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This paper gives details of the analytical and numerical procedures used
to solve the basie problem of the scattering of a planej electromagnetic wave
by an arisymmetric raindrop. A nonperiurbative solution is obtained by
expanding the scaltered and transmitted fields in terms of spherical vector
wave functions, so that Maxwell's equations are satisfied exactly in the
regions exterior and interior to the raindrop, and by combining point
matching with least-squares fitting to satisfy the boundary condilions on
the surface of the raindrop with sufficient accuracy.

Numerical results are presented for scattering by oblate spheroidal rain-
drops, with eccentricity depending on (and increasing with) drop size,
for two orthogonal polarizations of the incident wave. The calculations
were made at 4, 11, 18.1, and 30 GHz, in the case in which the direction of
propagation of the incident wave is perpendicular to the axis of symmetry
of the raindrop, which is of interest for terrestrial microwave relay systems.
At 30 GHz, the calculations were also made for the case in which the angle
between the direction of propagalion and the axis of symmetry ts 70° and
80°, since different elevation angles are of interest for satellite systems.
These basic results were summed earlier over the drop-size distribution to
calculate the differential attenuation and differential phase shift caused
by rain, which are of importance in the investigation of cross polarization
in radio communication systems.
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We also derive the first-order perturbation approximation to the scatier-
ing by axisymmetric raindrops that are nearly spherical, which generalizes
Oguchi’s results for spheroidal raindrops with small ecceniricity. Some
simplifications that may be made in his formulas are pointed out. The
perturbation results serve as a useful check on the least-squares-filting
procedure applied to spheroidal raindrops with small eccentricity. In
addition, considerable improvement is obtained in the closeness of the
perturbation results to the least-squares-fitting ones, in particular for the
larger drop sizes, by perturbing about an equivolumic spherical raindrop,
with appropriate perturbation parameter, rather than perturbing about an
inscribed spherical raindrop, as did Oguchi. Similar comparisons were
also made earlier for the rain-induced differential attenuation and differ-
ential phase shift, and these quantities were calculated approximately at
frequencies up to 100 GHz, using the results corresponding to perturbation
about the equivolumic spherical raindrop. The perturbation resulls are
obtained quite inexpensively, whereas the least-squares-fitting procedure s
very costly.

I. INTRODUCTION

In a recent short note, the authors and Chu' gave calculated results
of differential attenuation and differential phase shift caused by rain,
based on scattering of a plane electromagnetic wave by oblate sphe-
roidal raindrops. These results are of importance in the investigation of
cross polarization in radio communications systems. In this paper, we
give details of the analytical and numerical procedures used to solve
the problem of scattering by a single raindrop, which were only out-
lined in the note. Although the results given in this paper are for
oblate spheroidal raindrops, the procedures are applicable for axisym-
metric raindrops that are not too nonspherical, and caleulations could
be made for raindrops that are more flattened on the bottom than on
the top, such as for the shapes determined by Pruppacher and Pitter.?

Two polarizations of the incident wave, designated I and II, are
considered, as depicted in Fig. 1. The factor e~*** has been suppressed.
In the first polarization, the electric field is parallel to the plane con-
taining the axis of symmetry of the raindrop and the direction of
propagation of the incident wave. In the second polarization, the elec-
tric field is perpendicular to this plane. The angle between the direction
of propagation and the axis of symmetry is denoted by a. In terrestrial
microwave relay systems, a=90° is of main concern, but other values
of o are of interest for satellite systems.
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The incident wave induces a transmitted field in the interior of the
raindrop and a scattered field. In the far field, the quantities of pri-
mary interest are the complex forward scattering amplitudes,® S1(0)
and S1(0). In the two polarizations considered, the polarization of the
far scattered field in the forward direction is the same as that of the
incident wave. Also of basic interest are the cross sections of the rain-
drop. The total cross sections @} and Qf* are given in terms of the real
parts of the forward scattering amplitudes by eq. (39), where &, is the
free space wave number. We also calculate the scattering cross sections
0} and Q. The absorption cross sections Qf and @QF are given in terms
of the total and secattering eross sections by (38).

In Section II, we discuss the formulation of the problem of the
scattering of a plane electromagnetic wave by a single raindrop.
Spherical coordinates are chosen with polar axis along the axis of sym-
metry of the raindrop, and origin interior to it, as in Fig. 2. The scat-
tered field is expanded in terms of solutions of the vector wave equa-
tion, with wave number ko, which satisfy the radiation condition. An
analogous expansion is assumed for the transmitted field inside the
raindrop, in terms of vector wave functions, with wave number k,
= Nk, which are finite at the origin. Here, N is the complex refrac-
tive index of the raindrop. The complex coefficients in the expansions
are to be determined by satisfving the boundary conditions, namely,
the continuity of the tangential components of the total electric and
magnetic fields across the surface of the raindrop.

In Section III, the incident field is expanded in a (complex) Fourier
series in the azimuthal angle ¢. Because of the axial symmetry of the
raindrop, the problem can be decomposed and the boundary conditions
satisfied independently for each term of the Fourier series. In Section
II1, expressions are also given for the forward scattering amplitudes
and the scattering cross sections in terms of the coefficients in the ex-
pansion of the scattered field. In addition, we express the total and
scattering cross sections for an elliptically polarized incident wave in
terms of those for the two linearly polarized incident waves under
consideration.

In Section 1V, we give expressions for the first-order approximations
to the coefficients in the expansions of the scattered and transmitted
fields for axisymmetric raindrops that are nearly spherical. These
results generalize those given by Oguchit* for spheroidal raindrops with
small eccentricity. Since our derivation follows closely the one given
by Oguchi, we omit most details. However, we point out some simplifi-
cations that may be made in his expressions.
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In Section V, we discuss an approximate nonperturbative solution
to the problem of scattering by an axisymmetric raindrop. For each
term in the Fourier series expansion in the azimuthal angle ¢, the four
boundary conditions should be satisfied on the cross-sectional bound-
ary curve 7 = R(6), 0 £ 6 = =, which defines the shape of the rain-
drop. Only a finite number of coefficients in the expansions of the
scattered and transmitted fields is considered. These coefficients are
determined approximately by requiring the boundary conditions to
be satisfied in a least-squares sense at a total number of points on the
cross-sectional curve that is greater than the number of unknown
coefficients.

In Section V, we also discuss the advantage of using least-squares
fitting rather than collocation, in which the total number of fitting
points is equal to the number of unknown coefficients that are then
determined by solving a system of simultaneous linear equations.
After we had completed the calculations for scattering by oblate
spheroidal raindrops at 4, 18.1, and 30 GHz, a paper was published by
Oguchi® in which he carried out similar calculations for & = 90° at
19.3 and 34.8 GHz and used collocation for the expansions in terms of
spherical vector wave functions. At 34.8 GHz, he also used an expansion
in terms of spheroidal wave functions and truncated the infinite system
of equations which he derived from the boundary conditions.

In Section VI, the least-squares-fitting program and some subsidiary
programs are discussed. The numerical routines used for calculating the
special functions that enter into the boundary conditions are also
deseribed. In addition, some indication of the running times involved
and the storage requirements are given.

In Section VII, we first discuss the checks that were made on the
least-squares-fitting program. These include comparison with the Mie
theory® of the results of scattering by spherical raindrops at different
angles of incidence. We also compare extrapolated results for oblate
spheroidal raindrops with small eccentricity to the first-order perturba-
tion results.

We then diseuss our calculations of the scattering by oblate sphe-
roidal raindrops, for which the ratio of minor to major semiaxis depends
linearly on the radius @ (in centimeters) of the equivolumic spherical
drop ; specifically,

a/b = (1 — a), ab® — a@. (1)

This relationship is similar to that used by Oguchi.*® The rain-induced
attenuation and phase shift were caleulated! for both polarizations by
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summing the real and imaginary parts of the forward scattering ampli-
tudes over the Laws and Parsons drop-size distribution, as quoted by
Setzer.” Thus, for rain rates up to 150 milimeters per hour, there are
14 different drop sizes, @ = 0.025(0.025)0.35, to be considered.

The calculations were done for wavelengths of 7.5, 2,727, 1.6575,
and 1.0 ¢cm, corresponding to frequencies of approximately 4, 11, 18.1,
and 30 GHz. The refractive indices N at 20°C were obtained from an
elaborate fitting equation in a recently published survey® of available
measured data (except at 4 GHz, for which older data were used, since
the calculations at that frequency were made at an earlier date). The
angle of incidence « was taken to be 90° at 4, 11, and 18.1 GHz, while
at 30 GHz the calculations were done for « = 70° and & = 50° also.
The calculated values of the forward scattering amplitudes S;(0) and
S11(0) are given in Tables II to VII, and those of the total cross sections
Q! and Q" and the scattering cross sections Q! and Q! are given in
Tables VIII to XIIIL. Section VII concludes by discussing some cal-
culations using collocation and mentioning some checks on Oguchi’s
calculations at 19.3 and 34.8 GHz.

In Section VIII, we compare three sets of first-order perturbation
results with those obtained by least-squares fitting for oblate sphe-
roidal raindrops. One set of results corresponds to perturbation about a
spherical raindrop with radius equal to the length a of the minor semi-
axis of the spheroidal raindrop, which was the procedure used by
Oguchi.* The other two sets correspond to perturbations about the
equivolumic spherical raindrop, with different perturbation param-
eters that are consistent for small drop sizes. Considerable improve-
ment is obtained in the closeness of the perturbation results to the
least-squares-fit results by perturbing about the equivolumic spherical
raindrop with the appropriate perturbation parameter. The compari-
sons are presented graphically in Figs. 3 to 14. The values of the
forward scattering amplitude S(0) and the total and scattering cross
sections @, and @, for the equivolumic spherical raindrops are given in
Tables XIV to XVII. These values are independent of the polarization
of the incident wave and of the angle of incidence a.

The three sets of perturbation results for the differential quantities
Q) — Qi and Im[S1(0) — S11(0)] are compared in Figs. 15 to 23 with
those obtained by least-squares fitting for oblate spheroidal raindrops.
Again, considerable improvement is obtained by perturbing about the
equivolumic spherical raindrop. In a recent short note,’ similar com-
parisons were made for the rain-induced differential attenuation and
differential phase shift. Moreover, these quantities were calculated
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approximately at frequencies up to 100 GHz, using the two sets of
results corresponding to perturbations about the equivolumic spherical
raindrop. The perturbation results are obtained quite inexpensively,
whereas the least-squares-fitting procedure is very costly.

The appendices contain some details that it was considered desirable
to omit from the main text.

Il. FORMULATION OF PROBLEM

We now consider the problem of scattering of a plane electromag-
netic wave by a single raindrop. Suppressing the factor e~**, where
is the angular frequency, the divergenceless electric and magnetic
fields E and H satisfy Maxwell’s equations'®

v X E = twuH, Vv X H = (¢ — we)E, (2)

where uo is the constant permeability, ¢ is the conductivity, and e is
the dielectric constant. Exterior to the raindrop ¢ = 0 and e = e,
while interior to it ¢ = ¢; and € = . The appropriate boundary con-
ditions" are that the tangential components of the total electric and
magnetic fields be continuous across the surface of the raindrop. Let

k? = wpolwe + o), (3)

with Re(k) > 0. Then the free space wave number is ko = w(uoeo)?
and the wave number in the raindrop is

k1 = NkO) (4)

where N is the complex index of refraction of water.
We consider two polarizations of the incident wave depicted in Fig.
1. We choose Cartesian coordinates (z, ¥, z) with origin interior to the

Emeikolxsina + zcosa ) SmlOED iekik:r
of

jeikar
E ielka
Epeikolxsina + zcostx) R kar

Fig. 1—Two polarizations of the incident wave.
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raindrop and z-axis coinciding with the axis of symmetry of the rain-
drop. The direction of propagation of the incident wave is perpendicu-
lar to the y-axis and inclined at an angle « to the z-axis. In the first
polarization, the magnetic field is assumed parallel to the y-axis and
the incident fields are given by

5
I

Er(cos ai — sin ak) exp [ko(z sin @ + 2 cos )],

(5)

L]
I

Ko E1j exp [tho(zx sin @ + z cos )],
wHy

where i, j, and k denote unit vectors parallel to the coordinate axes. In
the second polarization, the electric field is assumed parallel to the
y-axis and the incident fields are given by

i

fr = Enjexp [thko(z sina + 2 cos ) ]
and (6)

Il

. :Tka Er1(cos ai — sin ak) exp [tko(z sin « + 2z cos @) ].

0

We now consider the problem of representing the scattered and
transmitted fields induced by the incident wave. It is convenient to
introduce spherical coordinates (r, 6, ¢) with corresponding unit vee-
tors iy, is, and i3 as depicted in Fig. 2. Then the equations

VXM=kN, VXN=kM (7)
are satisfied by the spherical vector wave functions,?

dP\™! (cos 6) ia] ®)

i P""'(cos 0)is —

M...(k) = z,.(kr)e""”’[ Snd T

and
N (k) = e"""’[n(n + 1) =220 plml(cos 8)i; + [% + z,:(k'r)]

dP,I,"" (cos @) , m
X [ o de I sin ¢

Zn (kr)

Pl™ (cos G)ia]] - (9)

Here z, denotes a spherical Bessel function®® of order n and P.™' de-
notes the associated Legendre function” (of the first kind) of degree n
and order |m|, where m is a positive or negative integer, and n is an
integer with » = |m| and n = 0. The prime denotes derivative with
respect to the argument. As a matter of convenience, we have chosen
to use complex linear combinations of the even and odd spherical
vector wave functions,!
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Fig. 2—Cartesian and spherical coordinates.

