected since the fields
decrease rapidly with increasing distance from the waveguide core.

IV. REFLECTION AND TRANSMISSION OF A WAVE AT A CYLINDRICAL
INTERFACE

Our solution of the mode problem of the bent slab waveguide
ignored radiation losses caused by the curvature and losses resulting
from the presence of the lossy jacket. We calculate these losses by
accounting for the outflow of power from the curved waveguide. To
obtain expressions for the power outflow, we study the problem of a
eylindrical wave that is impinging on a cylindrical interface between
two dielectric media.

Ignoring, for the moment, the presence of the waveguide core and
the jacket region that contains the center of curvature, we consider
a cylindrical wave in the region to the left of the interface between the
media with refractive indices n. and na,

E, = [GH® (nskr) + IH{" (nokr)Je* R +d <r <R+ D. (18)
According to time dependence (2), the Hankel function of the second

kind describes the incident cylindrical wave, while the Hankel function
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of the first kind belongs to the reflected wave. Inside the jacket we
have a transmitted wave

E. = KH® (nskr)e—ir¢ r>R+ D (19)

The corresponding magnetic field components follow again from (5)
and (6). Continuity of the E. and H; components is achieved if the
following relations hold between the three amplitude coefficients:

nsH P (y2) HP' (ys) — naHP (y2) HP (ys) Q (20)

I = ; ;
naH Y (y2) HP (ys) — naH P (ya) HP (y2)
and
_ naH (y2) H? (y2) — naHP (y) HP' (y2) G 1)
naH® (y) HP (ys) — naH® (y) HP (ys)
with

yi = nk(R + D). (22)

It remains to relate the amplitude @ to the amplitude F of the evanes-
cent field tail of the guided mode in the curved slab. Our treatment is,
of course, not exact, since multiple reflections of the wave between core
and jacket are ignored. However, if the refractive index differences
remain small, multiple reflections are unimportant. Furthermore, the
field intensity decays exponentially with increasing distance from the
waveguide core. The incident wave GH® (nzkr) is, thus, an evanescent
wave in most cases so that the effect of the core cladding boundary on
this wave is only very slight. Whether the ineident wave is an evanes-
cent or a propagating wave depends on the distance between core and
jacket. If this distance is small, the guided mode field behaves pre-
dominantly as an evanescent wave. If the distance between core and
jacket is large, the evanescent wave has converted itself to a traveling
wave before the jacket is reached. Our approximate procedure works
in either case for most cases of practical interest.

To obtain the relation between the amplitude G and the amplitude
F of the guided wave, we consider the field in the immediate vicinity
of the core boundary and equate the fields (3) and (18)

FH® (nokr) = GH® (nakr) + THD (nokr). (23)

It was explained earlier that we may approximate the Hankel function
of the second kind by (15). Likewise, we use the approximation

H} =N, (24)
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Using (15) and (24), we obtain from (23)

¢=—" (25)

1 — =

¢
The ratio I /@G is given by (20). We thus have determined the amplitude
of the wave that is incident on the jacket (at least approximately)
and can now compute the amount of power that is carried into the

jacket.

V. CALCULATION OF THE LOSSES

The amount of power outflow in r direction per unit length along
the waveguide axis (and also per unit length in z direction) is given by
the 7 component of the Poynting vector

S, = —%1 Re {E.H;}- (26)

If we denote by « the amplitude attenuation coefficient of the guided
wave, we obtain the power attenuation coefficient 2« from the relation

20 = —- (27)

This relation holds since P is by definition the amount of power carried
by the guided mode per unit length (in z direction). Using (6), (19),
and (26) we obtain

\/:olKl Im {nzHP (ys)HP" (ys) ) - (28)

The asterisk indicates complex conjugation and Im ( ) designates
that the imaginary part of the complex expression in brackets is to be
taken. The argument y; is defined by (22).

A small amount of power also flows into the jacket on the other side
of the waveguide, the side facing the center of curvature. However,
for reasonably strongly curved guides, this power outflow is orders of
magnitude smaller than the power outflow included in (28) so that we
may safely neglect it.

The solution of the loss problem is now reduced to a determination
of the cylinder functions appearing in our equations. We evaluate
(28) by using (8) through (10), (17), (21), and (25). The order of the
cylinder functions is determined as a solution of the eigenvalue equa-
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tion (16). As stated earlier, our method has the advantage that no
complex eigenvalue equation need be solved. Owing to the difficulty
of computing accurate values for the cylinder functions of large com-
plex order and large complex argument, a direct determination of the
losses with the help of the complex eigenvalue equation is hard to
achieve. Our method is straightforward in principle. We only face the
computational difficulty of determining the eylinder functions of large
real order and, at least for some functions, of large complex argument.
However, our present method does not require knowledge of these
functions to extreme accuracy.

