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The results of a statistical analysis of telephone noise are presenied.
The analysis consists of two stages: an exploratory data analysis stage,
where the data are characterized through various nonparametric statistics
and a model-building stage, where the data are matched to models.

The exploratory data analysis stage involved examinalion of notse
waveforms, power spectra, and covariance estimates. The results show that
telephone noise consists of a deterministic component (sinusoids at various
Sfrequencies) and a stochastic component. It is assumed that these com-
ponents add. The data are filtered to remove the delerministic component.
Next, central moment estimales are presented, as well as first-order ampli-
tude statistics (histograms and empirical cumulative distributions) for
these filtered data. The results indicate that the filtered data appear wide-
sense stationary over short periods of time (typically 1 second) and,
although close to gaussian, are distinctly nongaussian.

The model-building stage involved fitting the filtered data to two classes
of models. The first class of models is based on symmetric stable distribu-
tions that arise from the central limit theorem. The second class of models
assumes lwo different physical processes that contribute to the random
component of telephone noise: The low-variance process is assumed to be
gausstan, while the high-variance component is assumed to be a filtered
Poisson process. Both classes of models agree intuttively with the physical
processes generating telephone noise and are mathematically tractable.
Based largely on graphical lests, both models appear to fit the fillered data
reasonably well.

I. INTRODUCTION

Noise on telephone lines has puzzled and plagued people since the
invention of the telephone. While it is common knowledge that tele-
phone channel noise is nongaussian, nowhere in the literature is there
a clear account of an adequate statistical characterization of telephone
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noise. In part, this is due to the fact that only recently have statistical
tools been developed that are equal to the task.

This paper attempts to adequately characterize some statistical
properties of telephone channel noise by means of various nonparamet-
ric statistics and by mathematical models. It is encouraging to note
that the results presented here do not contradict those found in earlier
works. However, since only a small number of telephone line noise
sample functions were examined, the results must be regarded as
tentative, awaiting independent checks by other investigators. It is
hoped the results presented here will stimulate communication theorists
to investigate new methods for optimally processing signals corrupted
by the nongaussian noise models presented here. Work along these
lines might lead to optimum and practical suboptimum receiver
structures for combating telephone noise. This in turn might permit
greater insight into how noise limits telephone channel performance
with regard to voice communication or data transmission.

The authors have tried to keep the notation and nomenclature con-
sistent with that used in statistics and probability theory. The reader
is reminded, for example, that “empirical cumulative distribution
function” refers to an estimate of the true “‘cumulative distribution
function” based on observations of ‘“‘empirical” data. The words
““sample’” and ‘“‘empirical” are often used interchangeably, as in
“‘sample mean’’ and ‘‘empirical mean,” as compared with the ensemble
mean.

1.1 Summary of past work

Broadly speaking, previous investigators characterized telephone
channel noise in two different ways, based on different ways of measur-
ing the data and with different problems in mind. First, direct measure-
ments of sample functions of telephone channel noise have been carried
out'™® and mathematical models for the noise statistics have been
constructed. Second, digital signals have been transmitted over tele-
phone lines and the difference between the transmitted and received
gignals has been analyzed, providing an indirect measurement of
telephone channel noise.* 18 It is extremely difficult to correlate these
two types of measurements. This paper is solely concerned with direct
measurements of telephone channel noise sample functions.

Both types of measurements indicated the nongaussian nature of the
noise. The analog measurements suggested that telephone noise could
be considered a mixture of a nongaussian random process with sinusoids
at various frequencies.!® The first-order amplitude statistics for the
random process appeared to be adequately modeled by a Pareto
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distribution.? Analysis of errors in digital signals transmitted over
telephone lines revealed that errors cluster in time, an indirect measure
that the noise cannot be adequately modeled as white and gaussian.*!

Some causes of telephone noise are thermal noise in amplifiers,!:!”
switches sparking on opening or closing contact,’~#1"-1 lightning,317
electromagnetic crosstalk,'” fading on microwave links and switching
to guard bands,®" echo suppressor turnaround,!” disturbances because
of maintenance,'” power line harmonics as well as harmonies of all
sinusoids used in the telephone switching system,!” and noise generated
at switch interfaces.’” The main causes of telephone noise are felt to
be due to thermal noise, switch arcing, and pickup of unwanted
sinusoidal harmonics.”” The main cause of error clustering in digital
signals is felt to be due to the impulsive component of the noise,
generated by switch arcing.l?

1.2 Problem statement
The problem is twofold :

(7) To provide an adequate statistical characterization of telephone
channel noise by means of various nonparametric statistics.

(77) To allow the data plus knowledge of the physical processes
generating telephone noise to lead to a mathematically tractable
class of models.

1.3 Outline of the paper

The data from five telephone lines and the processing necessary to
convert the data into a form suitable for further analysis are described
first. The analysis is broken down into two steps, an exploratory data
analysis stage where the data are characterized through various non-
parametric statistics and a model-building stage where the data are
matched to models.

The exploratory data analysis stage involved examination of noise
waveforms, power spectra, and covariance estimates. The results show
that the data consisted of a deterministic component (sinusoids at
various frequencies) plus a stochastic component, which were assumed
to be independent. The data were filtered to remove the sinusoids that
were significantly larger than the stochastic component. Histograms
and empirical cumulative distribution functions for the filtered data
were examined, as well as central moment estimates. The filtered data
appeared to be wide-sense stationary over short periods of time, typi-
cally 1 second. Based largely on quantile-quantile plots, it was con-
cluded that, although close to gaussian, the filtered data for three out
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of the five lines were distinctly nongaussian; the filtered data for the
remaining two lines appeared to be gaussian.

The model-building stage involved fitting the filtered data to two
classes of models. The first class of models is highly unstructured; it
was based on stable distributions, infinitely divisible distributions that
arise from the central limit theorem. Based on a series of parameter
estimation procedures including robust estimation, maximum likeli-
hood estimation, and quantile-quantile plots and backed up by a
likelihood ratio test on the goodness-of-fit, the three nongaussian lines
could be adequately modeled by a stable distribution with characteris-
tic index =1.95 (a gaussian has characteristic 2.0).

The second class of models is much more structured than the first.
Two different physical processes were assumed to contribute to the
filtered data: the low-variance component was a stationary gaussian
process, while the high-variance component was a filtered Poisson
process. Parameters for the gaussian component were estimated using
trimmed means and trimmed variances. The parameters specifying
the filtered Poisson process were much more complicated to estimate.
The instants of time at which noise bursts occurred and the intervals
between bursts were first examined; based on power speetra as well
as covariance estimates, the intervals appeared to come from a renewal
process. Histograms and empirical cumulative distribution functions
indicated that the time intervals came from a Poisson process ; empirical
survivor and hazard function plots showed that a Poisson process with
constant rate parameter was not an adequate model, however. Because
of the small number of bursts observed, it was quite difficult to fit the
time intervals to a Poisson process with varying rate parameter, and
for expediency a constant Poisson rate parameter was chosen to model
noise burst times of occurrence. The amplitudes of the noise bursts
were adequately modeled by a log normal and power Rayleigh, or
generalized gamma. The durations of actual noise bursts were used to
estimate parameters in the noise burst shaping filter. A simple indica-
tion is presented of how well the filtered data fit the gaussian-plus-
filtered-Poisson-process model. A number of other models and exten-
sions of these models are discussed.

Il. EXPLORATORY DATA ANALYSIS
2.1 Description of the data

The data, supplied by J. Fennick, consist of analog tape recordings
of noise on five telephone lines. Figure 1 is a diagram of the measure-
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Fig. 1—Telephone noise measurement system.

ment system. Table I describes the origin and destination of each line,
as well as the date and time of the recording.