Outside the raindrop, the total electromagnetic field is the sum of
the incident field of the plane wave and the scattered field. The scat-
tered field must satisfy the radiation condition and, consequently, in
view of egs. (2), (3), and (7), we assume expansions of the form

E' = = Z Z I[amnMgv)l(kﬂ) + bmnNgr)l.(kO)] (10)

m=—o n2|m
n#=0

and
) LU 5 [onN&(k) +buMBE], (D

WHOm=—oo n=|m
n#=0

where the superseript 3 denotes that spherical Bessel functions of the
third kind, i.e., spherical Hankel functions of the first kind, are used.
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Thus, in (8) and (9), za (ko) = A" (ker). For kor > 1,
@ N (—g)m+t ko
hn (kﬂr) k()T € k ’ (12)

so that the expansions in (10) and (11) involve outgoing waves.

Analogous expansions are assumed for the transmitted field inside
the raindrop except that, since the origin of the coordinate system is
interior to the raindrop, spherical Bessel functions of the first kind
must be used so that the field remains finite at » = 0. Also, the wave
number inside the raindrop is k,, as given by (4). Thus, we assume ex-
pansions of the form

@

E= - 3 z [emaMB (k1) + dma NS ()]~ (13)
and
H = 1 S [ComNB) + deaMBCe)],  (14)
ﬂ.),u(]m_fcﬂnna;ém

where the superseript 1 indicates that z.(kir) = j.(kwr) in (8) and (9).

The unknown (complex) coefficients Gmn, bmn, Cmn, a0d dnn in (10),
(11), (13), and (14) must be determined from the boundary conditions.
The surface of the raindrop is given by

= R(8), 0Z6=m, 0= ¢ = 2m, (15)

where it is assumed that R(6) is a single-valued, continuously differ-
entiable function of . The continuity of the tangential components of
the total electric and magnetic fields across the surface of the raindrop
implies that, for r = E(6),

B} + Ej = B, (16)

Hi+ Hj = ‘a, (17)

Bit+ B3+ 5% iy By = By + 3 Mo, (18)
... 1dR " 1 dR

Hi+ Hi+ 55 Hi+H) = Hi+ 557 (19)

where E; = E-i; and H,; = H-i; and the incident fields Ef and H?
are given by (5) or (6).
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Ill. FAR-FIELD QUANTITIES

Because of the axial symmetry of the raindrop, it is convenient to
expand the incident plane wave in a (complex) Fourier series in the
azimuthal angle ¢, and we write

©

Ei= S en(r,8em, Hi= > hu(r,6eme.  (20)

m=—® m=—m

It follows from (5} and (6) that
eL(r, 8) = Eifu(r,8),  hi(r,8) = Ex jT ga(r,0)  (21)
0
and

U, 0) = Buga(r,0), W0 = —Bu 2 £.010), (22
0

where expressions for f.(r, §) and g.(r, §) are derived in Appendix A
and are given by eqgs. (79) and (80).

If the boundary conditions (16) to (19) are multiplied by e~*"* and
integrated with respect to ¢ from 0 to 2x, then a set of four equations
involving the unknown coefficients @mn, bmn, €mn, and dmn is obtained
for each m. These equations are given by (81) to (84) in Appendix A,
where we have used the notations em; = €m-i; and hAn; = hy-i;. It
follows readily from (21), (22), and (79) to (84) that, for the first
polarization of the incident wave,

I I I — Rl
Gmn = — Omn,y bfmn = bmn;
I I 1 — dI (23)
i = —Cmny Al rin = dmn,y
and for the second polarization
I 1T
a,., = ai, b = —bhn, (24)
1T 11 _ 11
Comn = cHﬂ d—mn = _dmﬂ-

Thus, it is sufficient to consider only nonnegative values of m.

It is worth noting that, if the raindrop is symmetrical about the
plane 8 = #/2,ie., R(r — 8) = R(8),0 =< 6 = /2, then some further
reductions may be made. In particular, in the case @ = /2, it is found
that

O |m| +2s+1 = 0 = €l |m| +2s+1

25
brjm|+2s = 0 = dm.|m| 4269 (25)

and
Gniml+2s = 0 = i m| +25) 26)

bal'r{,|m\+2x+1 =0= dvr'rg:,iml-l-zs-i-l,

for s =0, 1, 2, - - -, so that alternate coefficients vanish. Reductions

964 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1974



may still be made in the case of a # 7/2 by considering the sum and
the difference of the boundary conditions corresponding to « and to
& = (r — a), as shown in Appendix B. We have not utilized these
reductions in the program for calculating the unknown coefficients,
since we wanted the program to be applicable to raindrops without a
meridional plane of symmetry, that is, those raindrops flattened more
on the bottom than on the top. However, (25) and (26) served as a
useful check on the program in the calculations for spheroidal rain-
drops with @ = x/2.

We describe in Section V how we obtain approximate values of (a
finite number of) the coefficients @.n, bmn, Cmn, and dma, but we now
turn to the quantities of physical interest. We consider only the far
scattered field, so that ke >> 1. Thus, we restrict our attention to the
leading term in the asymptotic expansion of the spherical Bessel func-
tion of the third kind, as given by (12). Also, it follows that

W’ o D™ e
RV (kor) e or, (27)
Then, from (8) to (11), it is found that
kore=krE*
= . dP™ (cos 6) m
~ — 7)yn+1 n 5 |m| .
m=Z_w @% (=) [amnl: ) is sinGP" (cos 6)12]
n#0
. dP)™ (cos 6) . M oim . .

— zb,,,,,[ d(8 )iy + ang Fh I(cos 8)13]16""” (28)

and

wpoH?® ~ koiy X E*. (29)

Of particular interest are the scattered fields in the forward direction,
corresponding to 8 = a, ¢ = 0, for which, from (76),

(cos ai — sin ak) = i, j =1 (30)

From (5), (6), (23), (24), and (28) to (30), it follows that the far

scattered field in the forward direction has the same polarization as the

incident wave for either polarization. The forward scattering ampli-
tudes are?

S:(0) = Eil (cos ai — sin o) lim {—ikore=*7Ef|s-a, pmo)  (31)

and

1., .. . )
S1(0) = FHJ' lim {—kore "*"Ef; | 9ma, p=o}. (32)
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Thus, for the first polarization of the incident wave,

L]

Ex$i(0) = 2 2 (=9

m=—w nz|m|
n#0
X[a,,.,. " Pl (cos a) + b d_f’é*-_fi‘i)] (33)

and for the second polarization,

EnSi(0) = i ZI (—o)nt2

m=—onx|m
n#0
|m|
x [agnc%?ma) + bl . oo P""'(cOSa)] (34)

The energy scattered by the raindrop is'®
1 2x T .
W, = 2 Re f f [E3(H* — E{(HD)*}* sin 0dbd o,  (35)
2 L] 0

where the asterisk denotes complex conjugate. The calculation of W,,
using the asymptotic form of the scattered fields given by (28) and
(29) and letting r — o0, is outlined in Appendix C. It is found that

woo 2 nn+1)(n + |m|)!
wpokom<= o niTm| 20 + 1)(n — [m])!
The scattering cross section @, is defined as the ratio of the scattered

energy flow to the mean energy flow of the incident wave per unit area.
Thus,®

(|@mn[? + [bmn]?). (36)

2wpoW
koE1EY '

2uwp W
kBB

The total (extinction) cross section is the sum of the scattering and
absorption cross sections, so that

Q= +Q, Q="+ (38)

(We note that van de Hulst'® uses the notations C.z, Cica, and Cau for
Q., Q,, and @Q,, respectively.) It is “known’’" that

Qi = Q' =

(37)

Q! = %’ETReSI ©0), QF = %’f ReSu (0), (39)

so that (38) may be used to determine the absorption cross sections Q%
and Q. The relations (39) which are consistent with the optical
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theorem may be verified directly from the relations

I _ 2“’.‘-‘0“”1 _ ZNFOWzH
" ko ELE koEnEr’

Q Q' (40)

and the expression for the total energy?®

2r

1 T ; .
W, = 5 Refu fo [Ei(H3)* + E5(H)*
— Ei(H5)* — E3(H3)*Jr? sin 0dfde, (41)

and a few of the details are given in Appendix C.

Let us now consider an (in general) elliptically polarized incident
wave that is the sum of the two linearly polarized incident waves
under consideration; i.e.,

E' = E{ + Ei (42)
Then the scattered electric field is

E® = Ei + Efy, (43)
and, as shown in Appendix C,

E(E1Q + EuEnQ)

(Qs = (
(ErEY + EukEn)

(44)

and

Q. = (E1E1QY + EuEnQM .
(ErEY + EnFu)

(45)

Since for polarizations I and II the far scattered field in the forward
direction has the same polarization as the incident wave, it follows from
(31), (32), and (43) that the far scattered field in the forward direction
for the elliptically polarized incident wave is given by

Tatkor
E*|pa, gm0~ Liech [E1S1(0)(cos ai — sin ok) + E1rSii(0)j].  (46)

Thus, from (39) and (44) to (46), it suffices to calculate S;(0), St:(0),
Q3% and QY. The relation between the polarizations of the incident field
and the far scattered field in the forward direction may be determined
from (42) and (46), using (5) and (6).

IV. FIRST-ORDER PERTURBATION THEORY

Oguchi considered spheroidal raindrops with small eccentricity and
carried out a perturbation expansion originally determining the first-
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order approximation* and later the second-order one.”® We have cal-
culated the first-order approximation for axisymmetric raindrops that
are nearly spherical, so that the surface of the raindrop is given by
r=R(),0 =60 < m, where

R(®) = a[l + ver(8) + ---], [v| « 1. (47)

Qur derivation follows closely the one given by Oguchi.* Since the cal-
culations are somewhat lengthy and involved, we merely outline the
procedure, state the results, and point out some simplifications that
may be made in the expressions given by Oguchi.

The incident wave may be expanded in terms of spherical vector
wave functions,*'® and the expansions are given by egs. (116) and (117)
in Appendix D. These expansions are consistent with those given by
Oguchi, but the reader should bear in mind that, in addition to using
the even and odd spherical vector wave functions, Oguchi has as-
sumed the time factor eti!, and his waves propagate in the opposite
direction to ours. Corresponding to (47), the coefficients in the expan-
sions (10), (11), (13), and (14) are expanded in the form

Omn = &0 + val + -+, bmn = bl + vbf2 + - -+, (48)
Gmn=crtr?%+yc§nlr);+ frty dmn=d£r?%+Vdg2t+ (49)

Appendix D indicates how these coefficients may be determined from
the boundary conditions (81) to (84).

The zero-order approximation, with » = 0 in (47), corresponds to a
spherical raindrop of radius a. We have, for n = |m| and n # 0,

¥ = QmnGn, DS = Bmnbn (50)
and
c:(r?:i = Q@mnCn, d}:?r)b = ﬁmndn, (51)
where
apn _ =120 4+ D)(n — m|)! m _ B
Ey na(n+ D+ [m])! s'map" (cos ) = En'’ (52)
1 —gatl _ | |m| : I
B _ —1"(2n + 1) (n — |m[)! dPy" (cosa) _ tomn (53)

By nln + 1)(n + [m])! da En’

and expressions for the quantities @, ba, ¢., and d. (which do not depend
on the polarization) are given by egs. (119) to (122) in Appendix D,
where p = koa and the functions F.(£) and G.(¢) are defined in (118).
For & = 0, the coefficients vanish unless |m| = 1, and the well-known
Mie solution® is recovered.
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The first-order corrections to the coefficients are given by

ay = Ja(Np)Xmn, i = b (p) X un, (54)

b = Gu(Np)Y s + 72(Np)Zun, (55)
and

4 = Falo) Vo + B () 2o, (56)
where

Xow = (1= N)pe, 3 [0GNaJE + io iVIE],  (57)
l=z|m
1#0

Yomn = (N? — l)padﬂr Zl: [ [e@ i(Np)it — idRG(Np) ],  (58)
TR0

and
Zpmn = —I(N? — 1)de£ ;I dil J1(N p)H7i. (59)
T=0 ‘

The quantities Hy;, I, and J5; in (57) to (59) involve integrals over
the perturbation of the raindrop surface from the sphere. Specifically,

2(n + |m|)!
2n+ (n — |m|)!

=1+ 1) f P|™ (cos 6) P (cos 6) sin 6a1(8)d8, (60)

= JCm

2n(n + 1)(n + |m])!
2n + 1) (n — [m]|)!
dP|™ (cos 8) dP\™ (cos 8)

- |: de de

Im = gm‘,

m?
sin? @

+ Pl™ (cos §)P'™ (cos e)] sin 01 (0)d6,  (61)

and

2nn + D(n + |m|)! . .
@2n+ 1)(n — [m[)r o™= "
T [m|
= mﬁ [PJ”"(COS 6) O!P"T(;OSB)

dPJm] (COS 0) |m]
4 AP (03 0) pimi

cos 0) ]o’l (@)de. (62)

The above results were obtained after considerable algebra and
after using the simplifications given in eqs. (125) to (131) in Appendix
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D. The expressions in (54) to (56) hold for both polarizations of the
incident wave, and the only quantities therein that depend on the
polarization are the zero-order coefficients ¢} and d;}, which enter into
the expressions given in (57) to (59) and are given by (51) to (53).
In general, there are infinitely many terms in the sums in (57) to (59),
but in particular cases there are only a finite number of terms.