In two limiting cases, the attenuation formulas for the curved slab
waveguide are known. For a straight slab with lossy jacket, we use
eq. (10.3-14), p. 420, of Ref. 4.

8,‘273 Im (p)e—E‘y(D—dJ

R T( Q) Y ey (29)

with
Kt = nik? — B, (30)
vt = Bt — nik?, (31)

and
p? = B* — nik®. (32)

The propagation constant 8 is obtained as a solution of the eigenvalue
equation

tan xd = ;1 (33)
for even modes and from

K

t d = —— 34
an « " (34)

for odd modes.
For a curved slab without lossy jacket but infinitely wide cladding,
eq. (9.6-27), p. 404, of Ref. 4 is available,
24,2
2 = Y
B + vd) (x* + )
If we use the eigenvalue 8 obtained from (33) or (34), we obtain good
results only for single mode guides or for very large radii of curvature.
Better agreement with numerical evaluations of (28) is obtained if we
use solutions of the eigenvalue equation (16) and calculate 8 with the
help of (7) and the other parameters from (30) and (31).

e2r? exp

298
—EEZR}- (35)
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VI. NUMERICAL EXAMPLES

The principal problem of evaluating the formulas of our theory con-
sists in generating the Bessel function of large real order and large
(sometimes) complex argument. The Hankel functions can be ex-
pressed in terms of Bessel and Neumann functions. These latter func-
tions are approximated by using the asymptotic formulas (9.3.7)
through (9.3.17) on p. 366 of Ref. 5 and eqs. (9.3.23) and (9.3.24) on
p. 367 of the same reference. It is not stated clearly in any reference
book on Bessel funetions that these asymptotic formulas are valid for
complex arguments. [This statement refers to the functions given by
(9.3.7) through (9.3.17).] However, the first terms of these expressions
can easily be derived either by using the integral representation of
Bessel and Neumann functions and the method of steepest descent or
[for J,(z) with » > ] by using approximate solutions obtained di-
rectly from the differential equation. Either method clearly holds also
for complex arguments. It may be that the convergence behavior and
the error estimates available for real arguments may not apply to

25
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Fig. 2a—Normalized A, component of the first guided mode for different radii of
curvature. The refractive indices are n, = 1.5, ny = 1.49666, kd = 174.533.
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Fig. 2b—Distribution of the electric field for four guided modes, n = 1, 2, 5, and
9 for R/d = 1000.

complex arguments, but at least the first terms of the asymptotic
formulas can be justified for functions with complex argument. For
this reason, these formulas were used even if the argument of the
cylinder functions is complex. This procedure appears even more valid
when we consider that in all cases of practical interest the phase angle
of the complex argument remains very small.

The derivatives with respect to the order number were generated
by taking the derivatives of the asymptotic formulas. Our method of
generating the necessary cylinder functions seems justified by the
excellent agreement that was obtained with formulas (29) and (35) in
all instances where such agreement could be tested.

Since the arguments of the eylinder functions are of the form nkr,
there are practical limits to the size of the radius of curvature of the
waveguide axis. For ratios of R/d in excess of 1000, exponent overflow
was encountered in the numerical calculations so that the limiting case
of a straight slab could not be approached very closely.

The distortion of the field distribution caused by waveguide curva-
ture is dramatically evident from the curves of Figs. 2(a) and 2(b).
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Figure 2(a) shows the shape of the normalized E. component of the
lowest order mode, labeled n = 1, for several values of R/d. The curve
for R/d = = was obtained from egs. (8.3-9), (8.3-12), and (8.3-18)
of Ref. 4. It is apparent that the core cladding boundary on the side
facing the center of curvature does not contribute to guiding the
lowest-order mode in case of sharp bends. It is also evident that sub-
stantial mode conversion must result if a curved waveguide section is
joined to a straight waveguide without tapering the curvature. Finally,
we see from the figure that the field is forced far deeper into the cladding
region by the waveguide curvature so that it tends to interact more
strongly with the lossy jacket.