The origin of the telephone line was terminated with the nominal
characteristic impedance of the line, 600 ohms. The output of the line
was low-pass filtered to remove spurious out-of-band signals, amplified,
and recorded on an analog tape at 18.75 cm per second. The system
was calibrated before each recording with a 15-second burst of a
325-Hz sinusoid at a predetermined amplitude. The dynamic range of
the recording system was approximately 100.2 No attempt was made
to eliminate de offset and drift. Each recording was approximately
15 minutes long.

Figure 2 is a block diagram of the analog-to-digital tape conversion
system. The analog tapes were played back on an analog tape recorder
(of a different model than that on which they were recorded) at 18.75
cm per second. The calibration signal set the gain on the playback
amplifier so that the calibration signal amplitude was roughly equal to
its value at the recording site. There was no attempt to remove wow
and flutter in the tape recording.? The signal was low-pass filtered (to
lessen the chance for spectral aliasing), amplified, sampled 10,000 times
a second, passed through an analog-to-digital converter, and subse-
quently put into digital format on a tape suitable for further processing

Table | — Description of data
Approxi-
Line Origin Destination Lonath Date Time
1 | Monroe, Mich. Detroit, Mich. 55 7/8/64 2: Oﬁp m.
2 | Saginaw, Mich. | Detroit, Mich. 160 7/8/64 2:49 p.m.
3 | St. Louis, Mo. Ft. Smith, Ark. 690 8/4/64 |10:30 a.m.
4 | Little Rock, Ark. | Ft. Smith, Ark. 250 8/4/64 1: 55p m.
5 | Newark, N. J. Binghamton, N. Y. 400 12/12/63 | 12:52 p.m.
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Fig. 2—Analog-to-digital conversion of telephone noise data.

by a Honeywell 6070 digital computer. The levels of the analog-to-
digital converter will be the units specifying the amplitudes of the
telephone noise data. No measures of the degradation in data on
digital tapes resulting from jitter during the sampling process are
available; it is assumed to be negligible compared to other sources of
measurement error. No bounds are available on the loss of information
entailed by examining a continuous-time random process at only
discrete instants of time.2

Two critical remarks concerning the method of recording the data
should be made: first, there are no quantitative measures available on
the amount of noise introduced into the data by the measurement
system alone. Presumably, any measurement system noise was in-
significant compared to the telephone channel noise. Second, the
dynamic range of the recording system is probably insufficient to
faithfully record telephone noise; a much more satisfactory dynamic
range would be 1000 to 10,000. Both issues have been dealt with else-
where (in a different context) ; a possible solution would be to convert
the data into digital format directly at the recording site.?® Considera-
tion of these problems is left to future research; the data analysis
proceeded with these caveats in mind.

Figure 3 shows a typical telephone channel noise waveform from
line 1 after conversion to digital format.

How typical are these data compared with that observed on other
telephone lines? A search of the literature as well as private communica-
tions from engineers shows that the data discussed here appear to be
typical of telephone channel noise. Throughout this investigation,
nothing was uncovered that contradicted earlier work; rather, this
work tends to clarify and place in perspective that of earlier investiga-
tors. Note too that the telephone lines examined here were typically
several hundred miles long, presumably passing through a variety of
equipment, and hence quite representative of telephone noise. Finally,
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Fig. 3—Typical line 1 telephone noise waveform (unfiltered).

the analog tape recordings were played into loudspeakers, and the
authors felt the noise sounded typical.

A much more serious objection to the present analysis is that not
enough of the data at hand was examined. If all five 15-minute noise
recordings were sampled 10,000 times a second and then put on to
tape in digital format, more than 45 million noise data must be ana-
lyzed; in particular, 9 million data must be processed and statistically
characterized for just one telephone line sample function. In practice,
only 10-second segments from the beginning and middle of a recording
were examined in detail and compared with each other. No unusual
statistical differences were observed between these segments for any
telephone line. The main reason for examining so little data was the
great cost of analyzing these data statistically and, in particular, of
digitally filtering the data to remove sinusoids. It is difficult to predict
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Fig. 4—Typical line 1 telephone noise waveform (filtered).

in advance exactly which sinusoids are present on a particular telephone
line; it is easier to filter these out digitally after the measurement
without distortion than to accomplish this with analog filters.

2.2 Data modifications and estimation of power density spectra

As mentioned above, the data went through several stages before
they were available in digital form. Some further processing is necessary
to remove the effects of this pre-processing, as well as to remove un-
wanted sinusoids. Since the frequency response of each line was un-
known, nothing was done to compensate for it.

The first step is to compute estimates of the power spectrum. The
data were segmented into blocks (typically of length 1000, correspond-
ing to 1% of a second of noise). Each block was tapered and enlarged
to 1024 values by adding zeros, then transformed into the frequency
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domain by the fast Fourier transform (FFT);* the power spectrum
was estimated from the transformed data. The method used is com-
parable in bias and variance to other spectral estimation procedures,
but requires considerably less computer time than other non-FFT-
based methods.?*~?" Furthermore, it is possible to calculate cross-
spectrum estimates easily, as well as to check for nonstationarity by
computing the spectra of successive segments of data. The discrete
Fourier transform of N successive data at frequency w; = I/N At is

.f('wl):

where
ng = sample of noise waveform at time KA¢

and
At = time interval between samples.

The estimate of the power spectrum density at frequency w; is S(w,),

Swy = § X, [fwl,

where

M
Z gi = 1:
j=—M
and the weights {g,;} are introduced to smooth the estimate. Unequal
weights can be used to lower the bias of the estimate, but increase
its variance. The value S(w;) represents the average noise power
density in a frequency band centered at w;. All power spectrum density
estimates shown here were computed with g; equal to (M — |j|)/M?,
where M = 5. Figure 5 shows the power spectrum for the waveform in
Fig. 3 with two sharp peaks probably reflecting sinusoids at 650 and
4300 Hz. Figure 6 shows a succession of 24 power spectrum estimates
for line 1 for ¥5-second segments of filtered data. The first 13 are from
successive segments recorded at the beginning, while the final 11 are
from successive segments recorded 5 minutes later. These results
indicate that line 1 data can be regarded as wide-sense stationary over
at least 1-second time intervals. The variance of these spectral estimates
is unknown; if the process were gaussian, the distribution of S(w;) can
be approximated by a X* distribution with [2/3 ', ¢2] degrees of
freedom.?® For g; = (M — |j|)/M? with M = 5, this results in ap-
proximately 14 degrees of freedom. From the data shown here for line
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Fig. 5—Typical power spectrum for unfiltered line 1 data (N = 1000).

1, as well as data from the other four lines, telephone noise power
density spectra appear to have the same shape, but different scales.

Table IT summarizes the estimates of frequencies of signals which
were quite probably sinusoids, and whose estimated power spectrum
density was at least a factor of 10 above the estimated wideband power

Table 1| — Estimated frequencies of sinusoids that were
subsequently filtered out

Line Estimated Frequency of Sinusoid (Hz)

650, 4300

650, 4300
3900

2000, 3600
60

O 02 B =
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Fig. 6—Line 1 power spectra: bottom 13 from beginning of line 1 data, top 11 from
middle of line 1 data (N = 1000).

spectrum density. While this criterion is arbitrary, independent experi-
mental evidence to be discussed shortly indicates it is adequate from a
statistical point of view.