Thus, for a spheroidal raindrop with

R@®) =a(l —vsin?8)* = a(l + Zvsin?f + ---), (63)

we have o1(8) = 3 sin? 6, from (47). The integrals in (60) to (62) may
be evaluated explicitly, and it is found that H7} and I7; vanish unless
l=mn,n+ 2 orn — 2, and J% vanishes unless = n — 1 orn + 1. The
explicit expressions for these quantities are given by eqs. (137), (139),
and (142) in Appendix E, in which §;. denotes the Kronecker delta,
i.e., 8;» = 1 forl = n,and 0 otherwise. We have verified that our results
for the spheroid are consistent with those of Oguchi,® provided that
simplifications corresponding to those in eqgs. (123) and (127) to (130)
are made in his expressions, and due allowance is made for the differ-
ences in notation. We remark that similar simplifications may be made
in Oguchi’s expressions even in the case in which the permeability of the
spheroid differs from the free space value.

As is seen later, it is advantageous to obtain the first-order approxi-
mation for a spheroidal raindrop by perturbing about the equivolumic
sphere, rather than the inscribed sphere as Oguchi* did. If @ is the
radius (in centimeters) of the equivolumic sphere, then, from (1),

a=a(l — a), v = a2 — a). (64)
Hence, from (63),

R(6) = a[l + 2a(3sin’*6 — 3) + 0(a*) ]
= g[l + »v(3sin28 — 3) + 0(»®) 1. (65)
We must now replace p by 3 = ko@ and add terms to the expressions in
(60) to (62) corresponding to #:() = —%. It is readily found, using the
orthogonality relation for the Legendre functions' and equations (102)
and (103), that these additional terms correspond to

Tn = —in(n + o, I = —3bm, Ji=0. (66)

We also remark that the use of the perturbation parameter » = 24,
rather than v as given by (64), generally gives better results for the
larger drop sizes.
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V. LEAST-SQUARES-FITTING PROCEDURE

We now discuss the calculation of an approximate nonperturbative
solution of the scattering problem. As mentioned in Section III, it is
sufficient to determine the unknown coefficients for nonnegative values
of m and then to use the relationships in (23) or (24). Form =0, 1, 2,

., the boundary conditions in (81) to (84) take the form

Kmq(a) - n§m [amnAmnq(e) + bmﬂanq(B)
n#0
+ Cmnomnq(g) + dmﬂDmnq(e)] = 0 (67)
forg=1,2,3,4and 0 0 = m, where

Kmi(®) = ens(R(©),0),  Kna(6) = ““ hoa(R(6),0), (68)

ko
Kes®) = ens(RO),0) + 555 5 ems(R (), 0), (69)
and
Kas® = 220 hs(RO),0) + 05 55 P RO, 0) | (70)

The function R (#) describes the shape of the raindrop. The functions
émj = €m-i; and hn; = h,.-i; are given by (21) or (22), depending on
the polarization of the incident wave, where expressions for fa(r, )
and g,,ir, #) are given by (79) and (80). The functions Am.,(6),
Bng(0), Coung(@), Dmno(8), which do not depend on the polarization,
involve the spherical Bessel functions of the first and third kinds and
the associated Legendre functions and the derivatives of each of these
functions. In view of (4), the argument of the spherical Bessel functions
of the first kind is complex.

For each m there are infinitely many unknown coefficients @mn, bmn,
Cmn, 80d d,.. To obtain an approximate solution, only a finite number
of coefficients is considered. One procedure is to truncate the sum in
(67) at n = N,, say, and then to satisfy the boundary conditions at
the points 8 = 0y, =1, ---, (No — m + 1 — 8mo), which are ap-
propriately selected, e.g., uniformly spaced in the interval 0 to «. This
was the procedure adopted by Oguchi,® and it leads to a system of
simultaneous linear equations for the coefficients. We refer to this pro-
cedure, in which the total number of fitting points is equal to the
number of unknown coefficients, as collocation.

The method of collocation was used by Mullin et al.* for the much
simpler two-dimensional scalar problem of scattering by a perfectly
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conducting cylinder of smooth contour, which is not a gross perturba-
tion from the circular. In this problem, there is only one set of unknown
coefficients to be determined, namely, that occurring in the expansion
of the scattered field. Mullin et al. checked the results for the circular
cylinder obtained by collocation with the known analytical results and
also considered elliptic eylinders (with ratio of minor to major axis of
2 in particular). Before tackling the raindrop problem, we considered
the same problems as Mullin et al., but combined point matching with
least-squares fitting.

Thus, instead of using colloeation, we satisfied the (single) boundary
condition in a least-squares sense at a larger number of points than the
number of unknown coefficients in the truncated expansion of the
scattered field. We found that a significant improvement could be
obtained in the overall fit of the boundary condition, although the far
field quantities were not affected as significantly. This is because the
higher-order coefficients are more significant on the boundary than in
the far field. However, the accuracy of the lower-order coefficients is
affected by the goodness of fit of the boundary condition. With colloca-
tion, there were much larger errors in the boundary condition (in
between the fitting points) than with least-squares fitting with a suffi-
ciently large number of points.

Since the fit of the boundary condition for the elliptic cylinder be-
comes poorer with increasing eccentricity, we considered it desirable
to use least-squares fitting rather than collocation for the raindrop
problem. Thus, in order to approximately satisfy the boundary condi-
tions (67), we minimized the quantities

4 Am Nm
Am = El Wimng EZI ll('mq(_eim) - Z I:amﬂAmnq(glm)
q= =

n=m

n=0

+ bmannq(ﬂlm) + CmnCmnq(alm) + dmrl-Dmﬂq(al"I):lI2 (71)

for each m = 0, - - -, M, with respect to the (complex) coefficients am»,
bmny Cmn, and dnmn, where w,, > 0 are appropriate weights and 6, are
appropriate points in the interval 0 to «. It is assumed that

Am = Np—m 41— bpo, (72)

so that the total number of fitting points is not less than the number
of unknown coefficients to be determined. In the case of equality in
(72), least-squares fitting is equivalent to collocation.

The programs for carrying out least-squares fitting and for calculat-
ing the special functions occurring in the functions in (71) with argu-
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ment 8., are described in the next section. Actually, more flexibility was
built into the least-squares-fitting program, allowing for truncation of
the sums in (67) at different limits for each of the coefficients @mn, bmn,
Cmn, a0d d,,p, and for A and 8;,. in (71) to depend on g, so that each of
the four boundary conditions could be fit at different points, and in
particular at a different number of them. It was anticipated that the
least-squares-fit subroutine might become overloaded, in which case
it would be desirable to hold the number of coefficients to a minimum.
It turned out, however, that the subroutine was able to handle almost
100 (complex) coefficients without difficulty. Similarly, it might be
desirable to keep the total number of fitting points to a minimum, and
hence to use fewer fitting points for those of the four boundary condi-
tions that are easier to fit. Again, it was not found necessary to do this
for the caleulations carried out so far.

For the calculations of this paper we took the weights to be inde-
pendent of m and ¢, i.e., wmq = 1, since it was generally found that the
difference was tolerable between the magnitudes of the maximum error
in the fit of each of the four boundary conditions. We at first considered
factoring out (sin @)™, for m = 2, from the boundary conditions (67),
but decided against it since we felt that the absolute, rather than the
relative, error in the fit of the boundary conditions was important.
However, because of the presence of this factor, we did experiment
with unequally spaced fitting points which were closer together in the
neighborhood of =/2. We decided that equally spaced fitting points
would suffice, provided that enough were used. The total number of
fitting points was usually taken to be slightly more than twice the num-
ber of unknown coefficients, i.c., Ay > 2(Nm — m + 1 — 8ma).

Generally, N, the upper limit of n in (71), was taken to be inde-
pendent of m, i.e., Nm = No,m = 0, - - -, M. The choice of Ny and M
depended both on drop size and on frequency. The choice of M was
based on the rate of convergence of the outer sums in the expressions
in (33), (34), and (36) for the far field quantities. On the other hand,
to ensure the aceuracy of the lower-order terms in the inner sums, it is
necessary to take more terms in n than are really needed in the cal-
culation of the far field quantities. A convergence test was carried out
by doing the calculations for N,. = No, (Mo + 2) and (N, + 4).

VIi. NUMERICAL ROUTINES

The program to compute the complex coefficients Gmn, bmn, Cmny Gmn,
the scattering cross section @., and the forward scattering amplitude
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8(0) for the two polarizations of the incident wave is written in Fortran
IV for a Honeywell 6070 computer. It uses the complex arithmetic and
math routines (such as sin, cos) written for that system. The program
is written as a three-part package; the first part consists of a driver
routine which sets up core storage for the least-squares matrix and
associated veetors and the following subroutines:

L2FIT—The main subroutine which computes the elements of the
complex matrix for input to the least-squares-fitting pro-
cedure and controls the other subroutines.

CLSTSQ—Computes a least-squares fit for a linear system with com-
plex coefficients; the algorithm and Fortran routine were
written by P. Businger of Bell Laboratories.

BJYNC—Computes the Bessel functions J.(z), ¥.(2), for z complex,
n a nonnegative integer; the algorithm and Fortran sub-
routine package were written by E. Sonnenblick of Bell
Laboratories.

SBES—Computes the spherical Bessel functions 7. (z), ¥ (z),  real,

n a nonnegative integer.
CSB—Computes the spherical Bessel function j.(z), 2 complex,

n a nonnegative integer.

SLEG—Computes the associated Legendre functions Py (cos 6), m,
n nonnegative integers.

The second part of the package is the routine

SQS—Computes the forward scattering amplitude S(0) and the
scattering and total cross sections @,, @, for both polariza-
tions from the least-squares-fit solutions.

The third part is a computational check on the least-squares fit. It
consists of a driver routine as in the first part, the function subroutines
BJYNC, SBES, CBS, SLEG, and the main subroutine

CHECK—Checks the accuracy of the least-squares computation of
@mny Bmny Cmny dms by using these coefficients to compute the
boundary fit at points in addition to those used to obtain
the coefficients.

The internal computations of all the subroutines except CSB (see
detailed description below) are done in double-precision arithmetic;
on the Honeywell 6070 this means 18 digits are used for all computa-
tions. The function values (Bessel, spherical Bessel, Legendre), how-
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ever, are returned as single-precision numbers (8 digits), since the
accuracy of any more digits could not always be guaranteed.

The main subroutine, L2FIT, sets up the complex matrix to mini-
mize the quantities (71). Instead of the limit N, in (71), the program
actually breaks the summation on n into four parts, using limits am,
Bm, Ym, 0m for the coefficients @ms, Dmn, Cms, dmn, respectively ; further,
it replaces the limit A, in the sum on ! with four limits, Am,. Thus, for
eachm = 0, 1, ---, M the matrix equation to be minimized takes the
form ||A-x — b|| &2 0, where A is an L-by-N matrix with L, N, which
are both dependent on m, defined as follows:

L=thq

g=l1
and

N =an+Bn+ vn+ 0n —4(m — 1+ dmo).

Although the basic functions (Bessel, Legendre, and derivatives of
these) are returned to L2FIT in single precision, the calculations of the
elements A mug, Bmng Cmngy Dmng in the least-squares matrix and Kn,
in the vector of constants, b, are carried out and left in double precision
for input to the least-squares-minimization program. To facilitate
changing the raindrop shape and spacing of points on the boundary,
the quantities 8;,, and E(6:») are computed in subroutines called by
this routine.

The routine CLSTSQ uses elementary Hermitian (or Householder)
transformations to compute a linear least-squares solution to the
equation ||[A-x — b|| = min. The algorithm is an adaptation of an
algorithm for a real matrix written by P. Businger and G. H. Golub.?!

The routine CHECK uses the coefficients @mn, bmn, Cmn, dmn from
CLSTSQ as input into the expressions in (67) to compute the fit of
the boundary condition in between the fitting points as well as at the
fitting points. The goodness of this fit provides a check on the accuracy
of the computed coefficients.

The computation of the elements for the least-squares matrix and
constant vector requires values of J.(z), j(z), ya(z), ja(2), Py (cos 8),
where z and @ are real, z is complex, and n and m are nonnegative
integers. The routine to compute J,.(z), BIYNC® uses a downward
recursion scheme (compute Jy, Jy_1, - - -, Jo) for [z| > 0.1 and uses
the power series expansion of J,(x) for |z| = 0.1. Comparison of the
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results of this routine with tables in Abramowitz and Stegun® for
values ranging from 0 to 5 ylelded complete agreement in all cases.

The real spherical Bessel functions, j.(z) and y.(z), are computed
recursively in the routine SBES using the algorithm of D. S. Drum-
heller,2* an improved version of Miller’s algorithm.

Miller’s algorithm for j.(z) is: Let gny41(z) = 0, gn(z) = 1072 {some
small fixed number) ; generate gy—1(z), - - -, go(z) from the recurrence
relations, ¢._1(z) = (2n + 1)27'ga(z) — gns1(x), satisfied by the
spherical Bessel functions ;2 compute jo(z) = z7!sin z; normalize Ji(x)
_ Jo(®) , _
= g;(z)-gu(m) ,1=0,1, -+, N.

Drumheller’s algorithm generates ascending orders of ya(z) re-
cursively, starting from Rayleigh’s formulas® for yo(z), y1(x) up to
some order N, where N is strictly limited only by the relation

yx(z) < max — the largest number the computer can handle
(for the Honeywell 6070, max =2 10%).

Letting
fn@) =0,  fya(@) = —(@y~(@)™

the algorithm then generates fy_2(z), - - -, fo(2) recursively, using the
recurrence relations satisfied by the spherical Bessel functions. Al-
though, as Drumheller points out, fo(z) = jo(z) to some degree of
precision (determined to a large extent by N), to ensure exactness in
the lower orders of j.(z) and to shift any error to the higher-order,
smaller-magnitude terms, we calculate jo(z) exactly and normalize
ji1(2), -+, jn(z) as in Miller’s algorithm. We compared these results
to tables in Abramowitz and Stegun?® and in the U. S. Math Tables
Project? for the values of n and the range of z used in the least-squares
fitting, and the agreement was excellent.