Figure 2(b) shows the distribution of the E, fields for several modes.
Both figures were drawn for the following parameters: n; = 1.5,
ng = 1.49666, kd = 174.533. The important V parameter defined by

V = vn} — nikd (36)

assumes the value V = 17.46. The straight slab is thus able to support
11 TE modes. Figure 2(b) shows plots for the modes n = 1, 2, 5, and
9. We see that the higher-order modes occupy more of the available
space inside the waveguide core. The period of oscillation becomes
shorter toward the side of the core opposite the center of curvature.
However, the field amplitudes are largest on the side nearest the center
of curvature.

With regard to the normalization used for the electric field

component,
«\t [d
( .Un) \/; El, (37)

we must remember that the parameter P stands for the power carried
by the slab waveguide per unit length (in z direction).

All numerical examples discussed (with the exception of Fig. 12)
are based on the waveguide parameters given above. The propagation
constants 8 obtained from (16) and (7) are listed in Table I for all TE
modes that can be supported by the guide for B/d = 300, 1000, and
w . The values for R/d = = were obtained from the eigenvalue equa-
tions (33) and (34) for even and odd TE modes of the straight slab
waveguide. The table shows that the number of guided modes decreases
as the curvature of the guide increases.

Figure 3 shows the normalized loss coefficient 2ad as a function of
d/R for several modes of a slab without jacket. The horizontal dotted
lines appearing in this and all subsequent figures indicate the level of
1 dB/km and 10 dB/km loss for a guide with the slab half width
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Fig. 3—Curvature losses of a slab with infinitely thick jacket as a function of the
inverse radius of curvature for several TE modes. The refractive indices are n, = 1.5,
ny = 1.49666, kd = 174.533.

Table | — Values of the normalized propagation constant
B.d for all the TE modes of a curved slab
(n1 = 1.5, Ny = 1.49666, kd = 174.533)

Bnd

n
R/d = 300 R/d = 1000 R/d = =
1 262.461 261.958 261.795
2 262.270 261.870 261.783
3 262.111 261.797 261.762
4 261.840 261.734 261.732
5 261.498 261.676 261.694
6 261.621 261.648
7 261.569 261.594
8 261.513 261.532
9 261.436 261.463
10 261.381 261.386
11 261.224 261.303
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d = 25 pym. It is apparent how very strongly the curvature losses
depend on the radius of curvature of the waveguide axis. The losses
in decibels are obtained by dividing the numerical values, that are
read off the vertical axis of the figure, by the slab half width d and
multiplying by 4.34 (to convert the result to decibels).

For a comparison with formula (35), we state that the loss value of
the lowest-order mode for d/R = 0.001 is 2ad = 3.41 X 107" as
computed with the help of the theory presented in this paper. From
Table I we find for n = 1, 8:d = 261.958, so that from (31) we obtain
~d = 19.695. If we try to compute «* from (30) we find a negative
value. Therefore, we use the far-from-cutoff approximation «d = w/2.
Using these values in (35), we find 2ad = 3.37 X 107! in excellent
agreement with the value obtained from our theory. For the high loss
values appearing in Fig. 3, the agreement is not as good.

/
Y/
¥
T I’ / n,=1.49666
~ / / kd=174.533
/
107
-—_— ———{mﬁ
, km
|
10-8
r_._ .- _|=
km
107% -
10-10 ] | ] ] |
0 0.001 0.002 0.003 0.004 0.005 0.006

d/R

Fig. 4—Curvature losses in the presence of a lossless jacket. The normalized clad-
ding thickness is (D — d)/d = 0.3 and the refractive indices are n; = 1.5,
ns = 1.49666, kd = 174.533, ns = ny, ng = 0.
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Fig. 5—Curvature losses in the presence of a lossless jacket. The normalized
cladding thickness is (D — d)/d = 0.5 and the refractive indices are n, = 1.5,
ny = 1.49666, kd = 174.533, nsr = ny, na = 0

To gain insight into the effect that the jacket has on the curvature
losses, we have plotted the loss values that result if we use a lossless
jacket whose refractive index equals that of the waveguide core. Even
though the lossless jacket does not dissipate power, it causes the portion
of the evanescent field tail reaching the jacket to turn into a propagat-
ing wave and thus to radiate away. Figures 4 through 6 show the
curvature losses in the presence of the “high-index” jacket as a fune-
tion of d/R for several modes and for different values of the relative
cladding thickness (D — d)/d. Comparison of Figs. 3 and 4 shows
clearly the dramatic increase in the curvature losses for a thin cladding
with (D — d)/d = 0.3. As the cladding becomes thicker, the influence
of the jacket decreases, as seen in Fig. 5. The upper parts of the curves
in Fig. 6 already coincide with the curves of Fig. 3 for an infinitely
thick cladding. In this case, the field detaches itself from the guide
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Fig. 6—Curvature losses in the presence of a lossless jacket. The normalized
cladding thickness is (D — d)/d = 0.7 and the refractive indices are n; = 1.5,
ne = 1.49666, kd = 174.533, na, = n1, ny = 0.