Since many statistical tests require uncorrelated samples, it is neces-
sary to filter out these sinusoids, as well as to compensate for distor-
tions in the data from the measurement system. This implicitly assumes
that telephone noise can be modeled as the sum of a deterministic
process, sinusoids at various frequencies, and a purely stochastic
process, which will be characterized in greater detail. This was ac-
complished using low-pass, band-stop, and high-pass linear-phase
digital filters designed by computer programs developed by L. Rabiner;
the filtering was carried out in the discrete time domain by convolution.
Figure 7 shows the power spectrum of a filtered segment of the data
shown in Fig. 4.
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Fig. 7—Typical power spectrum for filtered line 1 data.

Because of the difficulty in finding telephone lines completely free
from sinusoidal interference, the question arises as to how much
harmonic content can be tolerated in performing various statistical
tests. Work carried out elsewhere in a different context has examined
this issue from an experimental viewpoint ;# the principal findings were
that the amplitude statistics are apparently not significantly degraded
by the linear filtering, if the sinusoid is the same size or smaller than
the observed noise levels. This topic can be a subject for future research.

2.3 Covariance estimation

It is assumed in many statistical computations that the data are
statistically independent. In practice, the data usually depend to some
extent on each other, and it is often quite difficult to quantitatively
estimate the effects of this lack of independence. One indication of
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Fig. 8—Typical line 1 autocorrelation funetion (N = 1000).

independence is the estimated autocorrelation function,

= 1 ! _ - . —_—
Ran(lAL) o) N ): n'(KAt)yn' (KAt +1Af) 1=1,---, N — 1,
where
1 N
n' (KAt = n(KAt) — — 3 n(lAl)
N l=1
and

1 N
Ran(0) = 5 3 (KA,

A typical autocorrelation of filtered data is plotted in Fig. 8. A sinusoid
that was not filtered out is quite evident at approximately 1400 Hz
(see also Fig. 7); ignoring this sinusoid,?® the autocorrelation appears
to be approximately zero for I = 3.
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If the data are wide-sense stationary and ergodic, then the autocor-
relation and the power density spectrum are a Fourier transform pair.®

Examination of the filtered waveform in Fig. 4 indicates that the
samples appear uncorrelated, i.e., they are scattered in a random
fashion about a location parameter.

The sample normalized cross covariance for two different segments of
dﬁ't'a) iE(At): z(ZAt), Tt I(NAt)} and [y(At)) y(ZAt): Ty y(NAt)])
is defined as

N-=1
%KZ o (KAL) (KAt + 1AY)
= =1 = . p—
R,,(1At) = R0V, (0) l=0,1,---,N — 1,
where
1 N
o' (KAL) = z(KAt) — = 3 z(lIAL),
N =
1 N
y'(KAt) = y(Kat) — N 2 y(lAt),
=1
R..(0) = L5 g Kat
22(0) =N &=° (Kat),
and

_ 1y
R, (0) = N KZ=1 y" (KAL),

and is shown in Fig. 9 for two typical segments of filtered data. From
this as well as other data, the filtered telephone noise data examined
appear to be uncorrelated over short time intervals.

Since the data, after filtering, appear approximately uncorrelated,
they will now be characterized in greater detail.

2.4 First-order filtered data amplitude statistics

A nonparametric statistical description of first-order noise amplitude
statistics provides a great deal of useful information. For example, if
the data are independent identically distributed random variables,
they can be completely characterized by their empirical cumulative
distribution function.®* The work in this section relies heavily on
graphical methods for data analysis, to give more physical insight
into the nature of the data.®

The empirical or sample cumulative distribution function is defined
as

) 4 number of observations less than or equal to X
total number of observations ’
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Fig. 9—Typical line 1 crosscorrelation function (N = 1000).

which is a function of {zx}, the set of observations. The sample
histogram is defined as

P(X, X+ A4) £ number of sample values in [X, X + A],

where A is the bin width. Figure 10 is a plot of a typical empirical
cumulative distribution function, and Fig. 11 shows a typical sample
histogram. These two figures imply that the first-order probability
density for the data is roughly bell-shaped and symmetric. A simple
graphical symmetry check on the empirical cumulative distribution is
shown in Fig. 12; zg is plotted against ax_g+1, where K = 1, 2, - -+,
[N/2], N = 1000 is the total number of observations, and {xx} is the
set of ordered observations. If the empirical cumulative distribution
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is symmetrie, these points lie on a straight line with negative unit
slope; this is apparently the case.

The next quantities of interest are central moment estimates, which
are defined as follows :3

N
Z = sample mean = 1 2 T
N /&
. 1 X
§* = sample variance = ¥ 2 (z; — £)?
i=1
1 X~
d; = sample skewness = i 2 (z; — 2)3/ (D)},
i=1

and

(z; — )Y/ (s")™

d,; = sample kurtosis =
1

w.
I

2| =
M=
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Fig. 11—Typical line 1 histogram (N = 1000).

These parameters were estimated for ten segments of 1000 data for
each of the five lines. Table 11I shows these estimates for the segment
of each line whose fourth central moment was the median of all ten
fourth-central-moment estimates of this line. The 5-percent significance
level for 1000 independent identically distributed gaussian random
variables with known mean and variance are®

—0.127 < d; < 0.127
2.76 < dy < 3.26.

Figure 13 shows a scatter plot of d; vs. 44 for successive segments of
1000 data for each of the five lines. Based on this evidence, it can be
conjectured that lines 1, 2, and 4 are nongaussian, while the gaussian
hypothesis cannot be rejected for lines 3 and 5. Since quite a large
body of literature exists on gaussian random processes and these
random processes are well understood, the gaussian hypothesis is not
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Fig. 12—Typical symmetry check on line 1 empirical cumulative distribution
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lightly discarded: the evidence that the data are nongaussian should

be much more convincing than that presented so far.

A very convenient graphiecal method to check how well data fit a
theoretical distribution function is the quantile-quantile, or Q-Q, plot.*
The gth quantile of a cumulative distribution function F(z) is defined
here as the value z for which F(z) = ¢q, 0 = ¢ = 1. A Q-Q plot plots

Table |ll — Estimated telephone noise central moments
Line I §? da i
1 —87.9 38,600 0.05 3.4
2 —80.1 18,200 0.08 3.5
3 —80.1 44,200 —0.05 3.1
4 —82.3 87,200 0.02 3.3
5 — 1.06 1,990 —0.08 2.9
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Fig. 13—Secatter plot of estimated third central moment d; vs estimated fourth
ctlantra.l moment d4 for at least ten successive segments of 1000 data (N = 1000) for
all five lines.

quantiles of the empirical cumulative distribution function against
quantiles of the theoretical distribution. If the empirical and theoretical
distribution functions are the same, the plot is a straight line with
slope +1 passing through the origin. If the empirical and theoretical
distribution functions are the same to within a linear transformation
(i.e., to within a scale and location parameter) the plot is still a
straight line. A typical quantile-quantile plot for line 1 filtered data
against a gaussian distribution is shown in Fig. 14; the sample size
was 13,000. The first 100 and last 100 quantiles, as well as every
hundredth quantile in the middle, have been plotted, giving the
illusion of discontinuity during the transition from the middle to the
tail quantiles.® Ten observations in each tail are widely scattered.
Figure 15 shows the central portion of the quantile-quantile plot with
these observations excluded. The tails curve toward horizontal lines,
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Fig. 14—Q-Q plot for 13,000 line 1 data against gaussian distribution (X = sample
mean, S? = sample variance).

another indication of the long-tailed nongaussian nature of the data.
The 10 points on each tail were found to be highly correlated: These
very large excursions occurred in clumps of two, three, and five at a
time, violating the assumption that the data are independent. For
comparison, Fig. 16 shows a quantile-quantile plot for line 5 filtered
data against a gaussian distribution; the sample size was 11,000. The
straight line is a good indication that these data are gaussian.