The complex spherical Bessel function, j.(z), is computed in the
routine CSB, using an algorithm designed by A. E. Kaplan,* since
Drumbeller’s (or Miller’s) recursive algorithm yields inaccurate results
for complex arguments with a significant imaginary part. Kaplan uses
a Taylor series expansion to compute jy(2), jv-1(2), with N = |z|?
for best results, then uses the backward recursion and normalization
techniques discussed above to generate jy—_2(2), - - -, jo(2). The use of
the Taylor series for ‘“large’” complex arguments produces better start-
ing values and, therefore, more accurate recursion results than either
Drumbheller’s or Miller’s algorithm. A ‘“large” complex argument in
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this case is one such that |z] = 9; for [z| < 9, we use Drumheller’s
algorithm directly. In this routine, complex arithmetic is used for all
internal computations; thus, since the Honeywell 6070 does not have
double-precision complex arithmetie, all computations are in single
precision. The accuracy of the results of this routine was checked by
the following comparisons :

(7) For zreal, they were compared to the spherical Bessel functions
in Abramowitz and Stegun?® and to results from SBES.

(#7) For z pure imaginary, they were compared (multiplied by ap-
propriate factors) to the modified spherical Bessel functions
of the first kind in Abramowitz and Stegun.”

(742) For z any complex number, they were compared to Rayleigh’s
formulas® of order 0, 1, 2 (a straight computation of Rayleigh’s
formulas produces inaccurate values for higher orders).

For all values of z (from |z| = 0to |z| = 50) and for order = as large
as we could compute (or as large as we could compare to in tables or
formulas), this routine produced answers agreeing in six to eight
decimal places with the other results.

The associated Legendre function Py (cos#8) is computed directly
from its series expansion, in powers of sines or cosines, as given by
L. Robin.® It should be noted here that we use the following definition
for P7(cos 8},
d™P,(cos 6)

Pl (cos ) = (—1)msin™@ A(cos )™’

whereas Stratton® omits the factor (—1)™. Comparison of the results
of this routine to explicit formulas for m < 4, n = 7 yielded eight
places of agreement. Further checks of this routine against tables given
by 8. L. Belousov® and tables in the U. 8. Math Tables Project® were
done by 8. Hoffberg for the values of m and n used in the least-squares
fitting ; her results also found complete agreement in all cases.

In the scattering problem, the matrix and vector sizes, as well as
the highest order needed for the functions, depend on drop size and
frequency ; the sizes required by these parameters are discussed in the
next section. Here, we give approximate running times for each of the
three parts of the package and give some feeling for the correlation of
the least-squares matrix size and the limit max m with the overall core
storage and run time in the first part. In (71), we generally took N,
= N, and A, dependent upon N, and decreasing with m (form = 1).
Then the largest matrix size occurs when m = 0, and is thus a function

ELECTROMAGNETIC WAVE SCATTERING 977



of N, alone. Tabulated below are some typical storage and run time
figures for the least-squares fit.

Largest Apgroxima.te Ap{‘)roxima.t.e
max m Ny Matrix Size torage  Run Time (hours)
6 13, 15, 17 164 X 68 70 K 0.13
7 15, 17, 19 180 X 76 80 K 0.2
8 19, 21, 23 212 X 92 103 K 0.39

In each of the above cases, we computed a set of coefficients amn, bmn,
Cmny Gmny W = m, -+, No (n % 0), form =0, 1, ---, max m, and for
each of the three values of N,.

The second and third parts require much less storage because neither
requires a large storage matrix. The total core requirement to run SQS
is 12 K ; it computes the quantities S(0), @,, Q. in typically less than 1
second. The third part uses 35 K to do the calculations for 428 rows and
92 columns (more rows are needed because the boundary fit is checked
at @ values in addition to those used to obtain the coefficients); to
check the L2FIT results for No = 23 required approximately 0.05
hours.

As a final note, we save the coefficients computed from L2FIT on
magnetic tape. At first, all coefficients were written on tape and the
second and third parts used the tape as input; this proved very in-
efficient, due in part to the high cost of tape usage and in part to the
fact that we were saving all data generated. We switched to writing
the data from each run of L2FIT onto a high-speed disc file, using this
as input to the other two parts; this change resulted in a noticeable
cost reduction and allowed us to permanently save only the best data.

Table | — Raindrop parameters for different drop sizes
a(em) a(cm) v
0.025 0.02458158 0.049375
0.05 0.04831913 0.0975
0.075 \ 0.07120149 0.144375
0.1 0.09321698 0.19
0.125 0.11435330 0.234375
0.15 0.13459757 0.2775
0.175 0.15393617 0.319375
0.2 0.17235477 0.36
0.225 0.18983822 0.399375
0.25 0.20637045 0.4375
0.275 0.22193444 0.474375
0.3 0.23651206 0.51
0.325 0.25008398 0.544375
0.35 0.26262956 0.5775

978 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1974



Table 1| — Forward scattering amplitudes at 4 GHz
with « = 90° for different drop sizes

d(cm) S1(0) S1(0)

0.025 6.9215 X 10~® — 8.6909 X 107%; | 7.3309 X 1078 — 8.9487 X 10~%
0.05 5.8893 % 10-7 — 6.8473 X 107% | 6.5803 X 1077 — 7.2647 X 107%
0.075 2.2523 X 10-6— 2.2822 X 107% | 2.6370 X 107¢— 2.4970 X 10+
0.1 6.3705 X 106 — 5.3582 X 107 | 7.7684 X 1076 — 6.0510 X 107
0.125 1.5414 X 10~5 — 1.0399 X 1073 1.9518 X 1075 — 1.2134 X 107%
0.15 3.3841 X 105 — 17918 X 1073 | 4.4527 X 105 — 2.1630 X 1073
0.1756 6.9433 X 105 —2.8484 X 10~% | 9.5324 X 105 — 3.5628 X 1073
0.2 1.355656 X 10~ — 4.276 X 107% 1.9565 X 107t — 5.552 X 107%
0.225 2.5561 X 107 —6.154 X 1073 3.916 X 10¢ —8.318 X 107%
0.25 4.68 X 100* — 8590 X 107% 7097 X104 —1.212 X 107%
0.275 8.456 X 10¢ — 1.170 X 107% 1.5563 X 10% — 1,735 X 107%
0.3 151 X 1072 — 157 X 107% 3.20 X 108 —2.46 X 107%
0.325 272 X 107 —2.08 X 107% 6.96 X 103 —3.47 X 107%
0.35 4.9 X 1073 — 27X 10% 1.63 X 102 —48X 102

Vil. LEAST-SQUARES-FITTING RESULTS

We begin by discussing the different ways in which the least-squares-
fitting program was checked. First, calculations were carried out at
both 4 and 34.8 GHz for centered spherical raindrops, corresponding
to R(6) = a in (15). The results were compared with the calculations
based on the zero-order solution given in Section IV, corresponding to

= 0 in (47). Comparison was made for several values of a and differ-
ent values of «, and excellent agreement was obtained for the far-field
quantities, generally to six or seven significant figures. As expected,
the far-field quantities are independent of the angle of incidence a.

Table |l — Forward scattering amplitudes at 11 GHz
with « = 90° for different drop sizes

a(cm) 81(0) S1(0)
0.025 4.8189 X 10-*— 1.8194 X 10~% | 5.0841 X 1075 — 1.8734 X 10~%
0.05 5.9423 X 10~5 — 1.4657 X 107% | 6.5120 X 1075 — 1.5555 X 1073%
0.075 3.6151 X 10~ — 5.0737 X 107% | 4.0920 X 10~ — 5.5577 X 107%
0.1 1.6675 X 10— — 1.2532 X 107% | 1.9652 X 1073 — 1.4186 X 107%
0.125 6.5377 X 103 — 2.5280 X 107% | 8.0766 X 1078 — 2.9419 X 107%
0.15 2.0100 X 10~ —4.0292 X 107% | 2.4674 X 1072 — 4.6783 X 107%
0.175 3.7203 X 10-2 —4,7914 X 107% | 4.1732 X 1072 —5.8328 X 10%
0.2 4735 X 102 — 5734 X 1074 | 5.492 X 102 —8.098 X 107%
0.225 5.958 X 102 — 7.504 X 10-% | 7.920 X 102 —1.1621 X 107%
0.25 7.67 X 1072 —90.68 X 107 1.173 X 101 — 1.580 X 107
0.275 9.80 X 10 —1.225 X 1074 | 1725 X 10" — 2.060 X 107%
0.3 1.20 X 10 —1.51 X 1074 2.51 X 100 —2.54 X 107%
0.325 1.67 X 100 — 178 X 104 3.54 X 107 — 293 X 107%
0.35 21X 107 —20 X 1074 48X 10t  —31X 104
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Table IV — Forward scattering amplitudes at 18.1 GHz
with « = 90° for different drop sizes

a(em) S1(0) S11(0)

0.025 | 4.0158 X 1075 — 8.1579 X 107% | 4.2246 X 10~* — 8.4000 X 104
0.05 6.5425 X 104 — 6.7265 X 10% | 7.1168 X 10 — 7.1424 X 107%
0075 | 50674 X 10~ — 2.3476 X 10°% | 5.6959 X 10 — 2.5717 X 107%
0.1 2.2608 X 10~ — 5.1254 X 107% | 2.5696 X 1072 — 5.7588 X 10~%
0125 | 5.0374 X 10~ — 8.0587 X 10°% | 57722 X 10~ — 9.6353 X 1072
0.15 8.5403 % 102 — 1.2201 X 10~ | 1.0834 X 10! — 1.5714 X 104
0.175 | 1.3950 X 10~ — 1.7392 X 10~ | 1.9921 X 10~ — 2.3008 X 10-%
0.2 2.1700 X 10t — 2.2871 X 1071; | 3.3903 X 10— — 2.9883 X 104
0225 | 31181 X 10 — 2742 X 10% | 5.220 X 1071 — 3.320 X 10~
0.25 4307 X 10~ —2.099 X 1074 | 7.173 X 10 — 3.136 X 10~
0.275 | 5390 X 107 —3.080 X 104 | 8.809 X 10~ —2.633 X 1071
0.3 636 X 10-7 — 3.12 X 104 1.038 — 214 X 1074
0325 | 7.22 X 10 — 320X 104 1.179 —1.8¢ X 107
0.35 80 X 10~ — 3.4 % 104 1.34 —1.8X 1074

Moreover, the values of the coefficients obtained from least-squares
fitting were checked against those calculated from (50) and (51),
subject to (52), (563), and (119) to (122).

Next, the least-squares fit was carried out for spherical raindrops
when the origin of the coordinate system was offset from the center of

the raindrop, so that
R(f) = a[dcosf + (1 — & sin?0)¥]. (73)

The calculations were done for different values of a, 8, and «, with the
largest value of § being 0.325 at 4 GHz and at 0.2 at 34.8 GHz. As ex-

Table V — Forward scattering amplitudes at 30 GHz
with « = 90° for different drop sizes

a(em) S1(0) S11(0)

0.025 3.4513 X 10+ — 3.7481 X 107% | 3.6235 X 10—* — 3.8505 X 103
0.05 6.9873 X 1073 — 3.1187 X 107% | 7.5859 X 1073 —3.3144 X 107%
0.0756 4.5783 X 1072 — 9.5267 X 1072 | 5.1071 X 1072 — 1.0490 X 10%¢
0.1 1.3415 X 1071 — 1.8677 X 10717 | 1.61656 X 107 —2.1613 X 1074
0.125 2.9755 X 1071 — 2.8388 X 1071 | 3.8979 X 107! —3.2171 X 107
0.15 5.1727 X 107t — 3.3781 X 1071¢ | 6.9041 X 107! — 3.3561 X 10~
0.175 7.3731 X 1071 — 3.4278 X 10~ | 9.6534 X 10 — 2.7438 X 1071
0.2 9.274 X 1071 — 3.461 X 107%¢ 1.2001 —2.302 X 107y
0.225 1.1122 — 3.885 X 1071z 1.4661 —2.419 X 1071g
0.25 1.3309 —4.693 X 101z 1.8221 — 2.627 X 1074
0.275 1.601 — 5,57 X 10™¢ 2.245 —2.21 X 107
0.3 1.902 —6.23 X 10 2.662 —1.20 X 1074
0.325 2.20 —6.70 X 107 3.06 —24 X 107%
0.35 2.49 — 73 X107 3.50 +4 X 107%
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Table VI — Forward scattering amplitudes at 30 GHz
with « = 70° for different drop sizes

d(cm) S1(0) S11(0)

0.025 3.4679 X 10~* — 3.7610 X 107% | 3.6200 X 10~ — 3.8594 X 10~%
0.05 7.0267 X 1073 — 3.1417 X 107% | 7.5553 X 1073 — 3.3145 X 107%
0.075 4.6185 X 1072 — 9.6618 X 107% 5.0856 X 1072 — 1.0513 X 1074
0.1 1.3701 X 107! — 1.9131 X 1074 1.6133 X 107 — 2.1727 X 107Y
0.125 3.0867 X 1071 — 29154 X 1074 3.9039 X 10! — 3.2498 X 1074
0.15 5.4041 X 107! — 3.4346 X 1074 6.9413 X 107 —3.4113 X 1074
0.175 7.7133 X 1071 — 3.4313 X 1074 9.7408 X 101 —2.8097 X 10~
0.2 0.723 x 107! — 3.425 X 1074 1.2143 — 2357 X 1074
0.225 1.1720 — 3.832 X 1074 1.4838 — 2454 X 1071z
0.25 1.4123 — 4,621 X 10712 1.8412 — 2.678 X 107%
0.275 1.710 — 545 X 1074 2.269 —234 X 104
0.3 2.042 —6.04 X 1072 2.699 — 141 X 1071
0.325 2.38 — 6.46 X 1074 3.11 —4.8 X 107%
0.35 2.71 — 70X 1071 3.56 + 1.5 X 107%

pected, the far-field quantities are independent of 8, as well as «, and
again excellent results were obtained. These calculations provided a
nontrivial check on the programming of the boundary conditions,
since dR/df £ 0. In addition, they gave some idea of the increase in
the number of terms in =» that is required, a result of the ratio of
maximum to minimum distance from the raindrop surface to the
origin, which is necessarily greater than unity for oblate spheroidal
raindrops.