inside the cladding so that the jacket no longer converts an evanescent
field tail into a radiation field, but simply modifies the radiation field
in an almost imperceptible way. These curves show that it is very
necessary to maintain the “high-index jacket’ at a sufficient distance
from the waveguide core.

The dotted lines in these and all following figures are estimated
curves. We pointed out that the computer program fails to function
for very large values of R/d. The solid lines are the results of the
numerical evaluation of our theory. The end points of the dotted
curves at d/E = 0 were computed from (29). The region between
d/R = 0 and d/R = 0.001 was bridged by the estimated dotted lines.

The curves for mode 8 shown in these and subsequent figures have
a special meaning. We want to use our slab model to gain information
about round fibers. If we consider a fiber with core radius @ = d and
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the same refractive indices used for the slab, the total number M of
fiber modes is proportional to the square of the total number N of slab
modes, M = KN? It is instructive to consider fibers capable of trans-
mitting at least half their total number of guided modes. The corre-
sponding number of slab modes is N’ = N/v2Z. With our numerical
values we have a slab supporting N = 11 modes. N = 11/v2 = 8 is
thus the mode number that corresponds to half the total number of
fiber modes. If the losses of mode n = 8 are just tolerable, but all
higher-order modes suffer too much loss, we know that we have found
operating conditions that would cause half the total number of fiber
modes to be lost. For this reason, we have included mode n = 8 in
our figures to be able to estimate the conditions that would allow half
the fiber modes to be transmitted. Figure 4 shows that only a very
small number of modes ean propagate with low losses in a fiber whose

Nq,=n,=1.49666
=104
ny,=10

kd=174.533
dB
km

dB
km

10-10 | | | ] |
0 0.001 0.002 0.003 0.004 0.005 0.006
d/R

Fig. 7—Curvature losses in the presence of a lossy jacket. The normalized cladding
thlckness is (D — d)/d = 0.3 and the refractive indices are n; = 1.5, n, = 1,49666,
kd = 174.533, ngr = N, ny = 1074
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core thicknessis D — d = 0.3d. For D — d = 0.5d, we see from Fig. 5
that more than half the fiber modes would suffer losses in excess of
10 dB/km even in the straight guide. This estimate is based on a jacket
with large refractive index, ni, = n1. For jackets with lower index,
the losses would be reduced. But to be on the safe side, it seems ad-
visable to design a jacket so that it does not cause excessive loss even
in the worst possible case. The conditions corresponding to Fig. 6
show that well over half the fiber modes are transmitted with low loss
as long as d/R < 0.0004.

Figures 7 through 9 apply to the case of a jacket with a refractive
index whose real part is matched to the cladding, ns = n, = 1.49666.
The imaginary part of the jacket index is n,; = 0.0001. This modest
value of the imaginary part of the refractive index results in a plane

1073
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== -05
d
n1:'\.5
108 n,=ny, =1.49666
. r13l=1Cl":l
w [ 2n5,k=60dB/cm)
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10 mﬂ
—_—— e e e e — ——) km
-8
10 1dEl
—_—_—m— pr=
1079
[,
-0 Ll 2 | ] | 1 |
0 0.001 0.002 0.003 0.004 0.005 0.006

d/R
Fig. 8—Curvature losses in the presence of a lossy jacket. The normalized cladding

thickness is (D — d)/d = 0.5 and the refractive indices are n, = 1.5, n. = 1.49666,
kd = 174.533, nar = na, na; = 104,
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Fig. 9—Curvature losses in the presence of a lossy jacket. The normalized cladding
thickness is (D — d)/d = 0.7 and the refractive indices are ny = 1.5, n. = 1.49666,
kd = 174533, Mar = Tia, Nag = 104,

wave loss in the jacket material that is given by
Qajucketd = 2??_15}{2(1. (38)

For our particular example, we have 2ej,reed = 0.035. For d = 25 um,
this cladding loss amounts to 61 dB/em.