IIl. MODELS
3.1 Central limit theorem

Since noise on telephone lines is presumably due to a large number of
independent causes, it is worthwhile to digress and review the central
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Fig. 15—Center portion of line 1 Q-Q plot for gaussian model (N = 12,980)
(X = sample mean, S? = sample variance).

limit theorem. The material presented here is largely tutorial, following
standard references.?*:3* The close association between the central limit
theorem and the gaussian distribution is remarkable because of its
algebraic closure property: If two independent random variables are
both gaussian, their sum is also. It is much less widely known that the
gaussian distribution is a special case of a larger family of distribu-
tions, which arise from the central limit theorem and exhibit the same
closure properties as the gaussian, the stable distributions.

The reason for the importance of the gaussian rather than the
entire stable distribution family is that only the gaussian distribution
has a finite variance, and infinite variance is felt to be physically
inappropriate in virtually any context. However, this is naive in that
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Fig. 16—Q-Q plot for 11,000 line 5 data against gaussian distribution (X = sample
mean, S? = sample variance).

the gaussian distribution is unbounded and unbounded quantities are
also felt to be physically inappropriate. The gaussian distribution
may describe a particular situation adequately over a certain range; an
infinite-variance distribution may model an actual situation over a
greater range of a parameter. Both distributions may be physically
inappropriate, but the infinite variance may, in this sense, account for
the observations better than the gaussian.

Mandelbrot has pioneered in developing and popularizing this
notion,*—% for example, in connection with economic phenomena®*-
and in error statisties of digital signals transmitted over telephone
lines.® Consider, for example, the distribution of changes in stock
market prices. Mandelbrot®*® and Fama® have shown that, although
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the change in stock market prices is bounded, the probability of very
large deviations is so great that many statistical techniques that assume
an underlying distribution with finite variance are not applicable.
Stock market prices may be modeled as a sum of a large number of
random variables; similarly, at any instant of time, telephone noise is
presumably the sum of a large number of random variables. The sum
of a large number of infinite-variance variables is often dominated by
one or a few of the summands*—a theoretical property of infinite-
variance distributions. The key feature common to these models is
that the limiting distribution remains the same if an arbitrary but
finite number of terms are dropped from the sum. This intuitive notion
can be made precise and, subject to a mild restriction on the distribu-
tion from which the summands are drawn, leads naturally to the central
limit theorem.*

Among infinite-variance distributions, the stable distributions play
an important role, because only stable distributions can be limiting
distributions of suitably normalized sums of independent identically
distributed random variables, as well as because stable distributions
are closed under convolution. Some pioneering work on the statistical
analysis of data from a stable distribution has been carried out already ;
the analysis described here is a straightforward application of this
work.4#—48 Before detailing that work, a summary is presented of some
properties of stable distributions.

A distribution function P(z) is called stable if, for all a; > 0, by,
az > 0, by, there exist constants ¢ > 0, b such that

P(aiz + b1)*P(ax + b2) = P(ax + b)

holds.#® Every stable distribution has a continuous density; the stable
distributions discussed in this work have unimodal densities that are
analytic throughout their support.®® The random variable z is stable
if and only if the logarithm of its characteristic function is

In [E ()] £ In [p.(w)]
_ |~ lew|=[1 — i8-sign (w) tan (ra/2)] + idw a#1
— |ew|[1 — i82/7 sign (w) In |cw|] + 6w a=1
—-1=8=1 0<a=2
Thus, every stable law is described by four parameters @, 8, ¢ (or
¥ = ¢%), §, where « is the characteristic index, 8 is associated with the

skewness of the distribution, ¢ is a scale parameter, and 6 is a location
parameter. If 8§ = 0, the distribution is symmetric about =z = &. If
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B> 0and 0 < a < 2, the distribution is skewed to the right, and the
degree of skewness increases as 3 increases; conversely, if § < 0, the
distribution is skewed to the left and the degree of skewness increases
as B decreases. For « = 2, 8 is irrelevant.®

If s, is the suitably normalized sum of n independent identically
distributed random variables x1, s, - - -, %,

su=1%(a:1+a:z+-~-+:cn)—A..

where B, and A, are normalizing constants, then the distribution of x
is said to belong to the domain of attraction of a stable distribution
with characteristic index « if the distribution of s, converges to this
stable law as n goes to infinity ;% this distribution belongs to the domain
of partial attraction of a stable distribution if the distribution of s,
converges only for some subsequence.* A stable distribution with index
a has absolute moments of all orders strictly less than e, i.e.,
E[|z|?] < = for 0 = p < a.%

Stable distributions and densities can be expressed as a power series. %
In several cases, this series can be considerably simplified to yield
analytic closed-form expressions; these cases are o = 2 (gaussian),
a = 1land B = 0 (Cauchy), and « = % with 8 = 1. Figure 17 depicts
several stable density functions.

If z1, 23, + -+, Tn, - - -, are independent random variables drawn from
r distributions, each within the domain of attraction of stable laws with
indices drawn from the finite set (a1, - - -, @), then under certain con-
ditions on the number of representatives of each distribution, the
suitably normalized sum of these variables converges to a distribution
that is the convolution of r stable distributions.57-%

The question of rate of approach to the limiting distribution of a
sum of suitably normalized, independent, identically distributed
random variables is well understood if the limiting distribution is
gaussian (@ = 2).%-% If the limiting distribution is in the domain of
attraction of a stable distribution, a variety of results are avail-
able.3035.4.47 The most useful result® available at present, from a data
analysis point of view (see Ref. 63), loosely states that the difference
between the actual distribution of the sum of N suitably normalized
random variables and the limiting stable distribution (0 < a« < 2) is
bounded by a linear combination of terms of the order of N« and
N—@-ala  Ag an example, consider the case & = 1.9: one term is
N-Ve = N-0.58 while the other term is N—@2/e = N—0.08. N must be
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Fig. 17—Some symmetric stable first-order probability density function.

astronomically big to reduce this second term to a value smaller than
0.1, which indicates how slow this rate of convergence to a limiting
stable distribution may be.®® Thus, in many practical situations, cau-
tion must be shown in going to the limiting distribution.®—% Noise
on telephone lines is possibly a case in point.

Section 3.2 discusses how filtered data from the three nongaussian
telephone lines are fit to stable distributions. Since these distributions
have no second moments, the modifications necessary to properly
interpret power spectra and covariance estimates, as well as auto- and
crosscorrelation estimates, for these three lines are not clear. This
whole area must be subject to further research.®

As a final aside, the question of ergodicity, of relating time average
statistics to ensemble average statistics, will not be addressed here:
The filtered data are assumed to be an ergodic random process.
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3.2 Symmetric stable distribution model

In this section, various statistical tests are described for determining
if telephone noise on the three lines that appear nongaussian can be
adequately modeled by a symmetric stable distribution (0 < a £ 2,
g =0).

A series of estimators for symmetric stable distribution (1 < a < 2)
parameters have recently been developed.’*¢ These estimators are
based on statistics easily derived from the empirical distribution func-
tion; they have been compared with maximum likelihood estimates
and found to offer reasonable agreement when suitable precautions,
such as a large sample size for a near 2, are taken.* These parameter
estimates are

I S S L 0.125, 0.250, 0.375
= 2Np K:(Oj_p) XK p = . ’ . y .
1

C = m (fu.‘m - EU.EB):

where &, is the value of the rth empirical quantile, § is a trimmed mean,
and ¢ measures the spread of the distribution. To estimate the charac-
teristic index «, an auxiliary variable 2z, is first computed

To — Tig _ ggoy Fa = T
2¢ Xo.r2 — Xo.2s

q = 0.9995, 0.995, 0.99, 0.985, 0.98, 0.975, 0.97, 0.96, 0.95, 0.94, 0.92,

2g =

and then & is obtained as a function of z, from tables in Ref. 48. # is a
measure of how rapidly the distribution approaches its asymptotic
values. For line 1, with a sample size of 13,000, it was found that

§= —874,
¢ = 1320,
&(z0.99) = &(20.995) = 1.95.