As a final check on the least-squares-fitting program, calculations
were carried out at 34.8 GHz for oblate spheroidal raindrops with small

Table VIl — Forward scattering amplitudes at 30 GHz
with « = 50° for different drop sizes

d(cm) S1(0) S1u(0)

0.025 3.5101 X 104 — 3.7936 X 10~% | 3.6111 X 10—+ — 3.8590 X 1073
0.05 7.1265 X 107 — 3.1998 X 10°% | 7.4779 X 1072 —3.3147 X 107 %
0.075 4.7204 % 1072 — 1.0005 X 10717 5.0312 X 1072 — 1.0571 X 10712
0.1 1.4431 X 107t — 2.0284 X 1074 1.6054 % 1071 — 2.2016 X 107¢
0.125 3.3714 X 10 — 3.1102 X 10734 | 3.9193 X 107t — 3.3329 X 1074
0.15 6.0012 X 107! — 3.5745 X 1071z 7.0369 X 107t — 3.5523 X 1071
0.175 8.5067 X 10! — 3.4211 X 1077 | 9.9679 X 1071 — 2.9777 X 1071
0.2 1.0888 —3.278 X 1074 1.2518 — 2491 X 107
0.225 1.3247 — 3.580 X 1071z 1.5306 — 2,520 X 1071z
0.25 1.6145 — 4,252 X 1074 1.8902 — 2,752 X 1071z
0.275 1.974 — 491 X 10741 2.327 —2.58 X 1071
0.3 2.379 — 527 X 1074 2.785 — 187 X 1071
0.325 2.80 — 5.45 X 1074 3.24 —1.03 X 1074
0.356 3.24 — 5.7 X 107 3.72 —4 X 107%
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Table VIIl — Total and scattering cross sections at 4 GHz

with « = 90° for different drop sizes

a(em) Qi(cm)? H(cm)? s(cm)? Q;'(cm)?
0.025 1.2393 X 10-¢ 1.3126 X 107¢ 8.9950 X 10~ | 9.5367 X 10710
0.05 1.0545 X 10— 1.1782 X 10~ 5.5428 X 1078 6.2399 X 1078
0.075 4.0327 X 10—¢ 4.7215 X 10~¢ 6.0811 X 1077 7.2816 X 1077
0.1 1.1406 X 10 1.3909 X 10— 3.2022 X 10~¢ 4.2012 X 10-¢
0.125 2.7599 X 10~ 3.4947 X 10 1.2106 X 10—# 1.6500 X 10—
0.15 6.0592 X 10~ 7.9725 X 107 3.4869 X 10~ 5.0884 X 107
0.175 1.2432 X 1073 1.7068 X 10 8.4904 X 10—® 1.3303 X 10—
0.2 2.427 X 107 3.503 X 103 1.830 X 10~ 3.088 X 1074
0.225 4.568 X 1073 7.011 X 103 3.599 X 10— 6.567 X 10—+
0.25 8.38 X 107® 1.391 X 102 6.60 X 10~ 1.309 X 10-3
0.275 1.51 X 1072 2.78 X 1072 1.15 X 1073 2.50 X 1073
0.3 2.71 X 10 5.73 X 102 1.93 X 1073 4.7 X 107
0.325 4.87 X 10— 1.246 X 10! 3.2 X 1073 88 X 107¢
0.35 8.8 X 107 2.92 X 107! 5.2 X 107 1.78 X 10

eccentricity, corresponding to » = 0, 0.05, 0.1, and 0.15 in (63). The
calculations were done for ¢ = 90° and for ¢ = 0.025(0.025)0.275.
Corresponding to (48), the total cross section may be expanded in the
form @, = Q@ + »QY + ---. Values of @V and Q'Y were obtained
from the least-squares results by extrapolation and were compared with
the perturbation values given by Oguchi.* Unfortunately, there were
significant discrepancies for the larger drop sizes, the largest error
being more than 17 percent. Consequently, we did the perturbation
calculations ourselves and obtained results differing from our extrap-

Table IX — Total and scattering cross sections at 11 GHz
with « = 90° for different drop sizes

a(cm) Q(cm)? Qi (cm)? Qi(em)? Qs'(em)?
0.025 1.1407 X 107¢ 1.2035 X 1075 5.1556 X 1078 5.4666 X 10~¢
0.05 1.4066 X 10 1.5415 X 10~ 3.2095 X 10—° 3.6172 X 107¢
0.075 8.5573 X 10 9.6863 X 10 3.5933 X 107 4,3203 X 1075
0.1 3.9471 X 107 4.6519 X 1072 2.0259 X 10 2.6114 X 10
0.125 1.56476 X 1072 1.9118 X 102 8.1236 X 10 1.1302 X 107
0.15 4.7600 X 1072 5.8407 X 1072 2.7238 X 107 4.0701 X 103
0.175 8.8064 X 10 9.8785 X 102 7.3803 X 102 1.1535 X 102
0.2 1.1208 X 10! 1.3001 X 107! 1.559 X 102 2.643 X 1072
0.2256 14103 X 107! 1.8769 X 107! 2.815 X 10 5.3256 X 102
0.25 1.815 X 107! 2.777 X 107! 4.60 x 10— 9.76 X 10
0.275 2.341 X 10 4.084 X 107! 7.21 X 10— 1.701 X 10
0.3 3.05 X 10! 5.94 X 107t 1.09 X 10! 2.84 X 107
0.325 3.95 X 10! 8.4 X 10! 1.57 X 10! 4.5 X 107
0.35 5.0 X 107 1.13 2.1 X 107 6.5 X 107
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Table X — Total and scattering cross sections at 18.1 GHz

with « = 90° for different drop sizes

a(em) %(cm)? ¢! (cm)? QX(em)? QY (cm)?
0.025 3.5118 X 10—* 3.6944 X 103 3.7881 X 107 4.0173 X 1077
0.05 5.7214 x 10 6.2236 X 10— 2.4119 X 10—% 2.7242 X 107¢
0.075 4.4314 X 102 49810 X 103 2.8514 X 10—+ 3.4542 X 10—
0.1 1.9770 X 102 2.2471 X 1072 1.7668 X 1073 2.3060 x 102
0.125 4.4052 X 1072 5.0478 X 102 7.1078 X 102 1.0013 X 102
0.15 7.4684 X 102 09,4745 X 102 1.9966 X 1072 3.0950 X 102
0.175 1.2199 X 10t 1.7421 X 10! 4.3974 X 10 7.4834 X 10
0.2 1.8976 X 1071 2.9648 X 10! 8.312 X 102 1.56229 X 107
0.225 2.782 % 10! 4,572 % 107! 1.377 X 10! 2.640 X 107
0.25 3.766 X 10! 6.273 X 10! 1.999 X 10! 3.888 X 10!
0.275 4,714 X 10 7.782 X 107! 2.5698 X 10! 5.028 X 10!
0.3 5.656 X 10! 9.08 X 10! 3.12 x 10— 6.00 x 101
0.325 6.32 X 10 1,031 3.54 X 101 6.89 X 10t
0.35 7.0 X 10! 1.17 3.9 X 10— 7.8 X 10!

olated least-squares results by at most 3 percent, which is reasonably
consistent with the error to be expected from the extrapolation.
Oguchi* has since redone his calculations, and he agrees with our
perturbation results. The same good agreement was obtained between
the extrapolated and perturbation values of S{"(0), S&# (0), Q!V, and
Quov,

After the least-squares-fitting program had been checked in the
above manner, we carried out calculations for oblate spheroidal rain-
drops corresponding to (63), with a and » given by (64). Here a is the

Table XI— Total and scattering cross sections at 30 GHz
with « = 90° for different drop sizes

@(em) Q'i(cm)? Q' (cm)? Q(cm)? Q3'(cm)?
0.025 1.0986 X 10— 1.1534 X 10~ 2.8823 X 10-¢ 3.0581 X 10-¢
0.05 2.2241 X 107 2.4147 X 107 1.9542 X 10— 2.2197 X 10—
0.075 1.4573 X 102 1.6256 X 1072 2.5201 X 1073 3.1009 X 103
0.1 4,2701 X 1072 5.1454 X 1072 1.4263 X 1072 1.9185 X 102
0.125 9.4713 X 10 1.2407 X 107 4.3818 X 102 6.2849 X 10?
0.15 1.6465 X 107! 2.1977 X 10! 8.9103 X 10— 1.2903 X 10!
0.175 2.3469 X 10! 3.0728 X 107 1.3595 X 10! 1.9338 X 1071
0.2 2.9521 X 10! 3.8199 x 10! 1.7408 X 10! 2.4628 X 10!
0.225 3.5403 X 10— 4.6666 X 10! 2.0731 X 107 3.0183 X 107!
0.25 4.236 X 10! 5.800 x 10! 2,450 X 10! 3.766 X 107!
0.275 5.095 X 10t 7.146 X 10! 2,938 X 10! 4.710 X 107!
0.3 6.05 X 107! 8.47 x 10! 3.51 X 10! 5.69 X 10!
0.325 7.01 ¥ 10! 9.74 X 10! 4.08 X 1071 6.62 X 101
0.35 7.9 X 10! 1.11 4.6 X 10 7.6 X 107
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Table XIl — Total and scattering cross sections at 30 GHz

with « = 70° for different drop sizes

a(em) %(cm)? Q! (cm)? Q5(cm)? Q@ (cm)?
0.025 | 1.1039 X 10~ | 1.1523 X 10—+ | 2.9029 X 10-¢ | 3.0582 X 105
005 | 22367 X 10-° | 2.4049 X 10 | 1.9851 X 10~ | 2.2196 X 10~
0.075 | 1.4701 X 10— | 1.6188 % 10-2 | 2.5867 X 10-* | 3.1000 X 10~
0.1 43613 X 102 | 51354 X 10~ | 14859 X 10~ | 1.9213 X 102
0125 | 08252 X 10 | 1.2427 X 10— | 4.6292 X 10~ | 6.3156 X 10~
015 | 17202 X 10~ | 22005 X 10~ | 9.4694 X 10~ | 1.3017 X 10!
0.175 | 2.4552 X 10! | 3.1006 X 10 | 1.4482 X 1071 | 1.9599 X 10—
0.2 30050 X 10 | 3.8653 X 10! | 1.8634 X 10~ | 2.5071 X 10!
0225 | 3.7305 %X 10~ | 4.7231 X 10 | 2.2389 X 10~ | 3.0787 X 10~
025 | 4.496 X 10~ 5.861 X 1071 2.676 X 10~ 3.837 X 10—
0.275 | 5.442 X 10~ 7.223 X 107! 3.240 X 10~ 4796 X 10—
03 6.50 X 107! 8.59 X 1071 3.00 X 10~ 5.81 X 101
0325 | 7.57 X 107 9.91 X 10! 4.58 X 107 6.79 X 10~
035 | 86 X 10 1.13 5.2 X 101 7.8 X 101

radius (in centimeters) of the equivolumic spherical drop, and the cal-
culations were done for @ = 0.025(0.025)0.35. The corresponding values
of @ and v are given in Table I. The values taken for the wavelength
A = 2m/ko were (in centimeters) 7.5, 2.727, 1.6575, and 1.0, correspond-
ing approximately to frequencies of 4, 11, 18.1, and 30 GHz. At 20°C,
the refractive indices N = 7.884 + 2.184¢ at 11 GHz, N = 6.859
+ 2.716¢ at 18.1 GHz, and N = 5.581 + 2.848¢ at 30 GHz were ob-
tained from an elaborate fitting equation in a recently published survey?®
of available measured data. Since the calculations at 4 GHz were made
at an earlier date, the value N = 8.77 + 0.915¢, taken from the older

Table Xlll — Total and scattering cross sections at 30 GHz
with « = 50° for different drop sizes

a(em) Qi(cm)? Qf*(cm)? Qi(cm)? Qi (cm)?
0.025 | 1.1173 X 10~ | 1.1495 X 10~ | 2.9552 X 10-¢ | 3.0584 X 10~¢
0.05 2.2684 X 10 | 2.3803 X 10 | 2.0634 X 10~* | 2.2193 X 10~
0.075 | 1.5025 X 102 | 1.6015 X 10— | 2.7560 X 10 | 3.0978 X 1073
0.1 4.5036 X 102 | 5.1102 X 102 | 1.6378 X 10~ | 1.9286 X 102
0.125 | 1.0732 X 10~ | 1.2476 X 10 | 5.2632 X 107 | 6.3941 X 102
0.15 1.9102 X 10~ | 2.2399 X 107 1.0914 X 10~ | 1.3308 X 10!
0.175 | 2.7364 X 10~ | 3.1729 X 107 1.6796 X 101 | 2.0272 X 10!
0.2 3.4658 X 10t | 3.9846 X 107 | 2.1846 X 107t | 2.6230 X 107
0.225 | 4.2166 X 10 | 4.8721 X 10 | 2.6706 X 107t | 3.2371 X 107
0.25 5.139 X 10~ 6.017 X 10! 3.253 X 10! 4.021 X 10!
0.275 | 6.283 X 10~ 7.405 X 1071 3.996 X 10~ 5.009 X 107!
0.3 7.57 X 10! 8.87 X 10! 487 % 10~ 6.09 X 107
0.325 | 8.9 X 107 1.03 5.8 X 10 7.2 X 107!
0.35 1.03 1.18 6.75 X 10! 8.3 X 107
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3*C0m83|‘ison of perturbation approximations to the least-squares-fitting
vnlue ‘of Re S1(0) at 4 GHz with & = 90° as a function of drop size.

literature, was used, rather than N = 8.78 + 0.977:. The angle of inci-
dence « was taken to be 90° at 4, 11, and 18.1 GHz, while at 30 GHz
the calculations were done for @ = 70° and o = 50° also.