Comparison of Figs. 7 through 9 with Fig. 3 for the case of the
infinitely thick cladding shows that the lossy jacket has a considerable
influence if it is located too close to the waveguide core. However, even
for (D — d)/d = 0.5, its influence on the curvature losses is only slight
and all but vanishes for (D — d)/d = 0.7.

A lossy jacket with ns, < 7. has only a very slight influence on the
waveguide losses, since the evanescent field tail decays even more
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rapidly in a medium of low refractive index. Therefore, no curves are
provided for this case.

Figures 10 and 11 show the influence of the imaginary part of the
refractive index of the jacket on the curvature losses. Figure 10 applies
to the lowest-order mode, n = 1, and shows the dependence of the
curvature loss on the logarithm of ny. for R/d = 500 and E/d = 1000.
It is apparent that the dependence of the loss on ns; is linear in regions
of the curve that are dominated by the losses in the jacket. For very
small values of n4;, the losses of the jacket become immaterial and the
curves approach asymptotically the curvature loss of a waveguide with
lossless, infinitely thick cladding.

The two curves in Fig. 11 dramatize this behavior. For B/d = 1000,
the losses of the third mode are still dominated by the loss of the

10-3
104
105
D—d
T =03
n=1 R/d =500
1076 — n=15
g n3r=n2=1.49655
o~
kd = 174.533
1077
dB
— — —— {10
10-8
dB
— — — —— —— 1"tm
109
10—7‘0 |
-7 -6 -5 -4 -3
LOG ny,

Fig. 10—Dependence of the curvature losses of the first mode on the imaginary
part of the refractive index of the jacket material. The normalized cladding thickness
is (D —d)/d =03 and the refractive indices are n1 = 1.5, n. = 1.49666,
kd = 174.533, ngr = na.
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Fig. 11—Dependence of the curvature losses of the third mode on the imaginary
part of the refractive index of the jacket material. The waveguide parameters are
the same as in Fig. 10.

jacket. For R/d = 500, the field already radiates away in the space
between core and jacket so that the losses are independent of the
power dissipation in the jacket. Both figures are drawn for
(D —d)/d = 0.3.

Finally, we discuss briefly a slab waveguide supporting N = 24 TE
modes. We use once more kd = 174.533 and n, = 1.5, but choose the
cladding index n, = 1.485. Figure 12 shows loss curves as functions
of d/R for the mode n = 17 for several values of the cladding thickness
D — d. The jacket is of the “high-index” type, with n;, = n, since this
condition results in high losses. Mode n = 17 separates the corre-
sponding modes of the fiber in equal halves. We see from Fig. 12 that
even for a straight guide half the fiber modes have losses in excess of
5 dB/km if the cladding thicknessis D — d = 0.3d. For D — d = 0.4d,
the losses of the straight guide are reasonably low; they become im-
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Fig. 12—Curvature losses in the presence of a jacket with ns = n1 for mode
n = 17 of a slab supporting 24 TE modes. The other parameters are n, = 1.5,
na = 1.485, kd = 174.533.

portant for d/R > 0.0015. The larger index difference of this example
has the effect of allowing us to use a slightly thinner cladding and
lower radii of curvature compared to the previous case with
ne = 1.49666.

VIl. CONCLUSIONS

The presence of a jacket can increase the curvature losses of dielectric
optical waveguide. It is thus important to keep the jacket sufficiently
far from the waveguide core. The worst possible case is that of a jacket
whose refractive index is slightly higher than the index of the cladding,.
However, we see an increase of the curvature losses caused by the
power dissipation in the lossy jacket even if the real part of the index
of the jacket is equal to the cladding index.
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A first indieation of trouble can be obtained by computing the losses
caused by the presence of the jacket from formula (29) for a straight
slab waveguide. (A corresponding formula for the HE), modes of the
round optical fiber can be found in eq. (10.4-22), p. 426, of Ref, 4.)
Even if the presence of a lossy jacket does not seem to increase the
losses of the straight guide above a certain tolerable level, it is im-
portant to keep in mind that waveguide curvature will increase the
values of the loss coefficient by orders of magnitude for sufficiently
tight bends.

The discussion of curvature losses in the presence of a lossy jacket
was based on considering TE modes of a slab waveguide. The general
behavior of the losses is expected to be the same for round optical
fibers. Since experience has shown that even the numbers obtained
from a slab model give the correct order of magnitude for round fibers,
the numerical example discussed in this paper may be used to estimate
the curvature losses of a round fiber with lossy jacket.
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