In addition, this was carried out for a sample size of 1000 thirteen
times, a sample size of 2000 six times, a sample size of 3000 four times,
a sample size of 4000 three times, and a sample size of 5000 two times.
The results are tabulated in Table IV for the ¢ = 0.98 fractile. Different
choices of ¢ resulted in practically the same estimates.

Larger and larger samples were used because, if the data really
come from a stable distribution, then the parameter estimates would
presumably converge to their true values with increasing N.
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Table IV — Line 1 symmetric stable distribution
parameter estimates

N = 1000 N = 2000 N = 3000 N = 4000 N = 5000

—88.6, —88.8, —86.0, —87.2 | —87.0, —88.1 | —88.1, —87.8 | —87.9, —87.8 | —87.9, —88.0
§ —88,2, —88.0, —87.6, —87.6 | —87.6, —88.5 | —B87.8, —88.0 | —88.1

—88.3, —88.7, —86.6, —87.5 | —87.7, —88.7

—87.2

132.1, 127.4, 122.9, 124.7 123.7, 141.1 125.8, 135.7 125.5, 132.3 130.6, 132.1
& 145.2,134.5, 128.6, 119.8 124.0, 137.6 129.1, 136.1 135.9

143.4, 134.5, 130.5, 124.2 135.1, 128.7

137.6

1.92, 1.94, 1.96, 1.80 1.83, 1.94, 1.92 | 1.94, 1.92, 1,93 | 1.83, 1.91 1.94, 1.96

1.90, 1.89, 2.00 1,92, 2.00, 1.83 | 1.97 1.97
¢ 1.90, 1.99, 2.00, 2.00

1,91, 1.98

Figure 18 shows a Q-Q plot of 13,000 line 1 data against a symmetric
stable distribution with & = 1.94, while Fig. 21 shows the same plot
with 10 points on either end excluded. These points were excluded
because they were possibly atypical observations, and because they
were highly correlated to one another. Again, as in the gaussian Q-Q
plots, only the first and last 100 empirical quantiles, as well as every
one hundredth between have been plotted, giving the false illusion of
discontinuity in the observations. The eye is quite sensitive to devia-
tions from a straight line for quantile-quantile plots; in particular,
o = 1.94, 1.95, 1.96 could easily be distinguished from one another
(Figs. 18 to 23). The data appear to be slightly skewed, so a non-
symmetric (|8] < 1, 8 # 0) stable distribution might indeed provide
a better fit to the data. As « increases from 1.94 to 1.96, the stable
distribution has shorter and shorter tails, and the points in the tails
bending towards the vertical for @ = 1.94 align with the rest of the
data for increasing a.

As a check on these estimates, W. DuMouchel has supplied the
authors with a computer program that numerically calculates maxi-
mum likelihood estimates of parameters of stable distributions, as well
as of their covariances.** DuMouchel has shown the maximum likeli-
hood parameter estimates are asymptotically normal, so that some
statistical techniques developed for data analysis of gaussian samples
can be brought to bear.” The method used is numerical, nonetheless,
s0 two possible pitfalls must be kept in mind.

(#) For ease in numerical calculations, the data were aggregated
into bins, thereby losing information.

(1) A Newton-Raphson-type of algorithm was used that approxi-
mates the first and second derivatives of the likelihood function
with differences.
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Fig. 18—Line 1 Q-Q plot against a stable distribution, @ = 1.94 (¥ = 13,000).

DuMouchel” has observed that the first approximation is the more
critical of the two. The second approximation was investigated using
a simplex algorithm rather than Newton-Raphson which did not
compute discrete approximations to derivatives, with results consistent
to those now described.

For line 1 data, with a sample size of 13,000, the numerical maximum
likelihood stable distribution parameter estimates were

& = 1.95
B = —0.006
¢ = 132.7

§ = —88.8.
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Fig. 19—Line 1 Q-Q plot against a stable distribution, « = 1.95 (N = 13,000).

The numerical approximation to the estimated parameter covariances
are shown in Table V.

The large variance of 3 compared to the other estimates has been
observed by DuMouchel ;*¢ the cause is unknown. Although Q-Q plots

Table V — Parameter estimate covariances (x10°)

& ¢ B H
410 11 —-57 -1
11 63 —41 —2
—57 —41 13,551 430
—1 —2 430 248

oNnTor Gy Ry
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Fig. 20—Line 1 Q-Q plot against a stable distribution, « = 1.96 (N = 13,000).

indicated a slight skewness, i.e., 8 < 0 and |8| <« 1, the interpretation
of the maximum likelihood estimate for 3 was obscured by this large
variance.

As a check on these results, maximum likelihood parameters of stable
distributions were estimated for 78,750 filtered data from lines 1 and 2,
corresponding to approximately 10 seconds of telephone noise. A
Newton-Raphson-type algorithm was used; the parameter estimate
covariances were comparable to those just discussed. The results were:

& g é é
Line 1 1.96 —0.0084 218.0 —81.35
Line 2 1.94 —0.0014 93.5 —80.30
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Fig. 21—Center portion of line 1 Q-Q plot against a stable distribution, « = 1.94
(N = 12,980).

Two other pieces of evidence that telephone noise can be fitted by
a stable distribution are now presented: the studentized range test and
the likelihood ratio test. These have been discussed elsewhere ;¥
for large amounts of data, caution is necessary to interpret the results
of these tests properly. On the other hand, since the data here are
apparently close to gaussian, large amounts of data must be examined
to make clear the nongaussian nature of the noise. Thus, the results
of these tests must be very carefully interpreted, and are included for
the sake of completeness.

For line 1 data, testing the gaussian hypothesis at a 0.5-percent
significance level via the studentized range test for sample sizes of
1000 led to mixed results: some segments of data fell within these
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Fig. 22—Center portion of line 1 Q-Q plot against a stable distribution, & = 1.95
(N = 12,980).

limits, others fell outside. However, for a sample size of 10,000 the
result of the studentized range test clearly fell outside the confidence
intervals.

A likelihood ratio test was used to test 10,000 line 1 data at 1-percent
significance levels against five hypotheses. The stable distribution
hypothesis was rejected fora = 2.00,a& = 1.98,¢ = 1.90,anda = 1.85,
but could not be rejected for « = 1.95.

3.3 Other central-limit-theorem-based models

What other models arise that might adequately account for the
data, while having the same central-limit-theorem-based appeal as the
stable distributions? First, it is possible the data examined lie in a
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Fig. 23—Center portion of line 1 Q-Q plot against a stable distribution, « = 1.96
(N = 12,980).

domain of partial attraction of a stable distribution (which is wider
than the domain of attraction™). If enough data were examined, it
might be possible that « would approach 2. A second possibility is to
model the data as a convolution of r stable distributions, each with
its own domain of attraction;” presumably, each distribution could be
attributed to a separate physical process. A third possibility is that the
data are drawn randomly from m gaussian distributions, each with
different mean and variance; for example, the data could be drawn
from a low-variance gaussian a fraction P of the time, and from a
high-variance gaussian a fraction (1 — P) of the time. A fourth pos-
sibility is to model the data as a nonstationary gaussian random
process, which is a special case of a nonstationary stable random
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process, or by a doubly stochastic gaussian random process (where
the mean and the variance are themselves random processes), which is
a special case of a doubly stochastic stable random process (where all
four parameters are themselves random processes). While these non-
stationary and doubly stochastic models do not appear to be necessary
to adequately model the data discussed here, over longer time intervals,
such as days, weeks, months, or years, the simple models might be
inadequate while these more complicated models might be more ap-
propriate. Presumably, other classes of models exist.