The calculated values of the forward scattering amplitudes S;(0)
and Syr(0) are given in Tables II to VII, and those of the total cross
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sections Q! and Q" and the scattering cross sections @} and @:" are given
in Tables VIII to XIII, all rounded in the last significant figure. The
values of the absorption cross sections Q; and QL follow from (38).

4 GHz, a = 90°

TTTTT]

T

103

TTTTTIT

Re S(0)
T

TTTTT]

T

T

T

10-5

TTTTTT]

10-6 1 | I | |
0.05 0.10 0.15 0.20 0.25 0.30 0.35

7 IN CENTIMETERS

Fig. 4—Comparison of perturbation approximations to the least-squares-fitting
value of Re S11(0) at 4 GHz with & = 90° as a function of drop size.
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The accuracy of the least-squares fit of the boundary conditions de-
creases with increasing drop size, because of the increase in eccentricity,
which is why fewer significant figures are given in the tables for the
larger drop sizes. Except for the smaller drop sizes, for which the results
could be given more accurately, the number of significant figures
reflects the degree of convergence of the results, as evidenced by in-
creasing the upper limit of n in the least-squares fit by 2 and by 4. The

0.2}~

Re S1(0)

0.1~

11 GHz, a = 90°

O —

0.4

03

Re Sr(0)

0.2

0

0.05

0.10

0.15

0.20 0.25 0.30 0.35
a IN CENTIMETERS

Fig. 5—Comparison of perturbation approximations to the least-squares-fitting
values of Re S;(0) and Re S11(0) at 11 GHz with & = 90° as a function of drop size.
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accuracy of the far-field results is generally at least one order of mag-
nitude greater than that of the fit of the boundary conditions for the
reasons discussed in Section V. We note that the largest drops occur
only at the heaviest rain rates,” and then only a small percentage of
them, so that the lower accuracy of the results for these drops is ac-
ceptable when summing over the drop size distribution.

The number of terms required to obtain the desired accuracy for the
far-field quantities and to adequately satisfy the boundary conditions
increases with both drop size and with frequency. At 4 GHz, it was
found that max m = 4 and max n = 17 were sufficient for the largest
drop size. For « = 90° at 30 GHz, it was necessary to take maxm = 8
and max n = 23 for the largest drop size. In this latter case, more than
half the capacity of the Honeywell 6070 computer was used. In some
cases, it was found that max n or max m could not be increased without
causing overflow in some of the subroutines, in particular SBES and
L2FIT.

1.0

18.1 GHz, @=90°
0.9

08—

07—

06—

0.5

ReS1(0)

04

0.2 /3’

01 =~

0 | 1 1 |
0.05 0.10 0.15 0.20 0.25 0.30 0.35
3 IN CENTIMETERS

Fig. 6—Comparison of perturbation approximations to the least-squares-fitting
value of Re S;(0) at 18.1 GHz with « = 90° as a function of drop size.
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To check on the advantage of using least-squares fitting (with ap-
proximately twice as many fitting points as unknown coefficients)
rather than collocation, we used collocation in several cases at different
frequencies and for different drop sizes. Our general conclusion is that,
for the same max m and max n, results may be obtained by collocation
for the far-field quantities that are almost as accurate as those obtained
by least-squares fitting. However, there are much larger errors in the
boundary conditions (in between the fitting points) with collocation

1.4

18.1 GHz, & = 90°

0.9}

0.8

0.7}

ReSy(0)

05

0.41—

03

0.2

0.1

0 1 | | I
0.05 0.10 0.15 0.20 0.25 0.30 0.35
@ IN CENTIMETERS

Fig. 7—Comparison of perturbation approximations to the least-squares-fitting
value of Re S11(0) at 18.1 GHz with « = 90° as a function of drop size.
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than with least-squares fitting. For the larger, more eccentric raindrops,
some of these errors were of the order of 100 percent, which seem to be
unacceptable. However, for the smaller raindrops, the errors in the
boundary conditions with collocation are acceptable. Since the cost
of carrying out the least-squares fit is less when fewer fitting points are
used, collocation has the advantage of reducing the cost, although fewer
terms are required, anyway, to obtain the desired accuracy for the
smaller raindrops. It is possible that the collocation fit may be improved

3.0
30 GHz, & = 900 |

20—

Re S1(0)

3.0~

201

Re Sp(0)

0 | | | |
0.05 0.10 0.16 0.20 0.25 0.30 0.35
3IN CENTIMETERS

Fig. 8 —Comparison of perturbation approximations to the least-squares-fitting
values of Re S;(0) and Re S11(0) at 30 GHz with « = 90° as a function of drop size.
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by satisfying the boundary conditions at nonuniformly spaced points,
but we have not investigated this.

As a check on the point-matching (collocation) results of Oguchi,®
we carried out the least-squares fitting for « = 90°, at 19.3 GHz for
a = 0.3 and at 34.8 GHz for a = 0.075, 0.15, 0.225, and 0.3, using

4.0

30 GHz, =500

3.0

2.0

Re Sp{0)

3.0~

Re Spl0)

0 | | ] ]
0.05 0.10 0.15 0.20 0.25 0.30 0.35
a IN CENTIMETERS

Fig. 9—Comparison of perturbation approximations to the least-squares-fitting
values of Re S1(0) and Re S11(0) at 30 GHz with « = 50° as a function of drop size.
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4 GHz, a = 90°
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Fig. 10—Comparison of perturbation approximations to the least-squares-fitting
values of Im S;(0) and Im S11(0) at 4 GHz with « = 90° as a function of drop size.
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Oguchi’s relationship®

a 4.1 _

E’-_(1—4—‘5a), (74)
instead of the first relationship in (1). Our results for the forward scat-
tering amplitudes are consistent with his point-matching values, but
they may be given to greater accuracy. Our truncated values for
d@ = 0.3 are given below where, in Oguchi’s notation,®
— A

™

fr X 108 =

iSHO), P X 108 = ‘75" iSh(0),  (75)

03

11 GHz, a = 90°
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Fig. 11—Comparison of perturbation approximations to the least-squares-fitting
values of Im Sr(0) and Im S1:(0) at 11 GHz with « = 90° as a function of drop size.
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18.1 GHz, & = 90° 4‘
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Fig. 12—Comparison of perturbation approximations to the least-squares-fitting
values of Im S1(0) and Im S11(0) at 18.1 GHz with e = 90° as a function of drop size.
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and the vertical lines indicate where Oguchi truncated his results:

GHz f % 108 X 10°
19.3 0.8130 — 1.884 |4 0.510|9 — 2.81(74
34.8 0.917|8 — 3.73|0: |0.0646 — 4.71|07

The values taken* for the wavelength A (in centimeters) were 1.5533330
and 0.86135810, corresponding approximately to frequencies of 19.3
and 34.8 GHz, with refractive indices N = 6.5449188 + 2.81040407 and
N = 5.0487284 + 2.79484161, respectively.

30 GHz, a = 90°
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01—
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03

0.2

—Im Sg(0)

0.1}

| | ! | | l
0 0.05 0.10 0.15 0.20 0.25 0.30 0.36
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Fig. 13—Comparison of Eerburbation approximations to the least-squares-fitting
values of Im S1(0) and Im S11(0) at 30 GHz with @ = 90° as a function of drop size.
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The main reason for the greater accuracy of our results is that we
took larger values of max n than Oguchi, who did the point-matching
at both frequencies for max n = 12 and 14, with max m = max n. For
d = 0.3 we took maxm = 7 at 19.3 GHz and max m = 9 at 34.8 GHz,
which were sufficient, and took max n = 21 at both frequencies for the
least-squares fitting. We also used collocation for @ = 0.3 and max
n = 12, 14, and 21. For max n = 21 the collocation results differ by
at most 1 in the last decimal place from the results given above, but
errors in some boundary conditions were of the order of 10 percent, as
compared with much less than 1 percent for least-squares fitting. This
is consistent with our general conclusion discussed earlier in this sec-
tion. We point out that the raindrops satisfying (74) are less eccentric
than those satisfying (1), so that the overall errors are correspondingly
smaller. For collocation with max n = 14, some errors in the boundary
conditions were close to 100 percent, which explains why, with point-
matching, Oguchi did not give any significant figures for Re f* at
34.8 GHz, for either @ = 0.3 or @ = 0.325.

Although Oguchi® gives four significant figures for f* and f* at 34.8

0.6

30 GHz, & = 50°

05
04—

0.3r—

0.21—

—Im S1(0)

01—

0

—Im Sm(0)

0 | ] 1 | |
1] 0.05 0.10 0.15 0.20 0.25 0.30 0.35
aIN CENTIMETERS

Fig. 14—Comparison of perturbation approximations to the least-squares-fitting
values of Im S1(0) and Im Si1(0) at 30 GHz with « = 50° as a function of drop size.
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GHz for all drop sizes corresponding to his solution in terms of sphe-
roidal wave functions (with modal sums truncated at 9), these values
are not consistent with his point-matching ones for the larger drop

4 GHz, @ = 90°
10-1—
10-2}—
o
E —
2
-
a
|
=3}—
L 10
L
10-4}—
10-5 | | | 1 |
0.05 0.10 0.15 0.20 0.25 0.30 0.35

a IN CENTIMETERS

Fig. 15—Comparison of perturbation approximations to the least-squares-fitting
value of Q' — Q! at 4 GHz with « = 90° as a function of drop size.
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sizes. For @ = 0.3, he gives f* X 10® = 0.06470 — 4.709¢, which is in
fact quite close to our value, but he also gives f* X 10° = 0.9100
— 3.7261, with real part differing by almost 1 percent from our value.

- 11 GHz, &= 90°
10-1 —
10_2 —
~ -
= [
5 L
g -
n'
o -
103 —
104 |—
10-5 | ] | ] ] |
0 0.05 0.10 D.15 0.20 0.25 0.30 0.35

@ IN CENTIMETERS

Fig. 16—Comllja.rison of perturbation approximations to the least-squares-fitting
value of Q' — Q! at 11 GHz with & = 90° as a function of drop size.
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Vill. PERTURBATION RESULTS

In this final section, we compare three sets of first-order perturbation
results with those obtained by least-squares fitting. The comparisons
are made graphically in Figs. 3 to 23, since this is much more revealing
than tabulating the results. The solid curves correspond to least-
squares fitting and the dashed curves to perturbation about the in-
scribed sphere of radius a, corresponding to the expansion in (63), with
perturbation parameter » given by (64). The circles and dots corre-
spond to perturbation about the equivolumic sphere of radius @, with
perturbation parameters # = 2a and », respectively, corresponding to
the expansions in (65). The dots have been omitted in those cases in
which they would lie very close to the corresponding circle or solid
curve. Comparisons are made for « = 90° at 4, 11, 18.1, and 30 GHz
and for « = 50° at 30 GHz.

The real parts of the forward scattering amplitudes S;(0) and S1(0)
and the first-order approximations to these quantities are depicted in

0.5

18.1 GHz, a = 90°

0.3~

all— of em)2

0.2

0.1

0.05 0.10 0.15 0.20 0.25 0.30 0.35
aIN CENTIMETERS

Fig. 17—Comparison of perturbation approximations to the least-squares-fitting
value of Q"' — Q! at 18.1 GHz with « = 90° as a function of drop size.
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0.4

30 GHz
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- al(cm)?

0.1

0.02}—

0 | ] | |
0.05 0.10 0.15 0.20 0.25 0.30 0.35
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Fig. 18—Comparison of perturbation approximations to the least-squares-fitting
value of Q'F — Q! at 30 GHz with « = 90° and « = 50° as a function of drop size.

Figs. 3 to 9, while the imaginary parts are depicted in Figs. 10 to 14.
It should be noted that a logarithmic scale has been used in Figs. 3
and 4. Thus, at 4 GHz the first-order approximation to the real part of
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4 GHz, & = 90°
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Fig. 19—Comparison of perturbation approximations to the least-squares-fitting
value of Im[S;(0) — S‘u(O)ﬁ at 4 GHz with & = 90° as a function of drop size.

S11(0), obtained by perturbing about the inscribed sphere, is in error
by an order of magnitude for the largest drop size. It is seen that the
best overall approximation is obtained by perturbing about the
equivolumic sphere with perturbation parameter » = 24, and in most
cases there is a significant improvement over the approximation ob-
tained by perturbing about the inseribed sphere as Oguchi* did. The
second best overall approximation is obtained by perturbing about the
equivolumic sphere with perturbation parameter » = a(2 — @), and is
generally much better than the approximation obtained by perturbing
about the inscribed sphere. The above ordering of the three sets of
perturbation results is consistent with the order of the geometrical
errors in the corresponding approximations in (63) and (65) to the
oblate spheroid.