It is difficult to refute these alternative models offhand. Recall that
the original goal was to find a mathematically tractable model for
telephone noise; the model discussed here is simple and agrees intui-
tively with the physics of the noise. The other models are more com-
plicated. To be of practical use, however, they must be so oversimplified
that the intuitive agreement with the physics of the noise is lost. It is
hoped that the class of models based on stable distributions will lead
to more insight into how telephone noise limits voice communication
and data transmission and, more important, into new ways for combat-
ing this noise.

3.4 Gaussian-plus-filtered-Poisson-process model

A model involving more parameters than the previous one is now
investigated. This model assumes that telephone noise is due to a sum
of two independent random processes. The low-variance part is assumed
to be white and gaussian, while the high-variance process is assumed
to be a filtered Poisson process. This type of model was popularized
by Snyder,” and has been used in optical communication’®7¢ and ELF
communication” to assess theoretically optimum and suboptimum
receiver structures. It has intuitive physical appeal: for instance,
the low-variance component can be attributed to thermal noise and
electromagnetic crosstalk, while the high-variance component can be
attributed to switch arcing and thunderstorms. It is convenient to
view the filtered Poisson process as the output of a linear dynamical
system, whose input is an impulse train; the area of the impulse is

Nit) N(t) +
S gy blt-t) J— hit) —_— T a hlt-1t) n(t)
= K=0 +
POISSON DISTRIBUTED LINEAR DYNAMICAL g(t)
IMPULSE TRAIN SYSTEM GAUSSIAN

RANDOM PROCESS
Fig. 24—Block diagram for generating a gaussian-plus-filtered-Poisson process.
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assumed to be a random variable, while the instants of time at which
the impulses occur follow a Poisson distribution with rate or intensity
parameter . Figure 24 and the following equation summarize this
discussion.

n(t) = g(t) + :ii axh(t — i) N(t) >0
g(®) N(t) =0,

where
n(t) = gaussian-plus-filtered-Poisson process,

g(t) = stationary gaussian random process,

ag = area of Kth impulse,

h(t) = impulse response of linear dynamical system,
tg = time at which the Kth impulse occurs,

N(t) = number of impulses that occur in [0, ).

To completely describe this model, the following parameters must
be estimated

(i) The mean and variance of the gaussian random process.
(77) The probability density function for the impulse areas.
(#7¢) The Poisson process rate parameter A.

(7v) The linear system structure.

‘We recall that the original motivation for this work was to stimulate
interest of communication theorists in receiver structures that detect
or estimate signals corrupted by nongaussian noise. One advantage of
this type model is that parameters can be related to receiver perform-
ance limitations as well as to physical causes of noise. This helps in
determining how much effort should go into improving the receiver as
opposed to reducing the noise (e.g., by designing switches to operate at
lower voltages). One disadvantage of this type of model is its great
analytical complexity; it may be quite difficult to find analytic per-
formance limitations, and to determine how sensitive these limitations
are to model parameters.”®

If the impulse areas {ax} are assumed to be independent identically
distributed random variables that are independent of the times the
impulses occur, the characteristic function for the first-order probability
density function can be shown to be

t
E[en®] = exp {imw — $o%? + )\ f [E.(ew™) — 1dr| ,
0
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where

w = frequency,
m = mean of gaussian random process,
¢? = variance of gaussian random process,
E.( ) = expectation of ( ) with respect to the random variable a,

the impulse area.

It is quite difficult to analytically invert E (e®™(?) to find the probability
density for n(¢). This in turn means maximum likelihood parameter
estimates, and Cramér-Rao lower bounds on parameter estimate co-
variances are difficult to calculate analytically. For this reason,
numerical approximations must often be used. T'o avoid these problems,
a suboptimum parameter estimation method was developed: Each
parameter of the model was estimated by itself. There is no guarantee
that these estimates, when put together, will be close to the true
parameter values. The sole reason for doing this was to make the
problem tractable. Evidence presented later indicates this method
provides an excellent (but perhaps suboptimum) fit to the data.

Although the dynamics of the linear system can be quite complicated,
only three simple cases are considered here.

(G) h(t) = Ae4u_y ()
(@) h(t) = (AZT—W)e—A‘GOSwtuﬁl(t) ua) = {3 ;zg
A 4 o

@

(i) h(t) = ( )e—msin N0)
which are perhaps the cases of greatest practical interest.”

Assuming the amplitude burst statistics to be independent of the
instants of time at which bursts occur, and assuming the gaussian
process to be independent of the filtered Poisson process, the mean and
variance can be calculated (Table VI) for the steady state noise. E (a)
is assumed to be zero in all models presented here. This completes a
general discussion of the gaussian-plus-filtered-Poisson-process model;
the methods used to estimate the model parameters are now described

in detail.

3.5 Gaussian random process parameter estimation

If E(a) = 0, then E[n ()] = m, and the sample mean is an unbiased
estimate of the true mean of the gaussian process. If the data are
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Table VI — Mean and variance for n(t)

h(t) En(t)] Variance [n(f)]

Ae Aty (1) m ~+ AE(a) | ¢® + %1 E(a?)

A? 4+ w? AMfAY WP\ T ] A
S emteosatua®) m+aB@ | ot 4 3 () [+ mga ] B

A,:—wze"“sinwtu-l(t) m + \E(a) U2+%(A2:wz)z[% —Aziw‘]E(a’)

trimmed to exclude a fraction (e.g., 25 percent) of the data with largest
absolute deviation from the sample mean, then presumably most
values of n(f) that contain large contributions from the filtered Poisson
process will be excluded.

The estimates for the mean and variance of the gaussian process
were consistent with estimates to be presented later for A, A, », and
E(a*). No bounds are available on the bias or variance of these parame-
ter estimates. The results are summarized in Table VII. The sample
variance has been rescaled, based on the assumption that the data
were drawn from a truncated gaussian distribution.

3.6 Poisson process parameter estimation

The Poisson process intensity is closely related to the times at
which bursts of high-amplitude telephone noise occur. Many definitions
of a noise burst are possible. The definition chosen here, although
arbitrary, was found to be qualitatively insensitive to the parameters
defining a burst. The absolute value of a zero mean waveform is shown

Table VIl — Gaussian random process trimmed mean and
variance (Total data = 10,000, with a fraction p
trimmed from either side)

Rescaled Truncated
- Truncated Sample Mean Sample Variance
Line

p = 0.125 0.250 0.375 p = 0.125 0.250 0.375
1 —88.0 —87.6 —87.3 35,414 35,813 35,208
2 —79.5 —78.8 —787 17,151 17,058 16,815
3 —77.6 —75.2 —73.6 49,306 48,840 46,554
4 —81.1 —80.9 —81.0 83,076 88,430 90,864
5 - 1.0 — 1.0 — 11 1,664 1,672 1,683
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in Fig. 25. The duration of the burst is the time difference between the
moment that the absolute value of the waveform climbs above an
upper threshold, Typper, and the time that the absolute value of the
waveform drops below a lower threshold, T'\ower, provided the waveform
stays below the lower threshold for at least a predetermined period of
time, called the guard band G, which separates one burst from the
next. The instant of time a burst occurs, tma.x, is the first instant at
which the absolute value of the burst attains its maximum value, Prmax.

A large number of statistics can characterize a point process. A
number of nonparametric statistics were used to characterize the points
in time at which bursts occur, and then, based on this evidence, the
burst data were examined in greater detail to see if they could be
adequately modeled by a renewal process in general, or a Poisson
process in particular (e.g., see Ref. 78).

The two statistics that were first examined were

(¢) The sample mean time between bursts as a function of Tupper,
Tlowar, a.nd GB-

(i) The empirical cumulative distribution function and the histo-
gram for time intervals between events as a function of Typper,
Tlower; and GB-

The effect on these statistics of variations of Tupper, Tiower, and Gp is
now discussed. For line 1 data, for example, Tiower was fixed at 600
(roughly three standard deviations from the sample mean), Typper was
set at 600, and G was varied from 0.1 to 0.9 millisecond, in steps of
0.2 millisecond. Typper was then set at 800, and Gz was varied in an
identical manner. Finally, Tyupper Was set at 1000, and Gz was again
varied in the same fashion. The number of events observed was found
to be insensitive to the choice of guard band as well as to Typper. The
guard band was therefore set at 0.5 millisecond, and Typper Was set
equal t0 Tiower (Which also avoids ambiguity in the meaning of
threshold).

A typical empirical cumulative distribution function and a histo-
gram for the time intervals between bursts are shown in Figs. 26 and
27, for Tupper = Tiower = 800. Typical histograms and empirical cumu-
lative distribution functions for time intervals between bursts for
Tupper = Thower = 600 and Tyupper = Tiower = 1000 had the same
shapes as those in Figs. 26 and 27. If the bursts were Poisson-dis-
tributed, the distribution function would be completely specified by
this information.
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Fig. 26—Empirical cumulative distribution function for line 1 time intervals
between bursts (N = 768).
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Fig. 27—Histogram for line 1 time intervals between bursts (N = 768).

Investigation of the burst statistics of the other two nongaussian
lines yielded findings similar to those for line 1.

Next, the second-order statistics of the time intervals were inves-
tigated. Figure 28 shows a scatter plot of the (K + 1)th interval
against the Kth interval. This plot shows that long intervals followed
by long intervals are unlikely compared with long intervals followed
by short intervals, or short intervals followed by long or short intervals.
Note that it is still possible that the intervals are generated by a
renewal process with a nonexponential distribution. Note also that
approximately half the points plotted fall in the lower left corner
square, 0 < timex =< 100 and 0 < timeg,;, = 100.

Another set of second-order statisties of interest is

(z) The estimated autocorrelation of the time intervals between
bursts
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Fig. 28—Scatter plot of time intervals between bursts for line 1 data (N = 768).

(1)

ﬁ Z:, (tr — O (tipg — 1)

Ru(K) = 0 ’

[
2|~
=

[
Il
ful

where
N

E“(O) = _ Z (tK - i)z

and
= length of jth time interval.

The estimated power spectrum of the time intervals between
bursts, which is the Fourier transform of R, (K) if the process
is wide-sense stationary and ergodic.” The same issues that
were discussed earlier when the noise amplitude power spectrum
was estimated are relevant here.
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(#7¢) Contingency tables,” which correspond to estimates of the
second-order joint density of intervals that are a specified
number of intervals apart from each other.

(7v) The estimate of the conditional expectation of the length of an
interval given the length of the interval j intervals earlier

Eltgys|te] = f tr4idp (trs |tk ).

The data analysis presented here focuses on the first two of these
second-order statistics. Since only a small number of events was
observed typically (e.g., 147 for Tupper = Tiower = 1000, 768 for
Tupper = Trower = 800, for line 1 bursts), statistical fluctuations would
have obscured the interpretation of the last two statistics. Figure 29
shows a typical sample autocorrelation function for 1000 intervals,

Typper = 600.0
TLOWER = 600.0
1000 TIME INTERVALS

08—

06—

04—~

EMPIRICAL AUTOCORRELATION OF TIME
INTERVALS BETWEEN BURSTS

02
) e \ .t 2 "t ,,-...: PORELY
o) . .o o D ‘ ,- H . - o
0 (:"M‘. o h.v‘ -:‘ Q" v'f )n ‘-\l . "'.",:-}‘ :&‘
-0.2 1 1 |
0 100 200 300 400

Fig. 29—Autocorrelation function for line 1 time intervals between bursts
(N = 1000).

TIME (sec/10,000)
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0 |
0 0.1 0.2 03 04 05
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(NYQUIST FREQUENCY = 0.5)

Fig. 30—Periodogram of line 1 time intervals between bursts (N = 1000).

while Fig. 30 shows the corresponding periodogram. Based on this
evidence, it seems possible the bursts arise from a renewal process.
To test this model, the so-called summed empirical periodogram
S(1fo), defined as

i
Sw) = Z, 1f&f*
where |f(Kfo)|? = periodogram at frequency K f, is plotted in Fig. 31,
along with 5 percent significance limits to test the renewal hypothesis,
according to which S should be straight. From this and other evidence
not presented here, it appears that the bursts analyzed can be reason-
ably modeled as a renewal process.
Next, it is useful to characterize the renewal process model in greater
detail. Such a process can be statistically described by a variety of
measures.’! The two considered here are

(¢) The survivor function S(?) £ fraction of intervals greater than
or equal to .
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Fig. 31—Normalized cumulative periodogram for line 1 time intervals between
bursts, Tupper = Tlower = 800 (N = 768).

(#7) The hazard function H (t) Zp (t)/8(t), where P(?) is the prob-
ability density function of the renewal process and S(¢) is the
survivor function.

Note that H(f)-At is the probability of an event in an interval of
length At seconds centered at ¢, which can be interpreted as the fraction
of intervals in the range ({ — A/2, i + A/2), given that the last event
was ¢ time units ago.

The survivor and hazard functions are related by®

S(t) = exp [— fo ‘ H(x)dx] = f. " P(2)da.

In a Poisson process with constant intensity A, these simplify to

P(t) = Ae ™
S@) =e +t>0.
H(t) = A
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Fig. 32—Natural logarithm of empirical survivor function for line 1 time intervals
between bursts (N = 768).

In practice, only estimates of the survivor and hazard function are
obtained. The empirical survivor function S(t) is the fraction of
observed intervals greater than or equal to ¢. The empirical hazard
function H () equals P(t)/S(t), where P(t) is the fraction of observed
intervals in the range [t — A/2, t + A/2]. Figures 32 and 33 show
representative empirical survivor and hazard functions for bursts
observed on line 1. Statistical fluctuations are quite apparent. For long
time intervals, only one or two events fall in any particular bin, giving
the appearance of a trend in A (1) ; the survivor function is more stable
for long intervals. The log survivor function roughly follows a series
of straight-line segments with different slopes, indicating the process
can be modeled as a Poisson process whose rate parameter is equal to
the absolute value of the slope of the straight line approximations.
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Fig. 33—Empirical hazard function for line 1 time intervals between bursts
= 768).

In order to adequately model the time intervals between bursts,
two models more complicated than a simple Poisson process were
investigated. The first model was a pth order autoregressive process,
while the second was a doubly stochastic Poisson process, where the
Poisson intensity A was a random variable specified by a two-state
Markov process (see Ref. 8). The autoregressive model (for p = 5 and
15) did not adequately account for long time intervals between events.
The doubly stochastic Poisson process model did not adequately
account for short time intervals followed by long time intervals.
Therefore, both these models were dropped in favor of a Poisson process
model with constant intensity, even though the log survivor function
could not be approximated by a single straight line. Since this is only
one of at least six model parameters, it was hoped the overall goodness
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of fit of the model would not be seriously degraded ; the evidence pre-
sented later indicates this might be true.