Although the comparison is not depicted for some of the smallest
drop sizes, all three approximations are good for these, since the ec-
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11 GHz, a = 900
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Fig. 20—Comparison of perturbation approximations to the least-squares-fitting
value of Im[S:(0) — Sn(O)R at 11 GHz with &« = 90° as a function of drop size.

centricity is small. On the other hand, the approximations obtained
by perturbing about the equivolumic sphere are remarkably good for
the largest drop sizes, in view of the fact that neither the eccentricity
nor the perturbation parameter is small. In particular, these approxi-
mations to the imaginary part of S11(0), depicted in Figs. 10 to 14, are
quite impressive. It is not too surprising that perturbing about the
inscribed sphere leads to poor results for the larger drop sizes in the
second polarization. The first-order approximations to the scattering
cross sections @} and Q' are very similar to those depicted in Figs. 3
to 9 for the real parts of S;(0) and Sy (0), which are related to the total
cross sections Q% and @ by (39).
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T

Fig. 21—Comparison of perturbation approximations to the least-squares-fitting
value of Im[S1(0) — Si(0)] at 18.1 GHz with a = 90° as a function of drop size.

For purposes of comparison, the values of the forward scattering
amplitude S(0) and the total and scattering cross sections @, and Q.
for the equivolumic spherical drops are given in Tables X1V to XVII.
These quantities do not depend on the polarization of the incident
wave or on the angle of incidence a. As is seen from Tables VIII to XIII,
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Fig. 22—Comparison of perturbation approximations to the lenstr-sauarm-ﬁt-bing
value of Im[S1(0) — Su(0)] at 30 GHz with e = 90° as a function of drop size.
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Fig. 23— Comparison of perturbation approximations to the least-squares-fitting
value of Im[(S1(0) — S[[(O)ﬁ at 30 GHz with « = 50° as a function of drop size.

the value of @, lies between the corresponding values for the two polar-
izations for the oblate spheroidal drop of the same size and similarly
for the value of Q,. Although this happens to be true at 30 GHz for
a = 90°, 70°, and 50°, these relations should not be expected to hold
for all values of e, since for @ = 0° the cross sections are independent
of the polarization because of the axial symmetry of the oblate sphe-
roidal drop. We have verified that @, = Q} = @' and @, # Qi = Q'
for & = 0° at 11 GHgz, for a = 0 025, 0.1, and 0.175.

The rain-induced differential attenuation and differential phase
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Table XIV — Forward scattering amplitude and total and
scattering cross sections for the equivolumic spherical

drop at 4 GHz for different drop sizes

a(cm) 5(0) Q¢(cm)* Q(cm)*

0.025 | 7.1886 X 1078 —8.8610 X 107 1.2871 X 10-¢ 9.3508 X 10710
0.05 6.3247 X 1077 —7.1195 X 107% 1.1324 X 10—¢ 5.9937 X 10°®
0.075 | 2.4837 X 1078 — 2.4204 X 1074 4.4470 X 108 6.8450 X 1077
0.1 7.16656 X 1076 — 5.7975 X 107 1.2832 X 10 3.8606 X 107¢
0.125 1.7619 X 1075 — 1,1481 X 1073%; 3.1547 X 10— 1.4804 X 107®
0.15 3.9266 X 107°—2.0191 X 107% 7.0305 X 10— 4.4509 X 1075
0.175 | 8.1912 X 1078 —3.2771 X 1073%¢ 1.4666 X 107° 11325 X 107
0.2 1.6324 X 10~ — 5.0244 X 107% 2.9228 X 1073 2.55637 X 10~
0.225 | 3.1562 X 10~ — 7.3913 X 107% 5.6511 X 107® 5.2608 X 10~
0.25 6.0030 X 10~* — 1.0551 X 107% 1.0748 X 1072 1.0123 X 107°
0.275 1.1392 X 10-3 — 1.4745 X 107% 2.0397 X 1072 1.8527 X 1073
0.3 2.1916 X 10— —2.0322 X 10™% 3.9240 X 1072 3.2838 X 1073
0.325 | 4.3555 X 10* —2.7783 X 107% 7.79856 X 10 5.7649 X 107°
0.35 9.1208 X 107 — 3.7683 X 107% 1.6331 X 107 1.0372 X 10

shift are obtained! by summing the real and imaginary parts of S1(0)
— 81(0) over the Laws and Parsons drop-size distribution.” In a recent
short note,? the three first-order perturbation approximations have been
compared to the least-squares fitting results for the differential atten-
uation and differential phase shift at several different rain rates. The
same ordering of the overall closeness of the three approximations
holds for these quantities. Since the perturbation results are obtained
quite inexpensively whereas the least-squares-fitting procedure is
very costly, approximations to the differential attenuation and differ-
ential phase shift at frequencies up to 100 GHz were obtained by per-

Table XV — Forward scattering amplitude and total and
scattering cross sections for the equivolumic spherical
drop at 11 GHz for different drop sizes

da(cm) §8(0) Qi(cm)? Q.(cm)?

0.025 | 4.9868 X 1075 — 1.8550 X 10~ | 1.1804 X 103 5.3590 X 10-¢
0.05 6.2648 X 1075 — 1.5238 X 1073 | 1.4829 X 10 3.4733 X 10-¢
0.075 | 3.8512 X 10—+ — 5.3780 X 10~% | 0.1163 X 10~ 4.0552 X 10-%
0.1 1.7992 % 10-3 — 1.3547 X 107% | 4.2588 X 10~° 2.3883 X 10—+
0.125 | 7.1756 X 10~* —2.7813 X 10~% | 1.6985 X 1072 1.0004 X 1073
0.15 2.2023 X 102 —4.4760 X 102 | 5.2132 X 102 3.4809 X 10—
0.175 | 3.9051 X 10~* —5.5463 X 10~% | 9.2438 X 10~* 9.7067 X 10~
0.2 5.0153 X 102 —7.3383 X 10% | 1.1872 X 10! 2.1692 X 102
0.225 | 6.8317 X 1072 —1.0343 X 107% | 1.6171 X 10~ 4.2204 X 1072
0.25 9.6583 X 1072 — 1.3932 X 1074 | 2.2862 X 107! 7.4229 X 1072
0.275 | 1.3508 X 10 — 1.8178 X 10~% | 3.1976 X 107! 1.2397 X 107
0.3 1.8972 X 107t —2.2045 X 1074 | 4.4910 X 10! 2.0165 X 1071
0.325 | 2.6372 X 10~t —2.7484 X 107 | 6.2427 X 107! 3.1470 X 1071
0.35 3.5439 x 10—t —3.1001 X 1071 8.3887 X 10! 46135 X 10
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Table XVI— Forward scattering amplitude and total and
scattering cross sections for the equivolumic spherical
drop at 18.1 GHz for different drop sizes

a(cm) 5(0) Qe(em)? @:(cm)*
0.025 | 4.1444 X 10~% — 8.3170 X 107% 3.6243 X 1075 3.9388 X 107
0.05 6.8431 X 10~ — 6.9938 X 10% 5.9843 X 10~ 2.6138 X 107°
0.0756 | 5.3548 X 1072 — 2.4905 X 107 4.6827 X 107* 3.2305 X 10~*
1 2.4004 X 1072 —5.5611 X 107% 2.0991 X 1072 2.0935 X 1072
0.125 5.4019 X 1072 —9.1780 X 107% 4.7240 X 10~* 8.8579 X 1073
0.15 9.7706 X 1072 — 1.4719 X 1074 8.5444 X 107* 2.6617 X 1072
0.175 1.7343 X 107! — 2.1684 X 107% 1.5166 X 107! 6.2646 X 1072
0.2 2.8868 X 107! — 2.8757 X 1071 2.5245 X 107! 1.2552 X 107!
0.225 | 4.4398 X 107" — 3.3858 X 107"/ 3.8826 X 10~ 2.1846 X 107
0.25 6.1859 X 10! — 3.5216 X 107 5.4095 X 107 3.2834 X 107!
0.275 | 7.8546 X 107t — 3.3543 X 1074 6.8688 X 10~ 4.3596 X 107!
0.3 9.3560 X 107 — 3.0993 X 1074 8.1818 X 107! 5.3377 X 107!
0.325 1.0751 — 29126 X 1074 9.4019 X 107 6.2372 X 107!
0.35 1.2136 — 2.8673 X 107% 1.0613 7.1027 X 107

turbing about the equivolumic sphere. However, the results may be
less reliable at the higher frequencies, particularly at the heavier rain
rates.'®

The difference Q' — @}, which is related to the real part of Si1(0)
— 8:(0) by (39), is depicted in Figs. 15 to 18, and the imaginary part
of S1(0) — S11(0) is depicted in Figs. 19 to 23. We note that, although
extra first-order correction terms arise in the expansions about the
equivolumic sphere given in (65), they correspond to a constant change
i the radius of the drop. Hence, the corresponding increments in the
forward scattering amplitudes are the same for both polarizations, and

Table XVII — Forward scattering amplitude and total and
scattering cross sections for the equivolumic spherical
drop at 30 GHz for different drop sizes

a(em) S(0) Q¢(cm)? Q:(cm)*

0.025 3.5549 X 104 — 3.8212 X 107 1.1316 X 10~ 2.9980 X 10-¢
0.05 7.2950 X 1077 — 3.2466 X 107 2,3221 X 107? 2.1254 X 10
0.075 4.8577 X 1072 — 1.0204 X 107% 1.5463 X 107 2.8859 X 103
0.1 1.5024 X 107 — 2,0855 X 107% 4.7823 X 107? 1.7391 X 1072
0.125 3.5560 X 1071 — 3.1825 X 1074 1.1319 X 107! 5.6317 X 1072
0.15 6.3545 X 107 — 3.5742 X 107Y 2.0227 X 10! 1.1723 X 107
0.175 | 9.0831 X 107! — 3.2571 X 1074 2.8913 X 107! 1.8042 X 107!
0.2 1.1444 — 29371 X 1074 3.6426 X 107! 2.3403 X 10!
0.225 1.3868 —3.0778 X 1074 4.4142 X 107 2.8578 X 107!
0.25 1.6859 — 3.5609 X 107Y 5.3662 X 107! 3.4813 X 107!
0.275 2.0559 — 3.9425 X 1074 6.5441 X 107! 4.2750 X 1071
0.3 2.4657 — 3.9064 X 10742 7.8486 X 10t 5.1929 X 107!
0.325 2.8763 — 3.5872 X 1074 9.1557 X 107! 6.1372 X 10
0.35 3.2831 — 3.3474 X 10744 1.0450 7.0680 X 107!
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therefore do not affect the difference Si;(0) — Si(0). Figures 15 to 23
show that the approximations to the differential quantities obtained
by perturbing about the equivolumic sphere with perturbation param-
eter # = 2d are overall remarkably close to the least-squares-fitting
results and far better than the approximations obtained by perturbing
about the inscribed sphere.
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APPENDIX A

We first derive the expansion of the incident plane wave in a Fourier
series in the azimuthal angle ¢, as given by (20). The unit vectors in
Cartesian coordinates are given in terms of those in spherical coordi-

nates by )
sin @ cos ¢i; + cos 0 cos ¢l — sin eis,

j = sin 6 sin ¢i; + cos 6 sin ¢is + cos ¢is,

i

and

k = cos fi; — sin fi.. (76)
Also, we have
z sin @ + z cos a = r(sin a sin # cos ¢ + cos a cos 8). (77)

But?® for integer values of p,

1 2x . . .
5 fo e~* exp (it cos )de = °J5(£), (78)

where J, denotes the regular Bessel function (of the first kind) of
order p.
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It follows, from (5), (6), (20) to (22), and (76) to (78), using the
recurrence relations for the Bessel functions,® that

fn(r, 8) = 1™ exp (ikor cos a cos 6)[J,,, (kor sin « sin §) sin

X (sin 6is — cos i) — @ (kor sin « sin ) cos a(sin #i; + cos 6iz)

md m (kor sin a sin )
kor sin @ sin 6

cos ai,;] (79)

and
M m (kor sin « sin 4)
kor sin « sin 8

gn(r, 8) = —1™ exp (thor cos a cos B)[
X (sin 6i; + cos 6is) + 2 (kor sin a sin G)ia}, (80)

where, as before, the prime denotes derivative with respect to the
argument.