3.7 Pulse amplitude statistics

It was assumed the burst amplitude and the instant of time at which
the burst occurred were independent random variables. Figures 34 and
35 show representative empirical cumulative distribution functions and
histograms for line 1 burst amplitude data. Based on these curves, a
number of distributions can be fitted to the data; only two will be
discussed here, a two-sided log normal and a two-sided power Rayleigh™
(also known as generalized gamma®). A two-sided log normal random
variable ! equals Rg, where R and g are independent random variables,
with ¢ equally likely to be +1 or —1 and R defined by a log normal

1.00

o
0.80
Tuepen = 600
0.60 Tiowen = 600
@ Gg = 0.5 MILLISECOND
L 1000 POINTS
|
]
<
@
o
[+ =
a
0.40
0.20
0 | 1 l | l |
0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

ORDERED OBSERVATIONS (MULTIPLIED BY 10-3)

NFig. 34~)Empirica.1 cumulative distribution function of maximum burst amplitude
(N = 1000).
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Fig. 35—Histogram of maximum burst amplitudes (N = 1000).

density

20?

pﬂ(u)=éauexp[M] 0<u<uo.

Similarly, a two-sided power Rayleigh random variable p equals Rg,
where £ and ¢ are independent random variables, with ¢ equally
likely to be +1 or —1, while R is defined by a power Rayleigh density

K (] \* _(ul gyt
pr(w) =% )| 5 g (ul/Ro 0<K=2 05 |ul < .
Ry Ry
Each density has zero mean; the log normal variance is el**+= while
the power Rayleigh variance is R3I'(1 + 2/K).
The parameters of each distribution could be fit to empirical cumu-
lative distribution functions such as that shown in Fig. 34. The range
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of parameters for line 1 data, for example, was:

log normal : mean 5 = m = 6
variance 0.01 = ¢* =< 0.10
power Rayleigh: scale factor 500 = R, = 2000
exponent 0.50 £ K = 0.70.

The investigation of a much larger amount of data probably would
have narrowed the range of these estimates substantially.

3.8 Linear dynamical system parameters

The approach chosen here for estimating linear dynamical system
parameters was trial and error. The sample mean burst duration was
set equal to the damping constant A~ in both the first- and second-
order systems. The second-order system oscillates at frequency o,
which was arbitrarily chosen as (1) (damping constant)~!, to obtain
qualitative agreement with actually observed noise bursts (e.g., Fig. 3).
For line 1 bursts, for example, A~! = 0.1 millisecond for Typper = Tiower
= 600, Gz = 0.5 millisecond.

3.9 Goodness-of-fit to data of gaussian-plus-filtered-Poisson-process model

Only one test was carried out to provide some heuristic measure of
goodness-of-fit of this model to the data. The test was analogous to a
quantile-quantile plot. Using typical parameter estimates such as those
just described, a computer generated a sample function of a gaussian-
plus-filtered-Poisson process. These artificial data were sorted and
plotted against actual (sorted) telephone noise from line 1 as shown in
Figs. 36 and 37.

The reason for performing just one test is the great difficulty in
expressing analytically the distribution function for the gaussian-plus-
filtered-Poisson-process model. Hence, it is very difficult to perform
quantile-quantile plots of the actual data versus model quantiles, as
well as to find maximum likelihood parameter estimates and Cramér-
Rao lower bounds on parameter estimate covariances.

3.10 Criticism of the gaussian-plus-filtered-Poisson-process model

Many eriticisms of this statistical analysis are possible. First, the
question of optimally choosing parameters was never addressed and is
still open. Since a large number of parameters must be estimated, a
series of presumably suboptimum but easy-to-calculate estimates
appeared to be the only feasible course.
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_Fig. 36—Line 1 data vs gaussian-plus-filtered-Poisson-process data (N = 13,000)
(X = sample mean, 8* = sample variance).

Second, it is not clear how to relate the linear dynamical system
parameters in the model to actual telephone system parameters. Where
does the filtering occur in reality? Why should it be linear and station-
ary? Other evidence! suggests that the linear dynamical system pa-
rameters are not as well defined for other telephone lines as for the
data examined in the present work.

Third, the time intervals between bursts are not adequately modeled
over the entire observation by a Poisson process. Two other more
complicated models were investigated in order to account for this.
Many other models can still be investigated.

Fourth, a more general class of models was never investigated that
includes the gaussian-plus-filtered-Poisson process as a special case.
This model, mentioned briefly earlier, is a mixture of a low-variance
gaussian distribution and a high-variance gaussian distribution; during
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Fig. 37—Center portion of line 1 data vs gaussian-plus-filtered-Poisson-process
data (N = 12,980) (X = sample mean, S? = sample variance).

a fraction P of the time, the low-variance gaussian distribution is
chosen to model the data, while during the other (1 — P) fraction of
time the high-variance gaussian distribution is chosen. The reasons
for not investigating this class of models were that the gaussian-plus-
filtered-Poisson-process model comes closer to describing intuitively
the physical process of telephone noise generation, and that it has been
used by communication theorists in other applications™-"¢ more than
a mixture of gaussians.

IV. CONCLUSIONS

This study has presented evidence that noise on some lines consists
of a deterministic component (e.g., sinusoids at various frequencies)
and a purely stochastic component. It was assumed that these com-
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ponents add. The data analyzed here suggest that the stochastic
component is stationary over short periods of time (typically 1 second)
and distinetly nongaussian. Two simple models have been proposed
for the nongaussian noise, one based on stable distributions, the other
on a mixture of a gaussian process and a nongaussian-filtered Poisson
process. Based on the data analyzed here, both models agree intuitively
with the physical processes generating telephone noise and appear to
fit the data reasonably well.

It is hoped this work will stimulate further research in this area;
since only a small number of telephone lines were examined, the models
presented here await confirmation by independent investigators. Other
models than those discussed here may indeed more adequately account
for noise on telephone lines. It is hoped this work will lead to greater
insight into how telephone noise limits voice communication and data
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Fig. 38—Computer-generated gaussian-plus-filtered-Poisson-process sample func-
tion (same process parameters as in Figs. 36 and 37; X = sample mean, §? = sample
variance).
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transmission and, more importantly, will lead to new methods for
combating this noise.
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APPENDIX A

This appendix is included to give the reader some feeling for the
two models discussed here. Using typical parameter estimates and a
first-order system, a computer generated and plotted a discrete time
sample function of a gaussian-plus-filtered-Poisson process (Fig. 38).
For comparison, Fig. 39 shows a computer-generated discrete time
series, where each point was drawn independently from a symmetric
stable distribution (characteristic index & = 1.9).

APPENDIX B

A graphic indication that the data can be better modeled by a
nongaussian rather than gaussian distribution is now presented. The
motivation for this work is found in Mandelbrot.®

Estimates for the sample mean, as well as second, third, and fourth
central moments can be calculated recursively for larger and larger
amounts of data. Figure 40 plots these estimates for 13,000 filtered data
(only every tenth estimate is plotted). Note the tendency for the
second, third, and fourth central moment estimates to wander rather
than stabilize as more and more data are included, as evidenced by
the jumps in the estimates. The sample mean, however, does stabilize;
note the small ripple in this estimate, which presumably is due to a
sinusoid at approximately 600 Hz that was not filtered from the
data (see Table II).

These results are qualitatively consistent with results for central
moment estimates of computer-generated stable random variables
(10,000 independent identically distributed samples, « = 1.96, 8 = 0).
Central moment estimates of computer-generated gaussian random
variables (10,000 independent identically distributed samples) did
stabilize at the correct values, while exhibiting no apparent jumps
such as in Fig. 40. These results are also consistent with the gaussian-
plus-filtered-Poisson-process model, with the large jumps in the esti-
mates presumably a result of the filtered Poisson process.

Fig. 40—Sample mean as well as second, third, and fourth central moment esti-
mates for line 1 (N = 13,000).
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