From (8) to (11), (13), (14), and (20), the boundary conditions (16)
and (17), when multiplied by e~#™¢ and integrated with respect to ¢
from 0 to 2, lead to the equations

|m|
ens(R,0) + 3 amalil? (ko) dPy" (cos )

nz|m| de
n#0
()
- Z mn[ L ]ﬂ(okR!]R) + h(l) (knR)] le‘ (COS 6)
£
_ . dPI™ (eos 8) _ Fn(k1R) B
= ,1;231 Cmn.?ﬂ(klR) T nr%z?‘;gl dmn[ k R + Jn(k]R)]

eP‘""(cos g (81)

sin

and, using (4),

: |m|
Wy (R 0) + X bk (ko) (005 0)
ko n2Im| e
n#Z0
&)
— amn[ h? (ko) + A (k R)] lel (cos 6)
n2m| kol
. dpiml 9
=N >Z dann(klR) #
n:;ATD” _
— N Z Cmn[ jl’!(klR) ﬂ(klR)] ij| (COS 6) (82)
n2[m| T kiR

We are using the notations en; = en-i; and An; = hn-i;.
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Similarly, the boundary conditions (18) and (19) lead to the
equations

1 dR 1) |m|
T emi(R, 8) — , mahd (lcaR) P (cos f)

_ hY (koRR) Oy dPI™ (cos 6)
n22|m| bmﬂ{[ —knR + hn UCoR)] do

Bmz(R 9) +

\IV

n(n + 1) dR P (koR)
Jia d8 kR

- Z CmnJn(k1R) - —wP"’”(cosﬁ)

ﬂ_ m
n#=0

_ H>Z|m| dm,.([ In(krk) | J"(klR)j' dPy"! (cos 0)
0

+ Pl™ (cos 8) }

It

kiR ae

n(n + 1) dR ja(k
R dd  ky

+ k) Pl™(cos @)} (83)

@ﬂ[mam+lmmmwﬂ

— X buahi" (koR)- —P[”"(cosﬂ)

nz|m|

a0
_ R (koR) . ] dPl™ (cos 8)
ﬂéz;ggl amn[[——koR + ks (kDR) T

n(n + 1) dR hP (koR)
R a8 koR

— N 2 de (k1R) - flei (cos 6)

n#O

+ Pl™ (cos B)}

— In(kiR) | dP™ (cos 6)
N n%{)ﬁlcmn‘[ k]_R + Jﬂ-(klR):I fd@

n(n + 1) dR ju(k:R)
R de kR

+ Pl™(cos @)} (84)

APPENDIX B

We consider here the case in which the raindrop is symmetrical
about the plane 8 = 7/2 so that

R(r —0)=R(#), 0=6=<x/2 (85)
Let & = (# — ). Then, from (21), (79), and (80), it follows that, cor-
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responding to &,

éIma(R, 0) = —Glma(R, T = 0)» (86)
hts(R, 6) = hhs(R, = — 6), (87)

a0 + 525 e
1 dR('rr )

- [e},,Q(R, ™ —0) + “A(r —0)

e (R, 7 — e)], (88)

and

[ﬁ,’,.z(R 0) + ;‘fg bty (R, o)]

- - I:hflnz(R,r o+ L %I—")hll(}a . — o)]- (89)
But*
Plml (—cos8) = (—1)~1mPlml (cos 6). (90)

It follows from (81) to (90) that

by + (—1)nHimlgh . =0, chn + (—=1)ntimi+igl =0 (91)
and
bl + (—1)nHImIBL, = 0, dhe 4 (—1)mHmIdL, = 0. (92)

For a = v/2, we have @ = a, and hence we obtain the relationships
in (25).
Similarly, from (22), (79), and (80),

(R, 6) = (R, m — 6), (93)
ﬁ‘a(R 6) = —h%(R, m — 6), (94)
[aﬁz(R 0)+ & B (e, a)]

= — [e},}z(R,vr —6) +;—B%'—§) (R« — e)], (95)

and

[ﬁ},{z(R 0) + ;fg ki (R, 9)]

= [ r - 0 + o =D R - 0] 96
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It follows, from (81) to (85), (90), and (93) to (96), that

amy + (—1)*+Imlagn = 0, emn + (—1)mHmlgn, =0 (97)
and
bun + (=1)nHm P =0, dl, + (=1)»HmHdll = 0, (98)

For « = 7/2 we obtain the relationships in (26).

For a # v/2 we may consider the sum and the difference of the
boundary conditions corresponding to @ and to & = (r — «). Then
the sums (amn + dmu), (bmn + an); (Cmn + émﬂ); and (drrm + ‘imn)
and the differences (@mn — Gmn), (bmn — bmn), (Cmn — émn), and
(dmn — dmn) may be determined separately, and these sums and
differences vanish for alternate values of n, depending on the pol-
arization.

APPENDIX C

We first consider the calculation of the scattered energy W,, which
is defined by (35), by letting r — <. From (29) it follows that

l kor?

W, = lim

]

2wpo

f’ L'(|E;l=+ IE;iI”)sinﬂd&d;p}- (99)

But from (28),

v __el'knr o o . m |m|
E; kor m=Z ng;gq( 2 [a,,.,. sin § P™ (cos 6)
n
|m|
+ bmn M ]el'nIp (100)
do
and
. etkor Ant dP,Lm[ (COS 0)
Ea ko?' e ngz;m] ( ‘L) [ﬂmn —d3
n#=0
+ b,,,,.-si:: 5 il (cos ﬂ)]e""'v. (101)

Substituting (100) and (101) into (99), the integration with respect
to ¢ is straightforward. The integration with respect to 8 readily follows
with the help of the identities

m];' [PJ'"'(cosﬂ) CM

de
m|
4 ﬂd(aLsﬁ) PI™ (cos 9)]d8 -0 (102)
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and®*

[ = [dPJ’"' (cos 8) dP\™ (cos 6) m?
(1]

m| |m| 3
r 0 + 50 PJ|™ (cos 8) PI™ (cos 8)]51{1 6d

_2n(n+1)(n + [m|)!
(2n + 1)(n — [m|[)!

where 6:. denotes the Kronecker delta, i.e., §1» = 1 for [ = n, and 0
otherwise. Thus, the expression for W, given in (36) is obtained.

We remark that there is no need to let 7 — « to obtain this expression
for W,. The same result follows from (35) by using the expressions (10)
and (11) for the scattered field, wherein M, (ko) and NS (ko) are
defined by (8) and (9), with z, (ko) = k" (kor). The dependence on r
is found to vanish, as is to be expected, in view of the Wronskian rela-
tionship®

8in, (103)

Gulkor)yn(kor) — ya(kar) ju(lar) = @:r—) (104)

We also remark that the expression in (36) holds quite generally, e.g.,
for scattering from nonaxisymmetric raindrops, since at this point we
have made no use of the properties of the coeflicients @m» and bmn.

We next consider the calculation of the total energy W, which is
defined by (41). We begin by allowing for a general incident field,
given by

Ei=— Y ¥ [AnM®Bko) + BuN& (k)]  (105)
m===nzlyl
and ]
Hi = %o Y [AnaN&(ko) + BmaM@(ko)],  (106)

WU m=—w nZ|m|
n=0

where the superseript 1 indicates that za(ker) = ja(kor) in (8) and (9).
The calculation of W, is similar to that of W, and it is found, after
some reductions, that

=2 il n(n + 1(n+ |m|)!
wﬂﬂkURe m=Z—w né;lgtl (2n + 1)(”‘ - |m|)'
X (@maAmn + dmnBun).  (107)
We now consider the incident electric field given by (42), where

E! and Ei; are given by (5) and (6), respectively. Then (43) holds and,
from (10) and (11),

Amn = aqlnn + ayIriln, bmﬂ = b}nn + bg’l (108)

W,
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From (5) and (6) and the expansions in (116) and (117), it follows
from (105) to (107) that

W, = Re © X (=i

r-l-h'-‘ﬂkﬂ m=—w ﬂ:=‘;lér‘r]ll
| m|
. m |m]| dPy (COS a)
X [E':[am s;_inaP" (cos a) + bpn —————

da

. dPirl
+ zE:r[am %Sa) + ban- siTP"“’ (cos a)]] (109)
The relations (39) now follow from (33), (34), (40), and (108) by
setting first Eyr = 0 and second Ey = 0, in (109). We also note that,

from (5), (6), (28), (30), (42), and (109),

_ 2r . —ikore " (E¥)*E* | p=a, =0 | ].
W= wpoko Re[rlin‘: { exp[ —ko(z sin @ + z cos @) ] ] (110)

We remark that both (109) and (110) hold, subject to (42), (43), and
(108), for scattering from generally shaped raindrops.

Finally, we consider the particular case of an axisymmetric raindrop
given by » = R(6), so that (23) and (24) hold. Thus,

(armaim + b)) = — (- mn@Tme + DmabTonn). (111)
Hence, from (36) and (108),
W, = Wi+ Wi (112)
Then, from (37), with
R s oot e
we obtain (44). Also, from (23), (24), (108), and (109),
W, = Wi+ WE (114)
Hence, from (40), with
Q= Zupial? (115)

ko(E1E + EnEn)’
we obtain (45).

APPENDIX D

We first give the expansions for the incident wave in terms of spheri-
cal vector wave functions.*!® It is found that
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(cos ai — sin ak) exp [tho(z sin a + 2z cos @) ]

z“’ (20 + 1)(n — |[m])!
mim e il n(n+ D(n+ [m])!

n7#0
M oiml W dP}™ (cos @)
X [—Sm p Pn (COS a)an(kg) + ‘—'—da

Ms

N:,z,wco)] (116)

and

j exp[iko(z sin a + 2 cos a) ]

= 2 @nt Do = |m])!
m=—w '":JJ)“I n(n + 1)(n + ‘TRD!

dP™ (cos a) W m m -
x [ T an(k(]) + 'SEPH (COS ﬂf)N”m(ko)] ' (117)

Expressions for the quantities e,.(r, 6) and hn(r, 8), defined in (20),
then follow from (5), (6), (8), and (9). Thus, we may now consider the
boundary conditions (81) to (84).

We first multiply (81) by dP|™ (cos 6)/d8 sin 8 and (83) by im pjm
(cos §) and add, and then multiply (81) by im P|™ (cos 6) and (83) by
dP|™ (cos 6)/d8 sin 6 and subtract, and integrate both these equations
with respect to 8 from O to «. In the zero-order approximation corre-
sponding to » = 0in (47), this leads, with the help of (102) and (103),
to simultaneous linear equations for a% and ¢%. Similarly, multiplying
(82) by dP}™ (cos 8)/d8 sin 8 and (84) by im Pi™ (cos 6) and adding,
and multiplying (82) by im P|™ (cos6) and (84) by dP{™!(cos 0)/df
gin @ and subtracting, and integrating both these equations with re-
spect to 8 from 0 to 7, we obtain simultaneous linear equations for the
gero-order coefficients b9 and 4. The solution of these two pairs of
simultaneous equations leads to the relations (50) and (51), where the
quantities am, and B.. depend on the polarization, as given by (52)
and (53). It remains to give the expressions for the quantities ax, b, cn,
and d, oceurring in (50) and (51).

We define

o = [0 1) e[ 22 +0m)

Then, with p = koa, it is found that

— I:jn(P)NGn(Np) — J-n(Np)Gn(p):l
@ = (A (NG (Np) — ju(Np)Fu(p)]’ (119)
p. = Lin(0)Gu(Np) = Nju(Np)Gu(p)] (120)

" [P (G (Np) — Nja(Np)Fa(p)]’
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and
cu = (1/ )[R (P)NGa(Np) — jn(Np)Fa(p) ] (121)

dw = @/ )W (D)Gu(Np) — Nju(Np)Fa(p) . (122)

In obtaining (121) and (122), we have made use of the Wronskian

relationship®
Jn ()" (p) — R (p)jnlp) = (i/p%). (123)

Next, considering the first-order terms in v in the integrated forms
of the boundary conditions, and making use of (47) to (49), two pairs
of simultaneous linear equations are obtained for i and chs and for
b and dfY. These equations contain somewhat involved expressions,
but after considerable reductions they lead to the expressions given in
(54) to (56), subject to (57) to (62). In particular, use has been made
of the differential equation satisfied by the spherical Bessel functions,®

£2)(8) + 28(8) + [ — L+ DIa() = 0. (124)

Moreover, from (118) to (124) it follows that
Ji(p) — aihV (p) + c1ji(Np) = 0, (125)
7i(p) — bV (p) + Newji(Np) = 0, (126)

Gi(p) — aiFi(p) + N2@i(Np) = (1 — N)eru(Np),  (127)

Nji(p) — Nbihi®(p) + diji(Np) = (1 — N)diji(Np), (128)

7i(p) — bk (p) + N?dyji(Np) = (N? — 1)diGi(Np), (129)
and

N [Gi(p) — biFi(p) + NdiG(Np)]
=11+ 1)1 — N)diji(Np). (130)

We have also used the fact that

4 dPl™ (cos8) . ,de nin + 1)
m| n 1 m m
./‘u P|™ (cos 0) —p St i} a0 de = WFD jem — gm (131)

where 3¢ and 97 are given by (60) and (61). This result follows directly
by integration by parts and use of the differential equation satisfied
by the associated Legendre functions,™

1_df_. ,dP (cos6)
singdo | " o

m2
sin? 8

+ [n(n +1) — ]PLml(cos g) = 0. (132)
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APPENDIX E

We outline here the calculation of the integrals in (60) to (62) in the
case
e1(6) = 1 sin?é. (133)

It is assumed that I = |m|, n = |m|, | # 0 and n # 0. Integration
by parts of the expression in (62) leads to

gm = —-mfr P|™ (cos 8) P} (cos 8) sin @ cos 6df
0
1
= —m f 2P|™ (z) P\ (2)dz. (134)
-1

But," with P!zl _,(z) = 0,

@+ VP (z) = @ — |m| + DPIZ() + @+ |m|)PI2i(z). (135)
Substituting (134) into (135), and using the relationship™

Y opim m __2(n+ |m])!
[ P @Pr @is = G eyt (136)
it follows from (62) that
m_ __—m — |m]) (n+ |m| +1)
= i e et e S | 0130
Next, from (60) and (133),
sp =310+ [ " (1 — )P (z) P (2)da. (138)
-1

The integral in (138) may be evaluated by using (136) and the recur-
rence relation (135), with I replaced by n also. Then, from (60), it is
found that

m_ i+ 1)m*+nt+n—1)

m= @n — 1)(2n + 3) Bun
_ 42+t m| + D+ |m| +2),
2(2n + 3)(2n + 5) hnt?

n—2)(n—1Dmn— |ml)n—|m| —1)
B 3(2n — 3)@n — 1) Bina. (139)

Finally, from (61) and (133),

on = % f_ll[(l 2)2dP me(x) apy i;'(”) EPJml(z)P,Lmt(x)]dx. (140)
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The integral in (140) may be evaluated by using (136) and the relation

m|
2 + D1 — 2 T

= (k+ 1D+ [m)P2h() — k@ — [m| + )P (). (141)
Then from (61) it is found that
m_ 1 m? n n[(n + 1) — m%]
T2 latn+ 1D " (n+1)(2n+ 1)(2n + 3)
(n + 1)(n? — m?) 5 — m+3)n+ |m|+ 1D+ |m| +2)
n(4n? — 1) i 2(n +1)(2n + 3)(2n + 5)
(n=2)(n—[m[)(n — |m| — 1)
2n(2n — 3)(2n — 1)

81,nn (142)

X b1,nyp2 —

We note that the above results are consistent with the expressions
given by Oguchi,? without derivation, for the integrals in (131), (61),
and (62), subject to (133).
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